
Abstract. Differential proteolytic 18O labeling is a cost-
effective but not commonly used method in the field of
quantitative proteomics based on mass spectrometry (MS).
In most cases, peptide identification is performed at the
MS/MS level followed by peptide quantification at the MS
level. In this study, identification and quantification of 18O-
labeled peptides was performed in a single step at the
MS/MS level using the MASCOT 2.2 search engine, and the
instrumental conditions for acquisition of ultra performance
liquid chromatography electrospray MS/MS (UPLC-ESI-
MS/MS) data were adapted accordingly. Using analysis of
standard peptide and protein mixtures prepared by
differential 16O/18O labeling, under these conditions
automated MS/MS data acquisition and evaluation delivered
correct data. Linearity and reproducibility of this approach
indicated excellent performance. In addition, the method was
applied to relative quantification of protein phosphorylation
in mouse brain following treatment with ionizing radiation.
The analysis led to automated quantification of 342 proteins
and 174 phosphorylation sites, 24 of which were up- or
down-regulated by a factor of 2 or more. The majority of
these phosphorylation sites were found to be located in
target sequences of known protein kinases, showing the
activation of kinase-regulated signaling cascades by
irradiation. 

Enzymatic digestion of proteins in 18O-enriched water is an
elegant, versatile and cost-effective labeling method in
analytical proteomics. It has been applied for peptide

sequencing (1), de novo peptide sequencing (2-4), relative
peptide quantification (5-7), relative quantification of
subproteomes (8-12), and relative quantification of protein
phosphorylation (13). Other applications of 16O/18O labelling
are the recognition of glycosylation (14-16), disulfide-linked
peptides (16), isoaspartate formation (17, 18), succinimide
formation (19), and deamidation (20). Methods and
applications of proteolytic 18O labeling of peptides have been
reviewed elsewhere (21, 22).

In the field of quantitative analytical proteomics,
proteolytic 18O labeling has experienced slower
methodological development compared to other chemical or
metabolic labeling methods (23-27). Putative downsides of
the 18O labeling method are the time required, variability of
18O incorporation, the possibility of back exchange of the
label, a relatively small mass shift, and the lack of suitable
data evaluation software. 

The time required for 18O labeling is identical to that for
the digestion procedure. Thus, 18O labeling can be achieved
in 15 to 30 min by acceleration of enzymatic digestion, e.g.
using immobilized trypsin (28), ultrasonic radiation or
elevated temperature (29). 

Several attempts have been undertaken to overcome the
variable label introduction of one or two atoms of 18O, by
either trying to achieve the incorporation of a single 18O
atom (30), or complete labeling by two atoms of 18O (16,
31). The defined introduction of one or two 18O atoms
simplifies the quantitative evaluation of a mixed (labeled +
unlabeled) isotopic pattern, since in this case, the isotopic
pattern consists of only two components (16O/18O or
16O/18O2). In cases of variable incorporation, the
deconvolution process must consider three components (16O
+ 18O + 18O2), where the sum of the 18O and the 18O2
isotopomer represents the amount of the labeled species.
This sum is independent of the relative composition since an
interconversion of the 18O species into the 18O2 species does
not change the sum of both species. 
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Back exchange of the 18O label can occur by an acid-
catalyzed (at pH<2) or protease-catalyzed mechanism (32-
34). In practice, 18O back exchange can be avoided
effectively by denaturing or removal of the protease used for
digestion, e.g. by using immobilized trypsin (35) and by
avoiding pH values <2 subsequent to the labeling step.

Several software programs for the deconvolution of
molecular ion isotopic patterns of 18O labeled peptides have
been developed (e.g. (36-38)) but to our knowledge, most of
these programs are currently not available as open access files
or require expert software knowledge. As an alternative to the
deconvolution of molecular ion patterns, the 18O content of
peptides can be analyzed at the fragment ion level. By
concept, evaluation at the tandem mass spectrometry
(MS)/MS level should provide a better accuracy of the
quantitative data compared to the evaluation of survey
spectra, due to reduced background and an increased
specificity (39). Recently, software for quantitative evaluation
of labeling experiments with 13C- and 15N-labeled peptides
at the MS/MS level was introduced (39). A version of this
software that is applicable to 18O labeling was incorporated
into the search engine MASCOT (version 2.2). Here, we
demonstrate the performance of this software using mixtures
of standard peptides/proteins. Finally, we present the first
application of differential 18O labeling to one-step
identification and relative quantification of site-specific
protein phosphorylation in a complex protein sample using
this software.

