פריצת הדרך הארכיאולוגית תאפשר למפות חללים תת-קרקעיים

מחקר
פריצת הדרך הארכיאולוגית תאפשר למפות חללים תת-קרקעיים
פריצת דרך טכנולוגית באוניברסיטת תל אביב מציעה מהפכה בעולם הארכיאולוגיה: הוכחת היתכנות ראשונה לאיתור חללים תת-קרקעיים בעזרת גלאים של קרינה קוסמית – מיואונים, הנוצרים כאשר הקרינה הקוסמית פוגעת באטמוספרה של כדור הארץ. המיואונים חודרים את הקרקע לפני שהם מאבדים את האנרגיה שלהם ונעצרים, ולכן גילוי שלהם יכול לשמש ארכיאולוגים למיפוי חללים סמויים כגון מנהרות ותעלות. במסגרת המחקר, צוות החוקרים הדגים את יעילות הטכנולוגיה באתר הארכיאולוגי עיר דוד בירושלים והראה כיצד המערכת הצליחה למפות חללים תת-קרקעיים דרך שינויים בחדירות הקרקע לחלקיקי הקרינה הקוסמית.
המחקר נערך בהובלת פרופ' ארז עציון מבית הספר לפיזיקה ולאסטרונומיה באוניברסיטת תל אביב, ופרופ' עודד ליפשיץ מהחוג לארכיאולוגיה ותרבויות המזרח הקדום באוניברסיטת תל אביב. כמו כן, השתתפו במחקר, פרופ' יובל גדות מהחוג לארכאולוגיה ותרבויות המזרח הקדום באוניברסיטת תל אביב, פרופ׳ יאן בן חמו, ד״ר איגור זולקין והדוקטורנט גלעד מזרחי, מבית הספר לפיזיקה ולאסטרונומיה, ד"ר יפתח סילבר וד"ר אמיר וייסביין מרפאל וד"ר יפתח שליו מרשות העתיקות. תוצאות המחקר התפרסמו בכתב העת Journal of Applied Physics.
"מהפירמידות במצרים, דרך ערי המאיה בדרום אמריקה וכלה באתרים העתיקים בישראל, ארכיאולוגים מתקשים למצוא חללים תת-קרקעיים", מספר פרופ' ליפשיץ. "את המבנים מעל הקרקע הארכיאולוגיה חופרת בקלות יחסית, ויש גם שיטות שונות לאתר קירות ומבנים מתחת לפני השטח. אבל אין שיטות טובות לעריכת סקרים מקיפים של חללים תת-קרקעיים – שנמצאים מתחת לסלע שעליו נמצאים האתרים הקדומים. בשפלה למשל, מתחת לשכבת סלע הגיר הקשה (סלע הנארי), נמצא הגיר הרך (הקירטון), כך שמי שחוצב וחודר את סלע הנארי מלמעלה או נכנס מתחתיו מהצד, יכול בקלות לייצר חללים גדולים מאוד לאגירת מים, לשימושים חקלאיים שונים, לאיחסון וגם למגורים. ברור לנו שמרבית האתרים הארכיאולוגיים שעל פני השטח אינם אלא גבינה שווייצרית מתחת לפני הסלע. אלא שלנו אין דרך לדעת מזה. אם במקרה חפרנו מעל הקרקע, הגענו לסלע וזיהינו כניסה לחלל, אנחנו יכולים לחפור אותו. אבל אין לנו דרך לאתר את תת-הקרקע מראש. במחקר הנוכחי אנחנו מציעים בפעם הראשונה שיטה חדשנית שהוכחה כיעילה מאוד באיתור חללים תת-קרקעיים בעזרת גלאים של קרינה קוסמית - מיואונים".
החוקרים מסבירים כי מיואון הוא חלקיק יסודי הדומה לאלקטרון, אך מסיבי פי 207 ממנו. המיואונים נוצרים באטמוספרה כאשר חלקיקים אנרגטיים, בעיקר פרוטונים, מתנגשים בגרעינים של מולקולות באוויר. ההתנגשות הזאת יוצרת חלקיקים בלתי יציבים בשם פאיונים, שדועכים מהר מאוד למיואונים. גם למיואונים תוחלת חיים קצרה מאוד, והם מתפרקים אחרי 2.2 מיקרו-שניות, אלא שהם נעים במהירות הקרובה למהירות האור – ובזמן הזה מספיקים להגיע לקרקע.
