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LETTER TO TH E EDITOR

UBQLN4 promotes STING proteasomal degradation during
cisplatin-induced DNA damage in triple-negative breast
cancer

To the Editor:
Cisplatin is a platinum agent that causes DNA damage

and it is used as a single agent or in combination for the
treatment of recurrent/unresectable triple-negative breast
cancer (TNBC).1 There is a renewed interest in cisplatin
usage to treat TNBC in neoadjuvant/metastatic settings.2
Treatment options become limited when patients develop
resistance, thus new insights into the molecular mech-
anisms driving cisplatin resistance will improve TNBC
patient outcomes.
The aim of this study is to unravel novel molecu-

lar mechanisms controlling STING protein levels during
cisplatin treatment. We hypothesised that during cisplatin-
induced DNA damage, STING is recognised by UBQLN4,
and degraded through the ubiquitin-proteasome system.
UBQLN4 mRNA expression was analysed in the TCGA
BRCA and GTEx datasets. UBQLN4 levels were signifi-
cantly higher in primary TNBC tumours (Figure 1A,B).
Patients with highUBQLN4mRNA levels had significantly
reduced relapse-free survival (RFS) (Figure 1C). UBQLN4
gene is in the 1q22 region, and the amplification of the
1q arm is a frequent event in breast cancer (BC) and
other solid tumours.3,4 UBQLN4 copy number variation
(CNV) andmRNA levels showed a significant positive cor-
relation in TNBC tumours and cell lines (Figure 1D,E).
Immunohistochemistry analysis demonstrated significant
elevated UBQLN4 protein levels for TNBC tumours
(Figure 1F,G and Figure S1A). We have previously reported
that UBQLN4 levels affect cisplatin sensitivity.5,6 UBQLN4
levels were associated with increased cisplatin resistance
in TNBC cell lines (Figure 1H). UBQLN4 depletion did
not induce significant transcriptional changes in TNBC
cell lines (Figure S1B–F) or reduce cellular proliferation
(Figure S1G-J); however, it increased the sensitivity to cis-
platin, whereas UBQLN4-OV led to cisplatin resistance
(Figure 1I–K). In summary, the UBQLN4 gene amplifica-
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tion correlates with increased UBQLN4 levels that led to
cisplatin resistance in TNBC cell lines.
UBQLN4 interacts with the chaperone protein BAT3 to

reduce proteotoxic cell stress by translocating misassem-
bled ER-localised proteins for proteasomal degradation.7
BAT3 mRNA levels were significantly higher in primary
TNBC tumours (Figure 1L,M), but high BAT3 mRNA
levels did not associate with RFS (Figure S2A). BAT3
knockdown did not affect UBQLN4 levels or cellular
proliferation (Figure S2B–E), but increased the sensitiv-
ity to cisplatin (Figure 1N,O). Cisplatin treatment sig-
nificantly increased γ-H2AX foci-formation in UBQLN4-
KO and BAT3-knockdown, but not in UBQLN4-OV cell
lines (Figure S3A,B). Ubiquitination of BAT3-captured
proteins is required for efficient protein degradation.8
Under cisplatin treatment and proteasomal degradation
blockage, BAT3 co-immunoprecipitated with UBQLN4 in
UBQLN4-OV and parental cell lines (Figure S3C,D,F,G).
Under the same conditions, UBQLN4 and BAT3 co-
immunoprecipitated with ubiquitinated DDK-tagged pro-
teins (Figure S3E). These results suggested that UBQLN4
and BAT3 interact with specific ubiquitinated proteins
during cisplatin treatment in TNBC cell lines.
STING ubiquitination is required to initiate cytosolic