Materials and Methods 

Chemicals. All chemicals were from Sigma (Deisenhofen,
Germany) unless indicated otherwise. Trypsin was from Roche
(Mannheim, Germany). All solvents and acids were from Biosolve
(Valkenswaard, the Netherlands) in ULC grade quality suitable for
ultra performance liquid chromatography. 18O-Enriched water
(≥98% purity) was from Rotem (Leipzig, Germany). 

Standard mixture preparation. Synthetic peptides were kindly
produced in-house using Fmoc chemistry in the Central Peptide
Synthesis Unit of the DKFZ by Dr. R. Pipkorn. Three differently
16O/18O-labeled mixtures of the peptide DLESQLAQSR were
prepared. Fractions of the synthetic peptide were incubated either
in 16O or 18O water, respectively, in the presence of trypsin for 24 h.
Trypsin was removed and the samples were desalted using ZipTips
(Millipore, Billerica, MA, USA). Subsequently 16O- and 18O-
labeled samples were combined and the resulting ratios of
nonlabeled/labeled compounds controlled by nano electrospray
(ESI)-MS revealing the ratios present in the mixtures (9:1, 1:1, 1:9).
Differentially 16O/18O-labeled protein digest mixtures were prepared
from ovalbumin. For this purpose, 100 μg of ovalbumin were
dissolved in 0.1M NH4HCO3, denatured using 4 M urea, reduced
and alkylated using dithiothreitol (DTT) and iodoacetamide (IAA)
and then digested in solution in 16O and 18O water, respectively,
using trypsin. After digestion, the labeled and unlabeled fractions
were mixed in different ratios.

Complex protein sample preparation and SCX/WAX peptide
fractionation. Cerebellum tissues were prepared from untreated and
irradiated (10 Gy, excised 1 h after irradiation) 10-day-old Balb-C
mice. Proteins were extracted in the presence of protease and
phosphatase inhibitors (both from Roche). A quantity of 3 mg
protein of each fraction was precipitated using cold acetone and the
precipitate was washed once using acetone. After removing the
acetone, the precipitate was dried using a Speed Vac and
resuspended using 0.1 M NH4HCO3 in 18O or 16O water,
respectively. In the next step, in-solution digestion was carried out
as described above. Resulting peptides were desalted using an
XBridge BEH 130 PREP C18 250 mm × 10 mm reversed-phase
column with a particle diameter of 5 μm (Waters, Milford, MA,
USA). The volume of the desalted peptide fractions was reduced
using a Speed Vac. Peptides were then loaded onto an SCX/WAX
(1:2) 200 mm × 4.4 mm column with a particle diameter of 5 μm
and 300 Å pore size (PolyLC Inc., Columbia, MD, USA) and a
linear gradient from 100% A (20% acetonitrile, 0.1% formic acid),
0% B (20% acetonitrile, 0.1% formic acid, 0.5 M ammonium
acetate) to 0% A, 100% B in 40 min was applied. During elution, 20
fractions were collected, the volume was reduced using a Speed Vac
and the samples were desalted using the preparative reversed-phase
column. Desalted fractions were again reduced in volume using a
Speed Vac. 5% to 50% of each fraction was submitted to
phosphopeptide enrichment by Ga3+ immobilized metal ion affinity
chromatography (IMAC) (Phosphopeptide Isolation Kit, Pierce,
Rockford, IL, USA). Flow-through fractions and phosphopeptide
fractions were reduced in volume and citrate was added to the
phosphopeptide fractions to a final concentration of 50 mM (40).

