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a b s t r a c t

The DNA damage response (DDR) is emerging as a vast signaling network that temporarily modu-
lates numerous aspects of cellular metabolism in the face of DNA lesions, especially critical ones
such as the double strand break (DSB). The DDR involves extensive dynamics of protein post-trans-
lational modifications, most notably phosphorylation and ubiquitylation. The DSB response is mobi-
lized primarily by the ATM protein kinase, which phosphorylates a plethora of key players in its
various branches. It is based on a core of proteins dedicated to the damage response, and a cadre
of proteins borrowed temporarily from other cellular processes to help meet the challenge. A
recently identified novel component of the DDR pathway – histone H2B monoubiquitylation –
exemplifies this principle. In mammalian cells, H2B monoubiquitylation is driven primarily by an
E3 ubiquitin ligase composed of the two RING finger proteins RNF20 and RNF40. Generation of
monoubiquitylated histone H2B (H2Bub) has been known to be coupled to gene transcription, pre-
sumably modulating chromatin decondensation at transcribed regions. New evidence indicates that
the regulatory function of H2Bub on gene expression can selectively enhance or suppress the
expression of distinct subsets of genes through a mechanism involving the hPAF1 complex and
the TFIIS protein. This delicate regulatory process specifically affects genes that control cell growth
and genome stability, and places RNF20 and RNF40 in the realm of tumor suppressor proteins. In
parallel, it was found that following DSB induction, the H2B monoubiquitylation module is recruited
to damage sites where it induces local H2Bub, which in turn is required for timely recruitment of
DSB repair protein and, subsequently, timely DSB repair. This pathway represents a crossroads of
the DDR and chromatin organization, and is a typical example of how the DDR calls to action func-
tional modules that in unprovoked cells regulate other processes.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. The DNA damage response: borrowing functional modules in
an emergency

Cellular metabolism is controlled by numerous, interlocked sig-
naling networks. These networks are constantly responding to
internal and external stimuli related to the cell’s normal life cycle
and functions, and to threats to its well being. A major threat to
cellular homeostasis is subversion of its genomic stability, which
may lead to undue cell death or to neoplasia [1,2]. DNA damage
caused by internal or external damaging agents is a major danger
to the integrity of the cellular genome. The cellular defense system
against this threat is the DNA damage response (DDR) – an elabo-
rate signaling network activated by DNA damage, which swiftly
modulates many physiological processes [3,4]. A strong trigger of
the DDR is the DNA double-strand break (DSB) [5,6]. DSBs are
chemical Societies. Published by E
induced by ionizing radiation, radiomimetic chemicals, reactive
oxygen species formed in the course of normal metabolism, and
can also result from replication fork stalling. DSBs also accompany
normal genomic transactions such as meiotic recombination and
the rearrangement of the antigen receptor genes via V(D)J recom-
bination. The major DSB repair pathways in eukaryotic cells are er-
ror-prone nonhomologous end-joining (NHEJ) [7], and a high-
fidelity process based on homologous recombination (HR) between
sister chromatids [8,9]. The overall cellular response to DSBs goes
far beyond repair, however: this broad, powerful signaling network
activates special cell cycle checkpoints, and swiftly and vigorously
affects many cellular systems [3,4,10]. Thus, the DSB response is
emerging as one of the cell’s strongest and most comprehensive re-
sponses to stimuli.

The DSB response is a hierarchical process executed through a
series of highly controlled steps [3,6]. It is based on a signal trans-
duction mechanism that begins with sensor proteins, whose func-
tion is to sense the damage and/or chromatin alterations
lsevier B.V. All rights reserved.
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following damage induction, and transmit a signal to transducers
[11]. The transducers are robust protein kinases which relay the
signal to numerous downstream effectors involved in specific
pathways. This initial response at the DSB sites and subsequent
spreading of the DNA damage alarm, are characterized by exten-
sive protein post-translational modifications (PTMs) [12] such as
phosphorylation [13,14], ubiquitylation and SUMOylation [15],
and acetylation [16]. One of the first steps in the DSB response is
the recognition of the damage by the sensor complex MRE11-
RAD50-NBS1 (MRN) [17]. The MRN complex binds to exposed
DNA ends, unwinds the DNA molecule, and plays a major role in
DNA end resection and in the activation and recruitment of the
ATM kinase [17,18], which is the primary transducer of the DSB re-
sponse [19]. In response to DSBs, ATM is rapidly activated and
phosphorylates a plethora of key players in various damage re-
sponse pathways, some of which are themselves protein kinases
that phosphorylate additional substrates [13,14,20]. ATM belongs
to a conserved family of PI3K-like protein kinases (PIKKs) [21] that
includes, among others, the two DDR transducers: DNA-dependent
protein kinase (DNA-PK) [22] and ataxia-telangiectasia- and Rad3-
related (ATR) [23,24]. The three PIKKs share substrates in the DSB
response but exhibit selective substrate specificities in response to
different genotoxic stresses and to different DSB inducers [21,25].