DNA-mediated activation.9,10 Therefore, we hypothesised
that in response to cisplatin-inducedDNA damage, STING
is activated, ubiquitinated and regulated by UBQLN4-
mediated proteasomal degradation. STING mRNA lev-
els were significantly lower in primary TNBC tumours
(Figure 2A,B). Patients with low STINGmRNA levels had
significantly poor RFS (Figure 2C). Increased phosphory-
lated TBK1 levels were observed after cisplatin treatment,
suggesting the STING pathway activation (Figure 2D).
STING protein levels showed a significant positive cor-
relation with cisplatin response (Figure 2E). STING-
knockdown did not affect UBQLN4/BAT3 levels or cellular
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F IGURE 1 UBQLN4 levels determine cisplatin sensitivity in TNBC. (A) UBQLN4mRNA levels in normal breast (Normal), primary BC
(BC), and metastatic BC (MBC) tissues in the TCGA and GTEx databases (one-way ANOVA and Tukey’s multiple comparisons test). (B)
UBQLN4mRNA levels in tissues from the tumour-adjacent normal breast (Normal), luminal (Lum), luminal-HER2 (Lum-HER2), HER2 and
TNBC subtypes in the TCGA BRCA database (one-way ANOVA and Tukey’s multiple comparisons test). (C) Relapse-Free Survival (RFS)
analysis for TNBC patients with low (n = 267) versus high (n = 267) UBQLN4mRNA levels in TCGA, GEO and EGA databases combined. (D)
Correlation between UBQLN4 copy number variation (CNV) and UBQLN4mRNA levels for 119 TNBC tissues in the TCGA BRCA database.
(E) Correlation between CNV and UBQLN4mRNA levels for 23 TNBC cell lines in the CCLE database. (F) (top) Representative images of
UBQLN4 IHC for tumour-adjacent normal breast (Normal) and primary TNBC tissues in the BC TMA. Scale bar = 50 μm. (down)
Magnification of the representative images. Scale bar = 20 μm. (G) Quantification of H-score values (Mann–Whitney U test). (H) Correlation
between UBQLN4mRNA levels and cisplatin activity for 40 BC cell lines in the CCLE and GDSC databases. (I–K) Drug sensitivity assays
comparing MDA-MB-231 parental and UBQLN4-KO (I), HCC1937 si-Ctrl and si-UBQLN4 (J), and MDA-MB-231 UBQLN4-KO and
UBQLN4-OV (K) cell lines treated with different cisplatin concentrations (two-way ANOVA and Sidak’s multiple comparisons test). (L) BAT3
mRNA levels in normal breast (Normal), primary BC (BC) and metastatic BC (MBC) tissues in the TCGA and GTEx databases (one-way
ANOVA and Tukey’s multiple comparisons test). (M) mRNA levels in tissues from the tumour-adjacent normal breast (Normal), luminal
(Lum), luminal-HER2 (Lum-HER2), HER2 and TNBC subtypes in the TCGA BRCA database (one-way ANOVA and Tukey’s multiple
comparisons test). (N and O) Drug sensitivity assays comparing si-Ctrl and si-BAT3 in MDA-MB-231 (N) and HCC1937 (O) cell lines treated
with different cisplatin concentrations (two-way ANOVA and Sidak’s multiple comparisons test). Drug sensitivity assays in each cell line were
performed in replicates (n = 3)
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F IGURE 2 UBQLN4 promotes STING proteasomal degradation during cisplatin treatment. (A) STINGmRNA levels in normal breast
(Normal), primary BC (BC) and metastatic BC (MBC) tissues in the TCGA and GTEx databases (one-way ANOVA and Tukey’s multiple
comparisons test). (B) STINGmRNA levels in tissues from the tumour-adjacent normal breast (Normal), luminal (Lum), luminal-HER2
(Lum-HER2), HER2 and TNBC subtypes in the TCGA BRCA database (one-way ANOVA and Tukey’s multiple comparisons test). (C)
Relapse-Free Survival (RFS) analysis for TNBC patients with low (n = 110) versus high (n = 110) STINGmRNA expression in TCGA, GEO and
EGA databases combined. (D) Western blotting analysis for STING pathway molecules (pTBK1, TKB1, BAT3, UBQLN4, cGAS and STING)
and β-actin (loading control) in TNBC cell lines untreated or treated with cisplatin (5 μM, 8 hours). pTBK1/TBK1 ratio was quantified relative