"מטר המיואונים שפוגע בקרקע עושה זאת בקצב קבוע וידוע", מסביר פרופ' עציון. "להבדיל מהאלקטרונים שנעצרים בקרקע אחרי סנטימטרים בודדים, במעבר בקרקע המיואונים מאבדים אנרגיה בקצב איטי ולכן חלקם חודרים עמוק לתוך הקרקע. האנרגטיים שבהם יכולים לחדור אפילו לעומק של מאה מטרים. לכן אם נציב גלאי מיואונים מתחת לקרקע ונמדוד את הסביבה, נוכל לזהות חללים ריקים בהם איבוד האנרגיה זניח. למה הדבר דומה? לשיקוף של רנטגן: מציבים אלומת קרני X בצד אחד ומצלמה בצד השני, כדי להאיר את הגוף שרוצים לצלם – את העצמות והמפרקים וכולי, שכן אלה עוצרים את האלומה טוב יותר משומן ובשר למשל. כך המיואונים הם אלומת הרנטגן, הגלאי שלנו הוא המצלמה והמערכות התת-קרקעיות הן גוף האדם".
כאמור, החוקרים ערכו הדגמה מרשימה במתקן חצוב בסלע, המכונה "בור ירמיהו" באתר הארכיאולוגי עיר דוד. במסגרת ההדגמה, החוקרים שילבו סריקת LiDAR ברזולוציה גבוהה של חלל הפנים עם סימולציות של שטף המיואונים ובכך הצליחו למפות אנומליות מבניות. המערכת זיהתה בהצלחה שינויים בחדירות הקרקע למיואונים, ובכך הדגימה את היתכנות השימוש בטומוגרפיית המיואונים לצורך דימות ארכיאולוגי.
"המאמר הזה הוא אבן דרך ראשונה", אומר פרופ' ליפשיץ. "אנחנו רוצים שהצורך הארכיאולוגי ידחוף את הפיזיקאים לייצור גלאים קטנים, פשוטים, זולים, עמידים ומדויקים יותר, שגם צורכים פחות חשמל. השלב הבא יהיה לשלב את הפיזיקה והארכיאולוגיה עם בינה מלאכותית, שתדע לקחת את נתוני העתק שהגלאים ייצרו כדי לייצר תמונה תלת-ממדית של התת-קרקע. אתר המבחן שלנו יהיה תל עזקה שבמרכז השפלה, מעל לעמק האלה".
"לא מדובר בהמצאה שלנו", מוסיף פרופ' עציון. "עוד בשנות השישים השתמשו במיואונים כדי לחפש חדרים נסתרים בפירמידות במצרים, ולאחרונה התעורר התחום מחדש. החדשנות שלנו בכך שפיתחנו גלאים קטנים וניידים ולמדנו להפעיל אותם באתרים ארכיאולוגיים. הלא בכל זאת יש הבדל בין גלאי בתנאי מעבדה לגלאי שצריך להכניס אותו למערה או לחפירה כדי שימדוד את סביבתו – ופתאום צצות בעיות מעשיות של חשמל, של טמפרטורה, של לחות. טווחי הגילוי הם פונקציה של זמן המדידה, ככל שהגלאי רחוק יותר מגיעים אליו פחות חלקיקים, אבל ריאלית אפשר לנתח תמונות ממרחק של עד 30 מטרים בזמן סביר. לכן המטרה היא הצבת מספר גלאים, או הזזת גלאי אחד ממקום למקום, כדי לדמות בתלת-ממד תת-הקרקע של אתרים שלמים. לכן אנחנו רק בתחילת הדרך. השלב הבא הוא שלב של אנליזות מתוחכמות, שיאפשרו לנו למפות את כל מה שנמצא מתחת לרגליים – עוד לפני שהמחפרון הראשון מגיע לאתר".