In humans, germ-line mutations in genes encoding damage re-
sponse proteins can lead to inherited genomic instability syn-
dromes that usually involve some degree of tissue degeneration
(most notably the nervous and immune systems), sensitivity to
specific genotoxic stresses, cancer predisposition, and occasionally
premature aging [2,26]. A prototype genomic instability syndrome
is ataxia-telangiectasia (A-T), which is caused by ATM mutations
that eliminate or inactivate the human ATM protein. The hallmarks
of A-T are cerebellar atrophy, immunodeficiency, and marked can-
cer predisposition [27,28].

The DDR must deal with a serious threat by quickly fine tuning
a vast array of cellular processes. This response cannot be depen-
dent on the production of new proteins – a time consuming pro-
cess that is out of the question in face of the danger to genome
integrity. Instead, it must turn to existing resources and recruit
them to the cause. It is becoming evident that while the cellular re-
sponse to DNA damage relies on a core of DDR-dedicated proteins,
many of its arms are based on temporary recruitment of proteins
or functional modules that normally operate in other processes. In-
deed, it has been shown that the DDR temporarily calls into action
proteins that normally act in other contexts, such as gene expres-
sion [29–35], or RNA metabolism [36]. This means that the DDR
pulls players from various cellular processes out of their regular
context and assigns them temporary tasks under its command. In
many cases this means physical relocation of these proteins to
the DNA damage sites for a period of time. Here we summarize re-
cent data from our and other labs on a functional module that is
involved in a histone modification associated with chromatin reor-
ganization in the transcription context – monoubiquitylation of
histone H2B. In unprovoked cells, monoubiquitylated histone
H2B (H2Bub) is an important regulator of gene expression. Our
work recently showed that this regulation is confined to specific
gene subsets, with direct implications for tumor suppression. On
the other hand, we and others recently found that upon DSB induc-
tion, H2Bub becomes an important histone modification at the
damage sites that is required for timely damage repair.

2. Monoubiquitylated histone H2B: from general to highly
specific transcription regulator

Ubiquitylation of histone H2B in mammalian cells was identi-
fied over three decades ago [37], but more than two decades
passed before the function of this modification in regulating
mammalian chromatin-associated processes was deciphered. The
first breakthrough came with the identification of the budding
yeast protein Bre1 [38,39], which, together with the ubiquitin-con-
jugating enzyme Rad6, serves as the E3 ligase in the monoubiqui-
tylation of the yeast histone H2B on lysine 123 (K123) within
transcribed chromatin [38–41]. Notably, H2B monoubiquitylation
was subsequently found to be required for di- and trimethylation
of lysine 4 and lysine 79 of histone H3 at transcribed chromatin
[42–48]. This pathway is conserved from yeast to mammals, and
is dependent on a host of additional proteins that converge at
the elongating RNA Pol II [41,49–54]. Subsequently, the mamma-
lian orthologs of the yeast Bre1, RNF20 and RNF40, were identified
[55,56]. These two proteins form a tight heterodimer that acts as
the major E3 ligase responsible for histone H2B monoubiquityla-
tion on K120 in mammalian cells. Accordingly, depletion of either
RNF20 or RNF40 leads to almost complete loss of H2Bub.

Another technical breakthrough came with the generation of
antibodies that specifically recognize H2Bub [57]. These antibodies
enabled the determination of H2Bub genomic distribution by chro-
matin immunoprecipitation (ChIP), followed by genomic DNA
microarray analysis (ChIP/chip) or DNA sequencing (ChIP/Seq).
This approach revealed a genome-wide positive correlation be-
tween expression levels and H2Bub levels within the transcribed
region [53]. Moreover, Minsky et al. [53] demonstrated that
H2Bub is selectively associated with the transcribed regions, but
not the promoters, of expressed genes. These observations do not
necessarily imply an active role for H2Bub in mammalian tran-
scription regulation; nevertheless, such a role can be deduced from
earlier studies in the budding yeast, where the use of strains har-
boring a point mutation in the ubiquitylation site of H2B revealed
the direct involvement of H2Bub in transcriptional regulation
[40,58,59].