to respective controls. (E) Correlation between STING protein levels and cisplatin activity for 45 cancer cell lines in the NCI-60 and
GDSC-MGH-Sanger datasets. Protein levels were determined using SWATH-mass spectrophotometry. (F and G) Drug sensitivity assays
comparing si-Ctrl and si-STING in MDA-MB-231 (F) and HCC1937 (G) cell lines treated with different cisplatin concentrations (two-way
ANOVA and Sidak’s multiple comparisons test). (H) Correlation between UBQLN4 and STING protein levels for 59 cancer cell lines in the
NCI-60 dataset. (I and J) Quantification of STING protein levels for CHX assay in MDA-MB-231 UBQLN4-KO (I), si-BAT3 (J), and the
respective control cell lines treated with cisplatin (5 μM) ±MG-132 (5 μM) for 8 hours (two-way ANOVA and Sidak’s multiple comparisons
test). (K) Co-immunoprecipition (Co-IP) assay in MDA-MB-231 UBQLN4-OV, UBQLN4-KO and UBQLN4-OV+si-BAT3 cell lines treated with
cisplatin (5 μM) ±MG-132 (5 μM) for 8 hours. Co-IPs were performed using STING or control Ab. Protein levels were assessed in whole-cell
lysates (WC) and co-IP fractions (IP). Drug sensitivity and CHX assays in each cell line were performed in replicates (n = 3)
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F IGURE 3 UBQLN4 interacts with ubiquitinated STING during STING activation. (A and B) Drug sensitivity assays comparing
MDA-MB-231 parental and UBQLN4-KO (A), UBQLN4-KO and UBQLN4-OV (B) cell lines treated with different G10 concentrations (two-way
ANOVA and Sidak’s multiple comparisons test). (C) Co-IP assay in MDA-MB-231 UBQLN4-OV cell lines untreated or treated with G10
(25 μM) ±MG-132 (5 μM) for 8 hours. Co-IPs were performed using STING or control Ab. Protein levels were assessed in whole-cell lysates
(WC) and co-IP fractions (IP). (D) Immunofluorescence staining for STING and DDK was performed in MDA-MB-231 UBQLN4-OV cell lines
untreated or treated with cisplatin (5 μM) or G10 (25 μM) plus MG-132 (5 μM) for 8 hours. Representative images are shown for STING (Cy3,
red), DDK (AF647, magenta), nucleus (DAPI, blue), UBQLN4 (GFP, green), and the merged images for each condition. Co-localisation of
UBQLN4-STING, UBQLN4-DDK and STING-DDK are indicated in yellow. Manders’ overlap coefficients (M) are indicated in each image.
Scale bar = 20 μm. (E) Immunofluorescence staining for STING and BAT3 performed in cisplatin (5 μM, 8 hours) or G10 (25 μM, 8 hours)
treated or non-treated MDA-MB-231 UBQLN4-OV cell lines. Representative images are shown for STING (Cy3, red), BAT3 (AF647, magenta),
nucleus (DAPI, blue), UBQLN4 (GFP, green), and the merged images for each condition. Co-localisation of UBQLN4-STING, UBQLN4-BAT3
and STING-BAT3 are indicated in yellow. Manders’ overlap coefficients (M) are indicated in each image. Scale bar = 20 μm. Drug sensitivity
assays in each cell line were performed in replicates (n = 3)
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F IGURE 4 UBQLN4 and STINGmRNA levels predict cisplatin response in vivo. (A) RNA-seq data were obtained from 21 samples
across 15 primary TNBC PDX models, which were tested for cisplatin response. TNBC PDX models were treated by 2 mg/kg cisplatin (treated
tumours, n = 8–11) or 5% dextrose in water, 5 ml/kg (control tumours, n = 6–11), 1/week, for three courses. Tumours with complete or partial
responses were defined as responders, whereas stable diseases or progressive diseases were defined as non-responders. (B) Volcano plot
showing the transcriptomic changes in the group using the RNA-seq data obtained from 21 TNBC PDX samples. UBQLN4 and STING are
indicated in blue and red, respectively. (C and D) Comparison of UBQLN4 (C) and STING (D) mRNA levels in TNBC tissues from responders
and non-responders obtained from TNBC PDX mouse models (Student’s t-test)

