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Cellular life is scrupulously governed by
numerous interlocking physiological net-
works. These networks include defense
mechanisms that protect cellular homeosta-
sis from insults, including those that dam-
age DNA, such as ionizing radiation and
chemical agents that come from the envi-
ronment or are by-products of normal
metabolism. The DNA damage response
(DDR) is therefore a critical barrier against
undue cellular death or neoplasia (1). Once
viewed merely as a DNA repair mecha-
nism, the DDR is now understood to be an
extensive, multilayered, fine-tuned signal-
ing network that responds to DNA damage
not only by activating repair, but also by
temporarily modulating major physiologi-
cal processes (2, 3). A new player in this
network, the F-box protein FBXO31, and
the associated pathway (4) present the typi-
cal features of this elaborate defense sys-
tem and its components.

A model DNA lesion that vigorously acti-
vates the DDR is the double-strand break
(DSB), the most cytotoxic lesion induced by
ionizing radiation and radiomimetic chemi-
cals (5). In view of the lethal effect of even a
single DSB in a proliferating cell, it is not
surprising that only a few DSBs are sufficient
to rapidly turn on the broad and complex
DDR network.

DSBs are repaired through two alternative
pathways: error-prone nonhomologous end-

joining (NHEJ), which repairs most breaks
throughout the cell cycle, or error-free homol-
ogous recombination (HR) between sister
DNA molecules, which acts at late S phase or
in G2 (6). In addition to repairing damage, the
DSB response temporarily modulates cellular
physiology. A prominent manifestation of the
DDR is the activation of special cell cycle
checkpoints (7, 8), ones different from those
that normally oversee cell cycle progression.
These checkpoints temporarily arrest the cell
cycle, presumably until the damage is as-
sessed and repaired. Bringing a proliferating
cell into a G0-like state, even for a short time,
requires rapid adaptation to this unscheduled
physiological change and may explain the
broad reach of the signaling network that is
mobilized by DNA damage.

The DSB response begins with rapid relo-
calization to the damage sites of a heteroge-
neous group of proteins, dubbed sensors or
mediators (3, 9), that perform the initial pro-
cessing of the lesion, alter local chromatin or-
ganization, and set the scene for activation of
the transducers—a group of protein kinases
that disseminate the DNA damage alarm by
phosphorylating numerous downstream effec-
tors. The substrates of transducers are usually
key players in pathways that are modulated by
the DDR: Their phosphorylation alters their
activity, stability, subcellular localization, or
protein-protein interactions, and in turn, the
function of the corresponding pathways.

The major transducers of the DNA dam-
age alarm belong to a family of serine-threo-
nine kinases with motifs reminiscent of lipid
kinases and are hence called phosphoinosi-
tide 3-kinase–like kinases (PIKKs) (10).
They include ataxia-telangiectasia mutated
(ATM), which is considered to be the main

transducer that is activated by DSBs (11, 12);
the DNA-dependent protein kinase (DNA-
PK), which has a central role in the NHEJ re-
pair pathway (13); and ataxia telangiectasia
and Rad3-related (ATR), which mediates the
cellular response to collapsed replication
forks (14). These three protein kinases, whose
preferred targets are serine or threonine
residues followed by glutamine (SQ or TQ),
are recruited to the damage sites, functionally
interact with each other, and transduce the
damage signal in a partially redundant man-
ner (15–17). ATM typically regulates a down-
stream pathway directly by phosphorylating
several proteins associated with it and indi-
rectly through other protein kinases activated
by ATM-mediated phosphorylation. This
multipronged approach allows tight but fine
control of these pathways. Still, it is astonish-
ing that proteomic screens can identify
hundreds of potential PIKK substrates (18),
suggesting that these protein kinases are
promiscuous. An alternative view is that most
of these phosphorylations are indeed physio-
logical, and it is this wealth of PIKK targets
that gives the DDR orchestra its depth and
precision and allows the chief conductor,
ATM, to achieve perfect harmony.