While genetic manipulation of H2B is relatively easy in the
yeast, which harbors only two H2B genes and can survive with
even a single copy, this is impractical in mammals, whose genomes
contain at least 17 H2B genes [60]. A more feasible strategy to
investigate the role of H2Bub in mammalian transcription regula-
tion is to deplete the cells of the responsible E3 ligase, RNF20, via
RNAi [61]. Surprisingly, expression microarray analysis of human
HeLa cells depleted of RNF20 revealed that, despite the positive
correlation between H2Bub and expression levels [57], the expres-
sion of most genes was essentially independent on H2Bub levels
and was unaffected by RNF20 depletion [57]. Thus, although
H2Bub is positively correlated with the transcription process in
general, it is not rate-limiting for the transcription of most genes.
Nevertheless, a relatively modest subset of genes did show signif-
icant altered expression upon RNF20 depletion. Intriguingly, this
subset comprised two distinct groups of genes that behaved in
opposite ways: while approximately 3% of the HeLa cell genes
exhibited reduced expression upon RNF20 depletion, and were
thus termed ‘‘RNF20-dependent genes’’, a similar percentage of
genes were significantly upregulated, suggesting that for those
genes RNF20 actually played a suppressive role (Fig. 1). There is
still no direct evidence that the regulation of mammalian gene
expression by RNF20 is due to modulation of H2B ubiquitylation;
as mentioned above, obtaining such evidence is hindered by the
large number of H2B genes. Nevertheless, several lines of evidence
strongly suggest that this is indeed the case. For example, deple-
tion of hRAD6A, the E2 enzyme that serves in RNF20-mediated
H2B monoubiquitylation [52], leads to a strong drop in H2Bub lev-
els and reproduces the transcriptional effects of RNF20 depletion
on both gene groups [62]. A similar effect is seen upon knockdown
of WAC1, a functional partner of RNF20–RNF40 and regulator of
H2B ubiquitylation levels [63] (data not shown). These observa-
tions, together with the finding that the E3 ligase activity of
RNF20 is essential for its ability to regulate gene expression [62],



Fig. 1. Transcription regulation by RNF20. Microarray data: Expression microarray analysis of the impact of RNF20 knockdown [61]. RNA was extracted from HeLa cells 48
hours after transfection with either RNF20 siRNA or LacZ siRNA, and hybridized to Affymetrix HG-U133A oligonucleotide arrays. Colors indicate the normalized log2
expression ratio (siRNF20/siLacZ) for each gene. The two rows represent two independent biological repeats. Validations: qRT–PCR validation of selected genes from the
microarray analysis. Shown are the RNF20-dependent genes HIST1H2BD, HOXA10 and p53, and the RNF20-suppressed genes NR4A2, RHOB, FOS, FOSL2, CASP9, HBA1 and cMYC.
Suggested model: The complex of RNF20/RNF40/hRAD6A binds the elongating RNA polymerase II through the hPAF1 complex and ubiquitylates histone H2B. For RNF20-
dependent genes, this enzymatic activity either leads to the recruitment of a positive elongation factor that facilitates transcription elongation (left), or alters the chromatin
structure to increase its accessibility to the transcription apparatus. For RNF20-suppressed genes, which reside preferentially in closed chromatin and are associated with
higher levels of paused Pol II, H2Bub inhibits the binding of TFIIS to hPAF1 (right), thus interfering with transcriptional elongation along those genes.
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support the conclusion that this transcriptional regulation is in-
deed mediated via H2B ubiquitylation.

