Polar coordinates
- For an extension to three dimensions, see spherical polar coordinates.
In mathematics and physics, polar coordinates are two numbers—a distance and an angle—that specify the position of a point on a plane.
In their classical ("pre-vector") definition, polar coordinates give the position of a point P with respect to a given point O (the pole) and a given line (the polar axis) through O. One real number (r ) gives the distance of P to O and another number (θ) gives the angle of the line O—P with the polar axis. Given r and θ, one determines P by constructing a circle of radius r with O as origin, and a line with angle θ measured counterclockwise from the polar axis. The point P is on the intersection of the circle and the line.
In modern vector language one identifies the plane with a real Euclidean space that has a Cartesian coordinate system. The crossing of the Cartesian axes is on the pole, that is, O is the origin of the Cartesian system and the polar axis is identified with the x-axis of the Cartesian system. The line O—P is generated by the vector
Hence we obtain the figure on the right where is the position vector of the point P.
[edit] Algebraic definition
The polar coordinates r and θ are related to the Cartesian coordinates x and y through
so that for r ≠ 0,
Bounds on the coordinates are: r ≥ 0 and 0 ≤ θ < 3600. Coordinate lines are: the circle (fixed r, all θ) and a half-line from the origin (fixed direction θ all r). The slope of the half-line is tanθ = y/x.
[edit] Surface element
The infinitesimal surface element in polar coordinates is
The Jacobian J is the determinant
Example: the area A of a circle of radius R is given by