מחקר
גילויים חדשים על חקר היקום המוקדם, כ-100 מיליון שנה אחרי המפץ הגדול
מחקר חדש של אוניברסיטת תל אביב הצליח לראשונה לנבא תוצאות פורצות דרך שניתן לקבל ממדידת גלי רדיו שמגיעים אלינו מהיקום המוקדם. מממצאי המחקר עולה כי בתקופת החושך הקוסמית (cosmic dark ages), החומר האפל ברחבי היקום יצר גושים צפופים שסימולציות מחשב מנבאות שמשכו אליהם גז מימן וגרמו לפליטה מוגברת של גלי רדיו ממנו. בעקבות כך, החוקרים מעריכים שבאמצעות מדידת גלי הרדיו ניתן יהיה לסייע לעולם המדע לפצח נדבך חשוב בתעלומת החומר האפל.
קבוצת המחקר בהובלתו של פרופ' רנן ברקנא מבית הספר לפיזיקה ואסטרונומיה בפקולטה למדעים מדויקים, באוניברסיטת תל אביב, כללה את הדוקטורנט סודיפטה סיקדר, יחד עם עמיתים מיפן, הודו, ובריטניה. המחקר פורסם בכתב העת היוקרתי Nature Astronomy.
החוקרים מציינים כי ניתן לחקור את תקופת החושך הקוסמית (העידן שלפני היווצרות הכוכבים הראשונים) בעזרת גלי רדיו שפלט גז המימן שמילא את היקום באותה תקופה. אמנם אנטנת טלוויזיה פשוטה יכולה לקלוט גלי רדיו, אבל גלי הרדיו מהיקום המוקדם נחסמים ע״י האטמוספירה של כדור הארץ. ניתן למדוד אותם רק מהחלל, ובמיוחד מהירח, שמספק סביבה יציבה, ללא הפרעות של אטמוספירה או תקשורת רדיו קרובה. כמובן שלא פשוט להביא טלסקופ אל הירח, אבל בימינו מתקיים מרוץ חלל בינלאומי שבו הרבה מדינות מנסות לחזור לירח עם חלליות ובסופו של דבר גם אסטרונאוטים. סוכנויות חלל בארה״ב, אירופה, סין, והודו, מחפשות מטרה מדעית לנחיתה על הירח, והמחקר החדש מדגיש את הפוטנציאל האדיר של מדידת גלי הרדיו מתקופת החושך הקוסמית.
פרופ' ברקנא מסביר:״טלסקופ החלל החדש של נאסא, ע״ש ג'יימס ווב, מצא לאחרונה כמה גלקסיות רחוקות, שהאור שלהן מגיע מתקופת השחר הקוסמי, כ-300 מיליון שנה אחרי המפץ הגדול. המחקר החדש שלנו עוסק בתקופה מוקדמת ומסתורית אף יותר: תקופת החושך הקוסמית (cosmic dark ages), כ-100 מיליון שנה בלבד אחרי המפץ הגדול. סימולציות מחשב מנבאות שהחומר האפל ברחבי היקום יצר גושים צפופים, שהיוו את הקדימון להיווצרות המאוחרת יותר של כוכבים וגלקסיות. גודלם של הגושים האלה תלוי בתכונות המסתוריות של החומר האפל, אך אין אפשרות לראות את הגושים באופן ישיר. אבל, הסימולציות מנבאות שהגושים משכו אליהם גז מימן וגרמו לפליטה מוגברת של גלי רדיו ממנו. אנו מנבאים שניתן לראות את האפקט המצטבר של כל זה בעזרת אנטנות שימדדו את עוצמת גלי הרדיו הממוצעת בשמים.״
אות הרדיו מעידן השחר הקוסמי צפוי להיות די חלש, אך אם ניתן יהיה להתגבר על האתגר התצפיתי, זה יפתח דרך חדשה לבחון את טבעו של החומר האפל. כאשר נוצרו לבסוף הכוכבים הראשונים, בתקופה קצת יותר מאוחרת שנקראת השחר הקוסמי, צפוי שאור הכוכבים הגביר מאד את פליטת גלי הרדיו מהמימן. לכן, אמור להיות קל יותר למדוד את הסיגנל מתקופה זו, וזה גם יהיה אפשרי בעזרת טלסקופים על כדה״א, אבל יהיה קשה יותר לפרש את המדידות, בגלל ההשפעה של כוכבים שמכניסים סיבוכים רבים לסיפור. מצד שני, בתקופה זו ניתן יהיה לאסוף מידע רב נוסף בעזרת מערכים גדולים של אנטנות רדיו שינסו למפות את התפלגות גלי הרדיו בשמים. התבנית המצופה של אזורים בהירים יותר ובהירים פחות בגלי רדיו, אמורה גם היא להראות את ההשפעה של אותם גושי חומר אפל. פרופ׳ ברקנא הוא חלק מהניסוי הבינלאומי הגדול ביותר מסוג זה, מערך הקילומטר המרובע (Square Kilometre Array, SKA) , שיכלול אוסף אדיר של 80,000 אנטנות רדיו שמותקנות עכשיו באוסטרליה.