The diverse regulatory effects of RNF20 depletion on different
subgroups of genes implied that The role of RNF20 in transcription
regulation might be more complex than initially suspected, and
might depend on a crosstalk with other transcriptional regulators
or chromatin modifiers. In an attempt to resolve this quandary
and further characterize the mechanisms underlying the opposite
responses of the two groups of genes to RNF20 depletion, the dis-
tribution patterns and levels of H2Bub on these genes were deter-
mined using H2Bub ChIP followed by high-throughput sequencing.
While RNF20-dependent genes showed a pattern of H2Bub similar
to that of the rest of the genome, the RNF20-suppressed genes
were found to possess significantly higher levels of H2Bub associ-
ated with their transcribed regions [61]. This was particularly
intriguing because these genes tend to be less expressed than
RNF20-independent genes, contradicting the overall positive corre-
lation between H2Bub and transcript levels. Moreover, further
analysis revealed that the RNF20-suppressed genes, despite being
expressed at relatively low levels, are associated with higher levels
of RNA polymerase II (Pol II) throughout their transcribed region
compared to RNF20-dependent and RNF20-independent genes.
The RNF20-suppressed genes were also found to have constitu-
tively elevated levels of two well-studied histone modifications –
trimethylation of lysine 4 on histone H3 (H3K4me3) and
acetylation of histone H3 on lysines 9 and 14 (H3K9/14Ac) – which
are widely believed to play a positive role in transcription regula-
tion. On the other hand, genome-wide low resolution data of high-
er order chromatin structure [64] indicated that the RNF20-
suppressed genes reside preferentially within ‘‘closed’’ chromatin
[61]. This association with closed, less readily accessible chromatin
may explain the observation that the RNF20-suppressed genes are
lowly transcribed despite bearing positive histone marks and high
constitutive levels of RNA polymerase II. The unfavorable chroma-
tin structure may hinder transcriptional elongation, resulting in
the ‘‘trapping’’ of many RNA Pol II molecules that are stalled,
paused or slowed down along those genes. In that chromatin con-
text, H2Bub may contribute as an inhibitory signal to transcrip-
tional elongation. Indeed, subsequent work established that TFIIS,
a highly conserved transcription elongation factor [65], is involved
in the mechanism by which RNF20/H2Bub suppresses transcrip-
tion [62].

TFIIS is an elongation factor that helps RNA Pol II pass through
transcriptional blocks on DNA; it does so by reactivating arrested
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RNA Pol II, through stimulating the endonucleolytic cleavage of
nascent RNA by RNA Pol II [65–67]. hPAF1 is an RNA Pol II-associ-
ated factor that facilitates transcription elongation [68]. hPAF1 was
shown to be required for H2B ubiquitylation, as the RNF20/RNF40
complex associates with Pol II through binding to hPAF1 [69]. It
was recently shown that TFIIS binds directly to both RNA Pol II
and hPAF1, and the direct interaction between hPAF1 and TFIIS re-
sults in their cooperative binding to RNA Pol II, exerting a strong
synergistic effect on transcription elongation [68].

In line with these observations, the catalytic activity of the
RNF20–RNF40–hRAD6A complex was found to interfere with TFIIS
binding to the hPAF1 complex, presumably through H2B ubiquity-
lation (see model in Fig. 1). This interference resulted in selective
impairment of the transcription elongation of RNF20-suppressed
genes, but not of other genes. Upon depletion of RNF20, the
amount of hPAF1-associated TFIIS was increased, augmenting tran-
scription elongation. Furthermore, over-expression of TFIIS alone
led to selective up-regulation of the RNF20-suppressed genes, sug-
gesting that the inhibitory effect of H2Bub can be overcome by an
excess of TFIIS [62].

While the inhibitory effects of H2Bub on the recruitment of
TFIIS to chromatin and its association with hPAF1 are general, only
the subset of RNF20-suppressed genes seems to benefit from the
relief of that interference. It is conceivable that this subset of genes
is excessively dependent on TFIIS for the transcription elongation
process, owing to their residing in an unfavorable chromatin con-
text that causes frequent RNA polymerase II pausing.

As mentioned above, microarray analysis identified a second,
highly RNF20-dependent gene cluster (Fig. 1) whose transcription
was significantly reduced upon RNF20 depletion. The mechanism
by which RNF20/H2Bub stimulates the transcription of those genes
remains obscure. It can be speculated that for those genes, RNF20/
H2Bub is involved in recruiting some positive elongation factor(s)
that is rate-limiting for those but not all other genes (Fig. 1). It is
also plausible that H2Bub alters chromatin structure in the specific
context of those genes and makes it more accessible to the tran-
scription machinery [70]. Alternatively, RNF20 may affect the
activity of some transcriptional regulators, especially since it was
shown to directly bind and influence the transcriptional activity
of the transcription factor and tumor suppressor protein p53
[55]. However, a significant enrichment for specific transcription
factor binding motifs in RNF20-dependent genes could not be con-
firmed (data not shown).