UPLC-MS/MS analyses. All LC-MS/MS analyses were carried out
using a nanoAcquity UPLC system (Waters). The column used was a
150 mm × 75 μm C18 BEH column packed with 1.7 μm particles with
a pore size of 130 Å. Samples were loaded directly onto the analytical
column without using a trap column. After sample loading followed
by 24 min of washing with 1% solvent A (water with 0.1% formic
acid), a linear gradient of 60 min length was applied from 99% A,
1% B (acetonitrile with 0.1% formic acid) to 70% A and 30% B. The
column temperature was 35˚C and the flow was 400 nl/min. The
column outlet was connected to a pico tip sprayer (Waters Micromass,
Manchester, UK) using PicoTips (New Objective, Woburn, MA,
USA) mounted on a Quadrupole Time-of-Flight mass spectrometer
(QTOF-2, Waters Micromass, Manchester, UK). The capillary voltage
applied was 2400 V. The mass spectrometer was operated in data-
directed acquisition (DDA) mode with recording of 1 spectrum per
second. Following one survey scan, the two most abundant signals in
each scan were selected for fragmentation and up to two MS/MS
scans per precursor ion were acquired. For the low and high mass
resolution, a value of 2 was selected, resulting in a transmission
window of 12 m/z units extending from about –3 m/z to +9 m/z
relative to the selected set mass for MS/MS. 

Data processing. Using MassLynx 4.1 (Waters) the MS/MS raw data
were transformed into peak lists (.pkl files). For processing, no
smoothing or background subtraction was applied. The individual .pkl
files obtained in the analysis of the mouse brain samples were merged
into a single file using the program merge.pl provided by
matrixscience (www.matrixscience.com). All .pkl files were searched
against the MSDB database (http://csc-fserve.hh.med.ic.ac.uk/
msdb.html) using MASCOT 2.2 installed on an in-house server. As
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search parameters, the option ‘quantification by 18O-corrected
multiplex’ was selected in combination with a precursor mass tolerance
window of 6 Da and an MS/MS mass tolerance window of 0.3 Da.
The instrument specification was set as ESI-QUAD-TOF. As digestion
parameters, trypsin in combination with a maximum of 3 miscleavages
were selected. Carbamidomethyl cysteine was selected as fixed and
methionine oxidation as reversible modification. For phosphopeptide
analysis, phosphorylation at serine, threonine or tyrosine was set as
additional variable modification. Average values, standard deviations
and correlation coefficients were calculated using Microsoft Excel.

Results 

To obtain reliable and correct quantitative results, at first
binary and complex peptide standard mixtures with known
ratios of 16O/18O content at the C-terminus were used to
optimize the LC-MS/MS settings and the search engine
parameters (see Material and Methods).

16O/18O Labeling and MS/MS spectra acquisition. For
correct quantification at the MS/MS level, the broad isotopic
envelopes of proteolytically 18O-labeled peptides must be
completely included in the precursor ion transmission
window. Only under these conditions do the isotopic patterns
of the y ions provide a 16O/18O ratio which is identical to
that of the molecular ion. In the DDA mode, the two extreme
cases that can occur are that either the most abundant peak of
the nonlabeled species or that of the doubly 18O-labeled

species is selected as set mass for the registration of an
MS/MS spectrum. Using the 1:1 mixture of DLESQLAQSR
(C16O16OH) and DLESQLAQSR (C18O18OH) both
situations were studied by nanoESI-MS and manual set mass
selection. Figure 1a and b demonstrate that under standard
conditions, this situation is not met, since the precursor ion
isolation window extends from –0.5 m/z to 2.5 m/z relative
to the set mass. This results in only partial transmission of
the molecular ion group, as shown in Figure 1c and d. A shift
of the left border of the precursor ion window to –2 m/z
would result in complete transmission for both set mass
alternatives (Figure 1e, f) for molecular ions of charge state
2 or higher. To meet these conditions, the width of the
precursor ion transmission window was enlarged to
approximately 12 m/z units. This window extends from
about –3 m/z to +9 m/z relative to the set mass. 

Using this extended precursor ion transmission window,
the complete isotopic pattern, including the unlabeled as
well as the singly and doubly labeled form of the peptide,
is transmitted. The resulting MS/MS spectra show
unlabeled b ions and 18O-labeled y ions. As an example,
the survey spectra and the MS/MS spectra showing the
18O-labeled y2 ion of 3 different mixtures of the synthetic
peptides DLESQLAQSR (C16O16OH) and DLESQLAQSR
(C18O18OH) are shown in Figure 2. This Figure proves
that quantification can be performed on the MS/MS level,
since the isotopic patterns of connected molecular ions and
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Figure 1. Impact of the precursor ion transmission window on the isotopic pattern transmission of a 1:1 16O/18O mixture of DLESQLAQSR
(C16O16OH) and DLESQLAQSR (C18O18OH); a) and b) are identical and show the isotopic pattern of the [M+2H]2+ ion recorded in survey mode;
c) set mass m/z 573.8 using the standard window; d) set mass m/z 575.8 using the standard window; e) set mass m/z 573.8 using the extended
window; f) set mass m/z 575.8 using the extended window. With the standard window, the isotopic pattern is only partly transmitted (c, d), whereas
use of the extended window leads to a transmission of the complete pattern (e, f). 