החוקרים מעריכים כי ממצאי המחקר עשויים להיות משמעותיים מאוד בהבנה המדעית של החומר האפל. אסטרונומים מנסים להבין את תכונות החומר האפל גם ביקום המודרני, אבל אחרי מיליארדי שנה שבהן החומר האפל התערבב עם הגז הרגיל, זה מאד קשה. לעומת זאת, היקום הבראשיתי מספק תנאי מעבדה נפלאים עבור אסטרופיזיקאים.
פרופ' ברקנא מסכם: ״בתקופה שבה תחנות הרדיו המסורתיות מוחלפות בטכנולוגיות חדשות שמובילות לעליית האינטרנט, אסטרונומים דווקא מרחיבים את טווח ההשפעה של גלי הרדיו. כשפותחים חלון חדש במדע בדרך כלל מגלים הפתעות. בעזרת התצפיות המוצעות, יש אפשרות לגלות תכונות שונות של החומר האפל, שהוא התעלומה הגדולה ביותר: אנחנו אמנם יודעים שהוא רוב החומר ביקום, אבל תכונותיו וטבעו עדיין מסתוריים. ברור שאסטרונומים מלאי ציפייה לקראת פתיחת ערוצי הרדיו הקוסמיים של היקום המוקדם."
מחקר
פריצת דרך בתחום הרובוטיקה השיתופית
צוות חוקרים מאוניברסיטת תל אביב, בשיתוף אוניברסיטת רדבוד שבהולנד, פרסם לאחרונה מחקר פורץ דרך בתחום נחילי הרובוטים. החוקרים הראו כי שינוי מכני קטן במבנה רובוטים פשוטים וזעירים מאפשר להם לפתח יכולת שיתופית יוצאת דופן – הובלה קולקטיבית של מטענים גדולים וכבדים – וכל זאת ללא חיישנים, תקשורת, או בקרה חיצונית.
צוות החוקרים מדגיש: ״לא תכנתנו אותם לשתף פעולה – הם פשוט עושים זאת. על ידי כיוונון פשוט של המבנה המכאני, אסופת רובוטים חסרי דעת פיתחו אינטיליגנציה נחילית".
הכותבת המובילה במאמר, עדן ארבל, היא בוגרת בית הספר לפיזיקה ואסטרונומיה באוניברסיטת תל אביב, והמחקר נערך בשיתוף עם פרופ׳ יואב לחיני ודר׳ נעמי אופנהיימר מבית הספר, ובהובלת ד״ר מתן יה בן ציון, לוקו בויז, ושארלוט ואן וואס מהמחלקה לבינה מלאכותית באוניברסיטת רדבוד, בהולנד. המאמר פורסם בכתב העת היוקרתי Nature Communications
המחקר התבסס על השראה מעולם הטבע: בדומה לנמלים שמצליחות לשאת מזון גדול בהרבה מהיכולת האישית של כל פרט, גם כאן נצפתה תופעה של סינרגיה ספונטנית. החוקרים גילו כי כאשר מרכז המסה של הרובוטים מוסט, הם נטו להיצמד אל המטען ולדחוף אותו בצורה מסונכרנת. עיצובים אחרים הובילו לתנועה אקראית של הרובוטים, והמחקר הראה כיצד הנדסה מכאנית של הפרט מובילה לתנועה קוהרנטית ומתמשכת של הנחיל שנושא את המטען במסלול ישר עד לקצה מערכת הניסוי.