While the various mechanisms by which RNF20 and H2B ubiq-
uitylation regulate transcription are still not fully understood, the
identity of the genes regulated by RNF20 provides strong clues to
its importance for cellular homeostasis. The list of genes sup-
pressed by RNF20 comprises numerous proto-oncogenes and pro-
liferation-related genes, including many that are known to be
induced by epidermal growth factor (EGF). Conversely, RNF20 is
required for optimal expression and activity of p53, and several
studies indicate that the p53 response to DNA damage is signifi-
cantly attenuated in cells lacking RNF20 [55,61,63]. Consistent
with the transcriptomic effect of RNF20 depletion, RNF20 exhibits
a variety of in vitro and in vivo biological effects that suggest it
may act as a tumor suppressor [61]. For example, cells depleted
of RNF20 manifest increased migration, as well as an augmented
response to EGF. Stable knockdown of RNF20 in mouse NIH3T3
cells leads to increased formation of colonies in soft agar, a strong
indicator of neoplastic transformation. Moreover, such RNF20-de-
pleted cells are more tumorigenic in mice. Of note, the RNF20 pro-
moter harbors a CpG island that is hypermethylated in a series of
human breast cancer tumors, lending further credibility to the no-
tion that attenuation of RNF20 activity and subsequent down-
modulation of H2Bub promote a clinically relevant neoplastic
process [61].
In contrast to RNF20, and in agreement with its inhibition by
RNF20, TFIIS may contribute positively to cancer development.
Depletion of TFIIS in cancer cell lines was shown to inhibit cellular
proliferation [71], and TFIIS was found to directly regulate the tran-
scriptional elongation of the anti-apoptotic gene BCL2L1 encoding
the Bcl-XL protein, an important contributor to the survival of
many types of cancer cells [72,73]. In addition, the expression of
the TCEA1 gene, which encodes the major species of TFIIS, is ele-
vated in a variety of human tumors [62].

In conclusion, H2Bub may restrain the expression of a subset of
cancer-promoting genes, whereas TFIIS may positively regulate the
same subset of genes. In normal cells, H2Bub probably gets the
upper hand, keeping those genes in tight check. But, when this
homeostatic interaction is perturbed by an increase in TFIIS
expression or a decrease in H2Bub, a battery of pro-cancer genes
may be unleashed, facilitating cancer development.

3. RNF20–RNF40 is called to emergency action upon DNA
damage induction

The complex, multi-level organization of chromatin [74] makes
it necessary to reorganize its configuration to allow DNA transac-
tions. DNA repair is no exception, and dynamic changes in chroma-
tin condensation and accompanying histone marks have been
recognized as inevitable DDR pathways [15,75–80]. Here, too, the
DDR relies on recruitment of existing players in the chromatin
organization arena [32–34,75–79,81–85]. H2B monoubiquitylation
was previously implicated in the DDR in the budding yeast [86–
88]. Three recent studies – by Nakamura et al. [89], Moyal et al.
[90] and Chernikova et al. [91] – demonstrated the importance of
this process in the DSB response in human cells and provided fur-
ther insight into its mechanistic aspects: H2Bub was found to be
induced by DSBs, most likely at DSB sites, and required for timely
repair of this lesion. The results of these studies will be summa-
rized here collectively, with a few differences between them noted.

As is typical for a pathway involved in DSB repair, abrogation of
histone H2B monoubiquitylation, either via RNF20–RNF40 deple-
tion or over-expression of non-ubiquitylatable histone H2B, led
to cellular hypersensitivity to DSB-inducing agents. Further exam-
ination revealed the expected reduction in the efficiency of DSB re-
pair caused by compromising this pathway. The retardation in DSB
repair was observed by indirect readouts such as the disappear-
ance of the nuclear foci of phosphorylated histone H2AX (cH2AX)
or the 53BP1 protein, or by direct measurement of DSBs using the
I-SceI assay [92,93] or the comet assay [94]. Indeed, H2Bub was
found to be induced following DSB induction (the damage-induced
H2B monoubiquitylation was seen more clearly when background
H2Bub associated with active transcription was reduced using
transcription inhibitors [90]). RNF20 was found to be recruited to
the damaged sites, suggesting that this process occurred at these
sites.