Activation of the cell cycle checkpoints by
DSBs is largely ATM dependent. Most of the
available information centers on the G1/S and
G2 checkpoints (7, 8, 19), during which the cor-
responding cyclin-dependent kinases (CDKs),
the primary drivers of cell cycle progression
(20), are inhibited in order to bring about cell
cycle arrest. The G1/S checkpoint is a particu-
larly informative example of an ATM-driven
process (Fig. 1). It is driven by a rapid path-
way that is based on a series of protein post-
translational modifications, and a slower, sus-
tained pathway that relies on gene expression
and protein synthesis. Two ATM-activated
kinases, CHK1 and CHK2, mobilize the rapid
phase by phosphorylating the phosphatase
CDC25A, thereby triggering its degradation.
CDC25A is a positive regulator of CDK2, the
cyclin-dependent kinase that mediates the G1-
S transition. The slower phase entails the
stabilization and activation of the p53 tumor
suppressor protein, which accelerates the ex-
pression of the CDKN1A gene encoding the
p21 protein, a strong inhibitor of CDK2.
Thus, two pathways converge at CDK2 inhi-
bition (Fig. 1). Remarkably, just the process of
stabilizing and activating p53 involves numer-
ous ATM-dependent posttranslational modifi-
cations of p53, its ubiquitin ligases MDM2
and COP1, and its inhibitor MDM4 (19) (Fig. 1).
As if this were not enough for a single check-
point, Santra et al. have now added yet anoth-
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stability�has emerged as a complex signaling network that affects many aspects
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temporarily arrest cell cycle progression while damage is being assessed and pro-
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Such is the case with the damage-induced G1/S checkpoint. A new pathway driv-
ing this checkpoint draws attention to the complexity of the DDR, which allows
tight but fine-tuned control of the cellular response to threats to genomic integrity.
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Fig. 1. ATM-mediated control of the G1/S cell cycle checkpoint. (A)
In unprovoked cells, G1 progression and G1-S traverse are pro-
pelled by CDK4-CDK6 and CDK2, respectively. The CDC25A phos-
phatase positively regulates CDK2. The abundance of p53 is kept
low by its ubiquitin E3 ligases, MDM2 and COP1, and its activity
kept low by its inhibitor, MDM4. (B) Following DSB induction and
ATM activation, the protein kinases CHK1 and CHK2 phosphorylate
CDC25A, thereby earmarking it for proteasomal degradation. CHK1
phosphorylation is also dependent on ATR. ATM-mediated phos-

phorylation inhibits MDM2’s activity (denoted by the lighter shade)
and sends COP1 and MDM4 to degradation, whereas ATM-depen-
dent posttranslational modifications of p53 further enhance its sta-
bility and activity as transcription factor. p53 then accelerates the
expression of the CDKN1A gene encoding p21, which inhibits
CDK2 (denoted by the lighter shade). At the same time, ATM-medi-
ated phosphorylation of FBXO31 triggers the degradation of cyclin
D1. This picture may not be complete, and additional pathways con-
trolling this checkpoint may be revealed in the future.
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er pathway that further adds to ATM’s control
of the G1/S checkpoint (4). The pivotal new
player is cyclin D1, and the final targets are
the two CDKs that lead the progression of the
G1 phase, CDK4 and CDK6.

Cyclins are the allosteric activators of the
CDKs, and modulation of their cellular abun-
dance is central to cell cycle progression (20).
Cyclin D1 is a member of the D-cyclin family
that responds mainly to mitogenic signals
(21). Cyclin D1 binds to and activates CDK4
and CDK6, and also binds to several tran-
scription factors and co-regulators, receptors,
and histone deacetylases, and modulates their
activity. Various growth factors drive the accu-
mulation of cyclin D1, which occurs at the
levels of transcription, translation, and protein
stability. In addition, increased amounts or ab-
normal nuclear retention of cyclin D1 are
oncogenic (21–23). Cyclin D1 is unstable,
and toward the S phase, when its job as a G1
driver is over, it is exported to the cytoplasm
and degraded by the 26S proteasome. A key
event in cyclin D1 degradation is phosphoryl-
ation on Thr286, which both enhances its bind-
ing to the CRM1 protein that mediates its nu-
clear export and enables its recognition by the
ubiquitin E3 ligase that directs its degradation
(22, 24–30).