עדן ארבל: "המבנה של הרובוטים הוא מאוד פשוט, וכולל סוללה, צמד מנועי רטט, ורגליים רכות. אין מעגל חשמלי מורכב או חיישנים מתוחכמים. כל שנדרש הוא שינוי קל במבנה של הרגלים הרכות כדי שהנחיל ישתף פעולה.״
באופן מפתיע במיוחד נמצא כי ככל שהמטען גדול יותר – כך משתפרת יעילות ההובלה. בעוד שבמערכות פיזיקליות אחרות אובייקטים גדולים נעים לאט יותר, כאן החוקרים הראו באמצעות ניסויים ויותר מאלף סימולציות כי עצמים גדולים דווקא נעים ביציבות רבה יותר – הרובוטים נשאו את המטען יחד במסלול שהיה למעלה מסדר גודל יותר ישר מהמסלולים של הרובוטים הבודדים עצמם.
הממצאים הובילו את החוקרים להגדרה של כלל גיאומטרי חדש – "קריטריון העקמומיות" – הקובע מתי יופיע שיתוף פעולה ספונטני במערכות רובוטיות או ביולוגיות. קריטריון זה מציע מסגרת מתמטית פשוטה להבנת תופעות מורכבות של התנהגות קולקטיבית.
ד"ר מתן יה בן ציון: "במסגרת המחקר הראנו שלרובוטים בודדים יש נטייה מובנֵת להסתובב כשהם נתקלים במכשול, והמבנה המכאני מכתיב אם הרובוט יסתובב לתוך המכשול או הרחק ממנו. לנטייה הזו קראנו עקוּמיוּת (curvity) והראנו כיצד ניתן למדוד אותה וחשוב מכך, להנדס אותה – כך שכל שנדרש כעת הוא להסיט את מרכז המאסה של הרובוט. רובוט עם עקוּמיוּת שלילית יסתובב לתוך המכשול, וכשהמכשול הוא משא נייד, הרובוט ידחוף. הפועל היוצא הוא ששיתוף פעולה לא מחייב מערכות מתוחכמות של חישה ותקשורת. די במנגנון מכני פשוט כדי שצוות של רובוטים יתנהג כקבוצה מאורגנת - זוהי דוגמה לכך שפיזיקה בסיסית יכולה להסביר התנהגות קבוצתית ולספק כלים לעיצוב מערכות מבוזרות.״
פרופ' יואב לחיני מסביר: ״אנחנו מציעים כאן עקרון תכנון חדש – כזה שיכול לשמש בתעשייה, בלוגיסטיקה ואפילו ברפואה. בעתיד ניתן יהיה לפתח נחילים של מיקרו־רובוטים רפואיים שיפעלו יחד בתוך גוף האדם, יישאו תרופות, או יבצעו משימות מורכבות בסביבה דינמית."
מעבר לפוטנציאל היישומי, הממצאים מספקים גם תובנות חדשות לגבי מנגנוני שיתוף פעולה בטבע – החל מחרקים ועד חיידקים. בכך, המחקר מדגים כיצד עקרונות פיזיקליים פשוטים יכולים להסביר תופעות ביולוגיות מורכבות ולהוות השראה לפיתוחים טכנולוגיים חדשניים.
מחקר
פריצת דרך מדעית באשר להיווצרות הכוכבים הראשונים ביקום
מחקר חדש של בית הספר לפיזיקה ואסטרונומיה באוניברסיטת תל אביב מגלה כי מרבית הכוכבים המסיביים שנוצרו בראשית היקום נוצרו כמערכות זוגיות בדומה לכוכבים המסיביים שנוצרים בגלקסיה שלנו. צוות החוקרים מעריך כי ממצאים אלו הם הראיה החזקה הראשונה לכך שכוכבים מאסיביים בינאריים היו נפוצים – ואולי אף נפוצים יותר – ביקום המוקדם. מערכות כאלה משפיעות במגוון רחב של דרכים, החל מהיווצרות חורים שחורים בכל הגדלים, דרך עיצוב סופרנובות אנרגטיות, ועד העשרת גלקסיות ביסודות כבדים.
