Zero-sum game

From Knowino
Jump to: navigation, search

In game theory, a zero-sum game is a game in which the sum of the payoffs for all the players is zero, whatever strategy they choose. The interests in a zero-sum game are diametrically opposed: a player can only gain at the expense of the other players. It is like dividing a cake, where one can only get more if another gets less. In games that are not zero-sum, there is the possibility to cooperate and thus increase the size of the cake.

For example, sports games are zero-sum, when considered on their own. The best result is to win and the worst is to lose, with a draw in between. When one side wins, the other side loses; this makes it a zero-sum game. However, when a series of games is played, then each individual game is not necessarily zero-sum. For instance, if in some competition both teams need only a draw to proceed to the next round and they do not get any advantages if they win, then they can cooperate and make sure that the game indeed ends in a draw.

Zero-sum games are easier to analyze than games that are not zero-sum. For instance, every zero-sum game has a Nash equilibrium if we allow mixed strategies. A Nash equilibrium is when each player have chosen a strategy so that none of the players can increase their payoff by changing their strategy unilaterally; it is natural to expect that "fair" outcomes of the games satisfy this condition. A mixed strategy is one in which a player does not commit to one strategy, but chooses randomly between two or more strategies. Furthermore, if a zero-sum game has more than one Nash equilibrium, then these equilibria have the same payoffs and so they are basically the same. Hence, a zero-sum game has a well-defined value to each of the players, namely their payoff in the equilibrium.

Information.svg Some content on this page may previously have appeared on Citizendium.
Personal tools
Variants
Actions
Navigation
Community
Toolbox