The E3 ubiquitin ligases that mediate cy-
clin D1 degradation are of the SCF
(Skp–Cullin–F-box) type. SCFs are quater-
nary complexes that consist of three invari-
able components (Skp1, Cul1/Cdc53, and
Roc1/Rbx/Hrt1) and one variable compo-
nent—the F-box protein, which is responsible
for substrate recognition and gives the SCF
E3 ligase its specificity (31). The importance
to the DDR of these ubiquitin ligases, which
are typically involved in cell cycle control, is
becoming increasingly clear (32). At least
two F-box proteins were previously implicat-
ed in cyclin D1 degradation: FBXW8 (30)
and FBX4 (29, 33), both of which recognize
cyclin D1’s phospho-Thr286 form. A key pro-
tein kinase involved in Thr286 phosphoryla-
tion is glycogen synthase kinase 3β (GSK-
3β) (25–27, 34). Indeed, certain mitogens can
inhibit GSK-3β, leading to nuclear accumu-
lation of cyclin D1, and mitogen deprivation
can cause GSK-3β activation, eventually
causing the degradation of cyclin D1 and
leading to G1 arrest (21–23). Another protein
kinase implicated in Thr286 phosphorylation
is the mitogen-activated protein kinase
(MAPK) REK2 (30).

With their cardinal role as CDK activa-
tors, it is conceivable that cyclins would be
targets of damage-induced checkpoint mech-
anisms. Agami and Bernards (35) first re-

ported DNA damage–induced degradation
of cyclin D1 following treatment of cells
with ionizing radiation; the pathway was in-
dependent of GSK-3β and Thr286 phosphory-
lation and required a different E3 ubiquitin
ligase, the anaphase-promoting complex
(APC). However, Diel’s lab provided evi-
dence that both GSK-3β and ATM were nec-
essary for this process, with the relevant F-
box protein being FBX4 (36, 37). The new
evidence from Green’s lab (4) implicates yet
another F-box protein in damage-induced
degradation of cyclin D1—FBXO31, which
had been previously identified as a candidate
tumor suppressor (38).

Santra et al. (4) show that the two F-box
proteins previously implicated in cyclin D1’s
destruction were not important for its dam-
age-induced degradation, and the process de-
pended wholly on FBXO31. However, like
FBX4 and FBXW8, FBXO31 mediated the
ubiquitination and proteasome-mediated
degradation of cyclin D1 that was phosphory-
lated at Thr286, leading to G1 arrest. Further
evidence of the distinct nature of the
FBXO31-mediated degradation pathway
came from the finding that this process did
not depend on GSK-3β but rather on the other
kinase previously implicated in Thr286 phos-
phorylation—the ERK (extracellular
signal–regulated kinase) branch of the MAPK
family (30). The apparent contradictions be-
tween the results in some of these studies may
be due to different experimental conditions
and cell lines. The ATM connection to the
new pathway appeared to be ATM phospho-
rylation of Ser278 in FBXO31. Although the
mechanistic role of this phosphorylation is
unclear, it is plausible that it directs the SCF
ubiquitin ligase SCFFBXO31 to act on cyclin
D1 outside the regular physiological context
of this pathway. Indeed, depletion of FBXO31
led to cellular radiosensitivity, whereas knock-
down of FBX4 or FBXW8 had no such ef-
fect. Notably, ultraviolet radiation and oxida-
tive stress also activated this pathway. Santra
et al. (4) concluded that FBXO31 is a dedicat-
ed damage-induced checkpoint protein that
enhances cyclin D1 degradation in response
to genotoxic stress.

Besides adding another dimension to the
intricacy of the damage-induced G1/S
checkpoint, the work shows once again an
elegant signaling solution: The same pro-
cess—cyclin D1 degradation—can be driv-
en by different regulatory proteins—F-box
proteins—in response to different stimuli. It
also shows that the DDR can co-opt exist-
ing pathways and selectively activate them
by replacing a pathway component with a

substitute that is well under its control.
Once considered a chamber ensemble

responsible for damage repair, the DDR
has grown into a grand symphony orches-
tra that plays variations on a profound
theme—maintaining genome integrity—
under the baton of a tireless conductor,
ATM. The cell cycle checkpoints are one
of the important movements in this piece,
with each player being critically important.
FBXO31 is one such player.
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