fragment ions provide identical quantitative information.
For the peptide mixtures investigated, all y ions from y2 to
y7 can be used for quantification, whereas some deviations
were observed for the y1 and y8 (=ymax-2) ions (see
Supplementary Material, Figures S1 to S3). We feel that
the somewhat variable 18O content of these ions from the
peptide ends might indicate a partial oxygen exchange
during their formation. Exclusion of the corresponding
data (y1 ion and ymax-2 ion) from the quantitative
evaluation will therefore improve the accuracy of the
quantitative data. However, this point was not followed in
more detail in this study. 

For relative quantification, there are several advantages of
the MS/MS mode compared to the MS mode: i) the isotopic
overlap is reduced, in particular for small y ions; ii) MS/MS
spectra exhibit in general a better signal to noise ratio due to
the strongly reduced background (39); iii) the quantitative
results can be based on a set of y ion patterns, allowing the
recognition and exclusion of interferences; iv) the MS/MS
mode by principle is less prone to interferences due to its
increased specificity. 

For the particular application of a QTOF instrument with
its limited dynamic range, the MS/MS mode also provides a
somewhat extended linear dynamic range for high precursor
ion signals. Using the 1:1 mixture of DLESQLAQSR
(C16O16OH) and DLESQLAQSR (C18O18OH), different
sample concentrations (50 fmol/μl to 50 pmol/μl), representing
a dynamic range of 3 orders of magnitude, were quantified by
nanoESI-MS and -MS/MS, respectively. Using quantification
from the MS/MS spectra, a correct quantification over the
whole range of concentrations with a maximal error of about
10% was possible. Quantification via the MS survey spectra
resulted in a smaller dynamic range of only one order of
magnitude (see Supplementary Material, Figure S4).

Relative quantification of standard protein mixtures by
16O/18O labeling. For evaluation of the complete workflow
consisting of an automated UPLC-MS/MS analysis and
subsequent quantitative data evaluation using MASCOT 2.2,
a set of ovalbumin digest mixtures was prepared. Equal
amounts of ovalbumin were digested in solution in either 16O
or 18O water as described in Material and Methods.
Measured aliquots of these samples were then mixed so that
a set of samples with known ratios of 16O to 18O between
1:9 and 9:1 was obtained. These samples were analyzed by
UPLC-MS/MS and the data files were transformed to peak
lists and subsequently quantified using MASCOT 2.2 via its
implemented 18O quantification tool. All y ions with a
possible interference by other sequence ions were
automatically excluded from quantification. The minimal
number of y ions required for quantification was 4 and the
intensity cut-off was 0.1 (all ions with a relative abundance
<10% were excluded from quantification). Using these
settings, 26 tryptic ovalbumin peptides were identified on
average in a single experiment, of which an average of 23
fulfilled the criteria for inclusion in the quantification. All
experiments were carried out in triplicate and the quantitative
data are summarized in Figure 3 (with the standard deviation
(S.D.) and correlation coefficient (R2)). 

For all 16O/18O mixtures of ovalbumin peptides analyzed,
very good agreement between the theoretical and
experimental ratios, as indicated by the good R2 value for the
linear regression of the data set, was achieved, as shown in
Figure 3. The small S.D. values demonstrate the good
reproducibility of the method. This indicates successful
optimization of the instrumental parameters for data
acquisition, reproducible data acquisition by the UPLC-
MS/MS system and correct selection of the parameters used
for the automated evaluation by MASCOT. 
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Figure 2. Survey spectra (left panels) showing the intact precursor ions, and MS/MS spectra (right panels) showing the y2 ions of a 1:9, 1:1 and 9:1
mixture of DLESQLAQSR (C16O16OH) and DLESQLAQSR (C18O18OH). The data were recorded by nanoESI-MS and -MS/MS, respectively. The
related molecular and fragment ion patterns exhibit identical ratios between labeled and unlabeled species. 