המחקר נערך בהובלת ד"ר תומר שנהר מבית הספר לפיזיקה ואסטרונומיה באוניברסיטת תל אביב ובשיתוף ד"ר הוג סנה מאוניברסיטת KU Leuven בבלגיה וד"ר יוליה בודנשטיינר מאוניברסיטת אמסטרדם, הולנד. המחקר פורסם בכתב העת Nature Astronomy.
צוות החוקרים מסביר שכוכבים מסיביים – כאלה שמסתם עולה פי עשרה ויותר מזו של השמש – אחראים לשלל תופעות קוסמיות. כוכב מסיבי יחיד יכול לפלוט יותר אנרגיה ממיליון כוכבים דמויי שמש. הם מעצבים את מבנה ותכונות הגלקסיות בהן הם שוכנים, יוצרים את רוב היסודות הכבדים ביקום, ומסיימים את חייהם בפיצוצי סופרנובה רבי־עוצמה, שבסופם נותרים האובייקטים המסתוריים ביותר שאנו מכירים: כוכבי נויטרונים וחורים שחורים.
בגלקסייה שלנו, גלקסיית שביל החלב, ידוע שרוב הכוכבים המסיביים נולדים ב״מערכות בינאריות״– צמדים של כוכבים במסלול כה קרוב עד שהם מחליפים ביניהם חומר ולעיתים אף מתמזגים במהלך חייהם. אינטראקציות אלו משנות מין היסוד את מהלך חייהם ומותם של הכוכבים המסיביים.
שאלת מפתח היא האם תופעה זו של ״זוגיות״ בקרב הכוכבים המסיביים אפיינה גם את הכוכבים המסיביים שנוצרו בראשית היקום. טלסקופ החלל ג’יימס ווב צופה כיום בגלקסיות הראשונות שנוצרו לאחר המפץ הגדול, וגלקסיות אלו מצביעות על נוכחות של אוכלוסיות ענק של כוכבים מסיביים, אך המרחקים האדירים אליהם מונעים בדיקה ישירה של מבנה המערכות הכוכביות שם.
ד"ר שנהר מספר: "כדי לעקוף מגבלה זו, פיתחנו סקר תצפיתי שנועד לחקור כוכבים כבדים דווקא בגלקסיה קרובה יחסית, אך כזו שמדמה את התנאים הכימיים של היקום הקדום. במסגרת הסקר Binarity at LOw Metallicity (BLOeM), ערכנו מסע תצפיות בן שנתיים בטלסקופ הענק VLT בצ’ילה, שבמהלכו נלקחו ספקטראות של כ־1,000 כוכבים מסיביים בענן המגלני הקטן – גלקסיה סמוכה בעלת הרכב כימי דל במתכות, הדומה להרכב של היקום הצעיר".
"ניתוח ספקטרלי של הנתונים מאפשר מדידה של תנועה מחזורית של הכוכבים, ובכך הסקה של קיום של בני לוויה לכוכבים", מוסיף ד"ר שנהר. "מניתוח מפורט של נתונים עבור 150 הכוכבים המסיביים ביותר, מצאנו שלפחות 70% מהם הם חלק ממערכות זוגיות קרובות. מדובר בראיה הישירה והמשכנעת הראשונה לכך שכוכבים מסיביים היו נפוצים במערכות זוגיות גם בתנאים ששררו ביקום הקדום, ואולי אף בשכיחות גבוהה יותר מאשר היום.
לסיכום, ממצא זה משנה את הבנתנו את התהליכים שעיצבו את היקום – מהיווצרות חורים שחורים בכל סדרי הגודל, דרך מאפייני פיצוצי הסופרנובה, ועד להעשרת גלקסיות שלמות ביסודות הכבדים הדרושים ליצירת כוכבים, כוכבי לכת, ואף חיים.