proliferation (Figure S4A–C), but increased cisplatin resis-
tance (Figure 2F,G). In conclusion, STINGdownregulation
led to cisplatin resistance in TNBC cell lines.
UBQLN4 and STING protein levels showed a sig-

nificant inverse correlation (Figure 2H). STING pro-
tein levels were decreased by cisplatin treatment and
the blockage of the proteasomal degradation increased
STING levels in UBQLN4-OV, but not in UBQLN4-KO
cell lines (Figure S4D), suggesting that STING levels
are controlled by UBQLN4-mediated degradation. STING
protein levels significantly increased by cisplatin treat-
ment in UBQLN4-KO and partially increased in BAT3-
knockdown cell lines compared to respective controls
(Figure 2I,J and Figure S4E,F). Importantly, UBQLN4
co-immunoprecipitated with STING during both the pres-
ence/absence of BAT3, suggesting a BAT3-independent
UBQLN4-STING interaction (Figure 2K). G10 is a well-
established human-specific STING agonistthat activated
STING pathway in TNBC cell lines (Figure S4G).Also,
UBQLN4 status determined G10 response (Figure 3A,B).

During G10 treatment, UBQLN4/BAT3 interacted with
STING (Figure 3C). Confocal microscopy was utilised to
assess the co-localisation of UBQLN4, STING and ubiqui-
tinated proteins (DDK-tagged). Increased STING ubiquiti-
nation, as well as significantly higher co-localisation rates,
were observed for UBQLN4-ubiquitinated proteins (DDK-
tagged) UBQLN4-STING, UBQLN4-BAT3 and STING-
BAT3 during cisplatin or G10 treatment (Figure 3D,E).
In summary, UBQLN4 mediates ubiquitinated STING
proteasomal degradation during STING activation.
Multiplex immunofluorescence for UBQLN4 and

STING were performed on primary TNBC FFPE tissues
(Table S1) and analysed by confocal microscopy (Figure
S5A). A significant inverse correlation was observed
between UBQLN4 and STING protein levels (Figure S5B).
STING levels were significantly higher in TNBC tumours
with low UBQLN4 (Figure S5C). We then assessed TNBC
PDXmodels stratified into two treatment groups according
to cisplatin responses (Tables S2 and S3 and Figure 4A).
UBQLN4 mRNA levels were significantly higher, whereas
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STING mRNA levels were significantly lower in tumour
samples that had a non-complete response (non-CR,
Figure 4B–D). As a readout of STING activation, IL-6
levels were evaluated. In silico analysis showed that the
IL6 and STING mRNA levels positively correlated, while
the IL6 and UBQLN4 mRNA levels negatively correlated
(Figure S5D,E). Also, UBQLN4-KO cell lines treated with
cisplatin or G10 showed enhanced IL6 protein levels
(Figure S5F,G).
In conclusion, UBQLN4 locus amplification elevates

UBQLN4 mRNA/protein levels that correlate with low
STING mRNA/protein levels in TNBC tumours. Mecha-
nistically, UBQLN4 delivers STING to proteasomal degra-
dation during cisplatin or STING agonist treatment and
promotes cisplatin resistance in vitro and in vivo (Figure
S6). UBQLN4 is a novel factor regulating STING protein
levels during STINGpathway activation andmay represent
a predictive biomarker for cisplatin response in TNBC.
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