16O/18O Labeling and MS/MS analysis in a quantitative
proteomic study. To evaluate the combination of 16O/18O
labeling and MS/MS-based relative quantification for
proteomic studies, we used this strategy to analyze the
dynamics of the phosphoproteome in mouse cerebellum
following treatment with ionizing radiation. Ten-day-old mice
were treated with 10 Gy of ionizing radiation, and 1 h later
cerebella were excised and proteins were extracted and
digested by trypsin in either 18O or 16O water. Peptides were
subsequently fractionated by SCX/WAX chromatography and
IMAC as described in Materials and Methods. The resulting
peptide and phosphopeptide fractions were then analyzed
individually by UPLC-MS/MS using the methods described
above. The MS/MS spectra of the individual fractions were
transformed into peak list files and then merged into a single
file. This file was searched against the MSDB database by
MASCOT 2.2, which resulted in the simultaneous
identification and quantification of a large set of peptides and
phosphopeptides. In total, 342 proteins were quantified with
an average ratio of 0.9 of irradiated to control sample. An
overview of the results obtained for protein quantification is
shown in Figure 4, and a detailed list of all proteins quantified
is provided by Table S1 in the supplementary material. 

Discussion

The data in Figure 4 imply that the ratios of 8 proteins
(irradiated over control) were outside the ±3 S.D. values set
as cut-off. Manual examination indicated that 4 of these
proteins contained regulated phosphopeptides which were
taken for quantification as well, which means that the amount
of these protein was probably not regulated. The remaining 4
proteins were: hemoglobin beta major chain (Figure 4, spot
#1), heat-shock protein 70 (Hsp70) (#2), Ran-specific
GTPase-activating protein (RANBP1) (#5) and protein kinase
C and casein kinase substrate in neurons protein 1 (PACSIN1)
(#6). Due to the role of hemoglobin as major constituent of
red blood cells (41), the up-regulation may indicate increased
perfusion of the cerebellum following irradiation. The early
up-regulation of Hsp70 (1 h) after various types of stress
including DNA damage has been reported (42, 43). RANBP1
regulates the activity of the GTPase Ran, which is responsible
for the transport of molecules from the nucleus to the
cytoplasm, including transport of p53 which plays a crucial
role in apoptosis, one of the possible reactions of cells to
DNA-damage (44-46). The role of PACSIN1 in the DNA
damage response is currently unclear. 

To further investigate the DNA damage response at the level
of posttranslational modifications, phosphorylation site analysis
was performed. In total, 174 phosphopeptides were identified
and simultaneously quantified. The summarized phosphopeptide
data are shown in Figure 5 and a list of all phosphopeptides is
presented in Table S2 in the supplementary material. 

As implied by the data shown in Figure 5, the majority of
the identified phosphopeptides (86%) are not regulated, while
14% of the phosphopeptides showed more than 2-fold
alteration of their ratio (irradiated sample over control)
between the two samples. Based on these criteria, 24
phosphorylation sites altered in their concentration were
identified. The proteins carrying these sites, their sequence
coverage, phosphorylation sites identified, and the extent of
their regulation are summarized in Table I. For regulated
phosphorylation sites, the sequence motifs ±10 residues
relative to the phosphorylated residue (see Table S3) were
matched to known kinase consensus sequences. Seventeen of
them could be potential targets of one of the following protein
kinases: protein kinase B (Akt) ([RK]X[RK]XX[ST] (47)),
cAMP-dependent protein kinase (PKA) (R[X]1-2-[ST] (48,
49)), casein kinase II (CK2) ([ST]AAAAA (48)), mitogen-
activated protein kinase kinase (MAPKK)/extracellular
signal-regulated kinase 2 (ERK2) (both PX[S/T]P (48)), and
cyclin-dependent kinase 5 (Cdk5) (X[S/T]PXK (50)) where
X is any residue, A is an acidic residue and [S/T] is the
phosphorylated serine/threonine residue.