Importantly, RNF20 and RNF40 interacted physically with ATM
[90] and NBS1 [89] (a member of the MRN complex [17]) and were
found to be ATM targets. Not surprisingly, therefore, damage-in-
duced H2B monoubiquitylation was ATM- and RNF20–RNF40-
dependent. Furthermore, this reaction required the presence of
ATM’s phosphorylation sites in RNF20; replacement of endogenous
RNF20 by ectopic, non-phosphorylatable protein abolished the
process [90]. On the other hand, end resection and damage-in-
duced release of H2B from chromatin were NBS1-dependent [89].

A natural corollary of these observations was examination of
the two main DSB repair pathways, NHEJ and HRR, in cells in which
damage-induced H2Bub was abrogated. Collectively, the three
studies [89–91] showed that both pathways (including the critical
preliminary step of DNA end resection) were retarded under these
conditions, suggesting that the H2Bub-driven process occurred
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upstream of both repair processes. Indeed, abrogation of damage-
induced H2B monoubiquitylation led to reduced recruitment of
players in both pathways to the damage sites [89,90]. Notably,
H2Bub formation was not required for the initial recruitment of
players in the ‘‘sensor’’ layer of the DDR [89,90] but was specifically
needed for recruiting the repair proteins, and was thus indepen-
dent of cH2AX formation [89].

The temporary anchoring of RNF20–RNF40 at damage sites may
be due to interactions with other damage response proteins that
accumulate at these sites, including the basal interactions with
ATM and NBS1 [89,90]. This temporary residence of RNF20–
RNF40 at the damage sites is expected to induce H2Bub locally at
these sites. It cannot be ruled out that, in parallel, the balance be-
tween the actions of this E3 ubiquitin ligase and opposing deubiq-
uitylating proteases [95–98] may be shifted towards prolonged
ubiquitylation of H2B at these sites. Importantly, the temporary
service of the H2B monoubiquitylation module in the DDR was
uncoupled from its role in transcription in undamaged cells
[89,90]. Thus, while carrying out its regular enzymatic activity in
the DDR context, it was presumably physically and functionally de-
tached from its regular context. In the transcription context, H2B
monoubiquitylation in yeast and mammals is dependent on the
early steps in transcription initiation and elongation, and the cor-
responding E3 ligase closely interacts with many proteins that take
part in this process, some of which associate directly with RNA Pol
II [41,49–54,99,100]. It is not entirely clear how many of the pro-
teins surrounding RNF20–RNF40 in the transcription context
accompany this heterodimer to the DNA damage sites. hRAD6,
the corresponding E2 ubiquitin conjugating enzyme, probably
does. Some of the proteins that surround RNF20–RNF40 at tran-
scription sites are involved in di- and trimethylation of Lys4 and
Lys79 of histone H3 (reviewed in [41,101]), and H2Bub was shown
to stimulate DOT1L – the Lys79 methylase [102]. Methylated Lys79
of histone H3 was previously suggested to be an anchor of the bud-
ding yeast damage response protein Rad9 [103] and its human
ortholog 53BP1 [104]. Conflicting data argued later for binding of
53BP1 and its fission yeast ortholog to methylated Lys20 of histone
H4 [105–107].

It was of interest, therefore, to examine whether the H2Bub-
dependent methylations accompany H2B monoubiquitylation also
at DSB sites. Here, some differences are noted between two of the
studies. Moyal et al. [90] observed that, while the density of
H3K4Me2 along laser-induced damage tracks was not altered, that
of H3K79Me3 was, but this increase was not affected by abrogation
of H2Bub induction. This observation was in agreement with pre-
vious suggestions that histone modifications implicated as 53BP1
anchors were not induced de novo at damage sites, but became ex-
posed due to alterations in chromatin organization at these sites
[104,106,108]. On the other hand, using chromatin immunoprecip-
itation analysis, Nakamura et al. [89] observed an RNF20-depen-
dent increase in H3K4 methylation in the vicinity of localized
DSBs induced by the restriction endonuclease I-SceI [92,93]. The
different results of the two studies can be ascribed to the use of
very different methods of DSB induction. The I-SceI-induced DSB
may simulate better DSBs evoked during normal DNA transactions,
compared to the extensive and heterogeneous laser-induced dam-
age. Interestingly, Nakamura et al. [89] also noticed that the chro-
matin remodeling factor SNF2h, known to be recruited to
transcribed sites via its interaction with methylated H3K4, was re-
cruited to the I-SceI-induced DSB site, and SNF2h depletion abro-
gated the HRR pathway and the recruitment of HRR players.
Their conclusion was that, at least in the HRR pathway, RNF20-
dependent methylation of H3K4 may be part of the process, similar
to the transcription context.

