Inner product space

From Knowino
Jump to: navigation, search

In mathematics, an inner product space is a vector space that is endowed with an inner product. It is also a normed space since an inner product induces a norm on the vector space on which it is defined. A complete inner product space is called a Hilbert space.

[edit] Examples of inner product spaces


\langle x,y \rangle :=\sum_{k=1}^{n}x_k y_k,\quad\forall x=(x_1,\ldots,x_n)\;\hbox{and}\;y=(y_1,\ldots,y_n) \in \mathbb{R}^n
.
This inner product induces the Euclidean norm ||x|| = ⟨ x, x ⟩½.

\langle f,g\rangle =\int_{-\infty}^{\infty} f(x)\overline{g(x)}dx
.
Here a square integrable function is any function f satisfying

\int_{-\infty}^{\infty} |f(x)|^2dx<\infty
.
The inner product induces the norm \|f\|=\left(\int_{-\infty}^{\infty} |f(x)|^2dx\right)^{1/2}
Information.svg Some content on this page may previously have appeared on Citizendium.
Personal tools
Variants
Actions
Navigation
Community
Toolbox