The up-regulation of ERK2 phosphorylation indicates
activation of the ERK1/2 MAP kinase cascade, which has
been associated with DNA damage (66). ERK signalling has
been specifically associated with apoptotic response to DNA
damage (67). One of the substrates identified for ERK2 in
that study was RRAS2 (68). RRAS2 is a Ras homolog,
however, in contrast to Ras, it does not activate the ERK
pathway but rather the c-Jun N-terminal kinase (JNK) and
p38 MAPK pathways (69). This links ERK signalling, which
is known to be activated by extracellular signals such as
growth factors, to p38 and JNK signalling which is stress-
related, combining 3 of the major MAPK signalling
pathways (70). Phosphorylation of the other two substrates
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Figure 3. Comparison of theoretical and experimental ratios for
different mixtures of tryptic ovalbumin digests prepared in H2

16O or
H2

18O. After digestion, samples were mixed in the ratios indicated,
analyzed by UPLC-MS/MS, and quantified by MASCOT 2.2. The data
points are arithmetic means±1 S.D. (n=3).



of ERK2, MARCKS and MAP1A was found to be down-
regulated. This may result from further modification of these
proteins upon ERK phosphorylation.

The identification of 3 up-regulated Cdk5 substrates
indicates an elevated activity of this kinase as well. Cdk5 is
activated by ERK1/2 (71) and interleukin 6 (IL-6), the
secretion of which is initiated by thymosin 4-beta (72, 73). A
thymosin 4-beta phosphorylation site was found to be up-
regulated, which may result in enhanced IL-6 secretion. The

activation of Cdk5 following DNA damage has been shown to
result in phosphorylation of Huntingtin regulating its toxicity
in neurons (74). Cdk5 also phosphorylates p53, regulating its
activity and inducing neuronal cell death (75). The targets of
Cdk5, which carry regulated phosphorylation sites in this
study, have not yet been associated with DNA damage. Three
proteins containing up-regulated phosphorylation sites
(Crmp2, Map2, Mapt) are microtubule-associated proteins.
Map2 and Mapt are responsible for microtubule stabilization
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Figure 4. Relative quantification of proteins from mouse brain cell lysates. The ratio data (irradiated over control) of 10 proteins were summarized
successively and their arithmetic mean and S.D. were calculated. The red lines indicate the ±3 S.D. limits of the arithmetic means calculated in this way.

Figure 5. MS/MS-based 16O/18O quantification of phosphopeptides identified in the analysis of the mouse brain cell lysates. As cut-off value
indicating a regulated phosphopeptide, a two fold up- or down-regulation of the ratio observed in the protein quantification data was selected. 



(63), and Crmp2 is member of the Unc-33-like phospho-
(Ulip) protein family whose members are associated with
development and differentiation of neurons (62). The
association of Cdk5 with microtubules and Cdk5-dependent
phosphorylation of microtubule-associated proteins has been
shown before and it was postulated that this may regulate the
axonal transport of molecules in the cell (76). The activation
of Cdk5 upon DNA damage may therefore be due to a
elevated level of protein transport in the cell, either to start
repair processes of the damaged DNA or to initiate apoptosis.

Another kinase found to be involved in signalling upon
DNA damage is PKA. PKA has already been associated with
DNA damage checkpoint pathways (77). It was also shown,
that Cdk5 and PKA phosphorylate similar proteins while
phosphorylation of a particular site by PKA influences
phosphorylation of the same proteins by Cdk5 on another site
(78). Two phosphorylation sites (on MAP2 and Crmp2)
resemble the consensus sequence of both Cdk5 and PKA.
These proteins may be phosphorylated by both kinases
resulting in a crosstalk between their signalling pathways.
Three other phosphorylation sites were identified to be PKA-
dependent. One of them is S305 in Doublecortin, a
microtubule-associated protein. Doublecortin, involved in the

leading processes of migrating neurons, is a known target of
PKA (S47) and Cdk5 (S297). These phosphorylations result
in reduced affinity to microtubules (79, 80). The second site
is located at P140CAP, which is involved in epidermal growth
factor (EGF) and integrin signalling, which plays a role in
actin cytoskeleton organisation and regulates Csk and Src
kinase activity (58, 81). The third site was found in Rims1,
which is a protein of the active zone of neurotransmitter
release at synapses (61). It was shown that PKA activates the
ERK signalling pathway via Ras/B-Raf and the p38 pathway
via PTPs (70). Activation of ERK and p38MAPK again
results in activation of the stress response of the cell. 