The physical role of H2Bub in facilitating the recruitment of re-
pair proteins could be attributed to the effect of this histone PTM
on chromatin organization. Fierz et al. [70] recently showed that
this modification interferes with compaction of the 30 nm chroma-
tin fiber and leads to an open, biochemically accessible fiber con-
formation. This conformation may facilitate nucleosome dis- and
reassembly during transcription and repair, enhancing the accessi-
bility of DNA embedded in chromatin to the corresponding en-
zymes in these various DNA transactions.

An important example of the involvement in the DDR of another
histone mark that is normally associated with gene regulation is
histone H2A monoubiquitylation, which was linked to transcrip-
tion silencing (reviewed in [41,109]). This process was recently
implicated in facilitating DSB repair and was associated with two
DDR players, the RING finger proteins RNF8 and RNF168
[15,110–115]. Interestingly, unlike with H2Bub, the H2A ubiquitin
ligases that function in the gene regulation context [116] were not
implicated in DNA damage-induced H2A monoubiquitylation.
There are additional differences in the appearance of the two
apparently analogous histone marks at DNA damage sites, such
as the dependence of the RNF8-mediated pathway on MDC1, and
its requirement for 53BP1 recruitment – contrary to what is seen
in damage-induced H2Bub. Importantly, H2Aub was recently
shown to be involved in ATM-mediated transcriptional silencing
and prevention of RNA Pol II elongation-dependent chromatin
decondensation at regions distal to DSBs [117]. Thus, the two his-
tone monoubiquitylations may play opposing roles in the dynam-
ics of chromatin organization: H2Bub in the immediate vicinity of
DSBs, and H2Aub farther away from these lesions. Indeed, despite
the apparent analogy between the two modifications, H2Aub, at
the opposing side of the nucleosomal surface, does not lead to
chromatin fiber decompaction [70].

Information about the interface between the DDR and chroma-
tin organization is rapidly accumulating [75,76,78,108,118–120].
An early, extremely rapid process at damage sites is the CK2-med-
iated phosphorylation and eviction of the heterochromatin protein
1 (HP1) [121]. Nucleosome destabilization at DSB sites was re-
cently shown to depend on the ATPase activity of the p400 SWI/
SNF ATPase and histone acetylation by the Tip60 acetyltransferase
[122]. Damage-induced monoubiquitylation of histone H4 by the
BBAP E3 ligase was reported [123], histone acetylation by Trrap-
Tip60 was implicated in modulating the loading of repair proteins
at DSBs [35], and the chromatin remodeling factor CHD4 was re-
cently shown to be recruited to action at DSB sites [82,83,85]. Loss
of histone H2B at DSB sites was previously reported in the budding
yeast [124], and shown to be ATM-dependent and required for
XRCC4 recruitment in human cells [125]. Such displacement may
follow the decompaction of the chromatin fiber caused by H2Bub
[70].

A. Nussenzweig’s laboratory previously showed an initial, very
rapid chromatin relaxation at DSB sites that was ATP-dependent
and ATM-independent, and was required for the recruitment of
the damage sensors [126,127]. The recent data suggested that
the ATM-RNF20–RNF40–H2Bub axis functions independently and
later, and is required for the actual DSB repair process. Collectively,
the data call for a model of chromatin relaxation at DSB sites as a
two-stage process consisting of a rapid, ATM-independent chroma-
tin decondensation that facilitates the recruitment of sensors, and
an ATM-dependent stage at the level of the 30-nm chromatin fiber,
which is mediated by ATMs substrate, RNF20–RNF40 [90].

4. Conclusions

Protein ubiquitylation is rapidly rising as a post-translational
modification with a prominent role in signal transduction. The
wealth of previous and recent studies on the functional signifi-
cance of histone H2B monoubiquitylation attests to the importance
of this histone mark in the dynamic shaping of chromatin in
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conjunction with several cardinal DNA transactions. In the tran-
scription context, H2Bub is now emerging as a highly selective,
task-oriented histone mark that up- or down-regulates the expres-
sion of specific groups of genes controlling the delicate balance be-
tween normal cellular growth and neoplasia. Histone H2B
monoubiquitylation is also a prototypic example of the temporary
but swift and decisive manner in which the DDR calls to action
existing functional modules in the face of a DNA damage emer-
gency (Fig. 2). It is expected that this mode of action of the DDR
will be exemplified with many more branches of cellular
metabolism.
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