CK2 is a constitutively active kinase with hundreds of
known targets (82). For instance, it phosphorylates the
checkpoint kinase Rad53 upon DNA damage and
phosphorylation of MDC1 by CK2 is essential for proper
accumulation of damage-response proteins at DNA double-
strand breaks (83-85). CK2 is stabilized by interaction with
ATR after DNA damage and phosphorylates the phosphatase
and tensin homolog (PTEN) which is involved in cell cycle
re-entry following DNA damage (86). Cell cycle re-entry of
post-mitotic cells (e.g. neuronal cells) was reported to be
involved in DNA damage-induced apoptosis (46).
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Table I. Proteins identified in mouse cerebellum containing phosphorylation sites regulated within 1 hour after irradiation. The ratio of irradiated
vs. non-irradiated is indicated, as well as the matching to consensus targets of known protein kinases (?=no match). 

Protein Sequence Identified Regulated Target-kinase Ratio Function
coverage phosphorylation phosphorylation 

(%) sites sites

ERK2 31 T183, Y185 T183, Y185 MAPKK 4.5 Member of MAP kinase pathway(51)
TRAP150 39 S248, S679 S679 ? 2.3 Transcriptional coactivator(52)
SAFB2 23 S411 S411 ? 0.4 Substrate of ATR or ATM(53)
MARCKS 47 S113, S138, S151 S113 ERK2 0.3 Substrate of PKC(54)
Bckdha 17 S334 S334 ? 1.8 Branched chain ketoacid dehydrogenase
RRAS2 12 S186 S186 ERK2 2.0 Ras-related GTPase(55)
Doublecortin 45 S115, S305, S329, S339, S342 S305 PKA 3.0 Microtubuli-associated protein, 

substrate of Cdk5 and PKA
R3hdm2 15 S380, T294 S380 ? 2.6 Binding of single-stranded DNA (56)
Dnajc5 14 S10 S10 Akt 0.5 Substrate of Akt
Thymosin beta-4 100 S2 S2 ? 2.2 Forms 1:1 complex with G-actin (57)
P140CAP 31 S579, S1054, S1110 S579 PKA 4.0 Cytoskeleton regulator (58)

S1110 CK2 4.0 
MAP1A 29 S548, S858, S1125, S1284, S548 ERK2 0.5 Microtubule-associated protein (59)

S1287, S1298, S1442, S2256
Reticulon1 10 S352 S352 CK2 0.5 Localized at ER, multiple functions 

in trafficking and apoptosis (60)
Rims1 32 S962 S962 PKA 2.3 Localized at synapses (61)
Crmp2 63 T509, S514, S522 T509 ? 2.2 1.8 Differentiation of neuronal cells (62) 

S514, S522 ?, Cdk5
Map2 39 S894, S1013, S1160, S1783 S1013 PKA/Cdk5 2.3 Microtubule-associated, 

involved in axon development (63)
Mapt 59 S129, S130, S130, S133, S327, S331 ? 2.4 Microtubule-associated, 

S331, S335, S345, S348 S335 Cdk5 4.1 similar functions as Map2 (64) 
S348 ? 3.0

MRP 44 S22 S22 Cdk5 0.2 MARCKS homolog (65)



Phosphorylation of Dnajc5 by Akt was shown in vitro and
was linked to the late stages of exocytosis (87). The
phosphorylation and activation of Akt following DNA damage
was shown as well (88). In another study, Akt activation was
linked to phosporylation by DNA-PK upon DNA damage,
which resulted in stabilization of p53 by Akt (89).
Interestingly, in this study, the phosphorylation of Dnajc5 was
down-regulated by irradiation. This may be due to activation
of a phosphatase, additional unexpected modifications of this
region of Dnajc5 or degradation following phosphorylation. 

Conclusion

Quantification of proteolytic 18O-labeled peptides using MS/MS
information is a powerful and easy tool for the quantification of
proteins. By the use of MASCOT 2.2, quantification is
convenient and platform independent, which allows the use of
different types of mass spectrometers without the need of data
transformation or the use of algorithms that suit different data
formats. Using a QTOF instrument in the MS/MS mede, the
linear range of the applicable sample amount is superior
compared to survey-based quantification. Identification and
quantification are carried out simultaneously. Using this
technology, a detailed insight into the regulation of protein
levels and phosphorylation sites can be conveniently achieved. 
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