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Abstract

The DNA damage response (DDR) is a complex signaling network that
relies on cascades of protein phosphorylation, which are initiated by
three protein kinases of the family of PI3-kinase-related protein
kinases (PIKKs): ATM, ATR, and DNA-PK. ATM is missing or inactivated
in the genome instability syndrome, ataxia-telangiectasia (A-T). The
relative shares of these PIKKs in the response to genotoxic stress and
the functional relationships among them are central questions in the
genome stability field. We conducted a comprehensive phosphopro-
teomic analysis in human wild-type and A-T cells treated with the
double-strand break-inducing chemical, neocarzinostatin, and vali-
dated the results with the targeted proteomic technique, selected
reaction monitoring. We also matched our results with 34 published
screens for DDR factors, creating a valuable resource for identifying
strong candidates for novel DDR players. We uncovered fine-tuned
dynamics between the PIKKs following genotoxic stress, such as
DNA-PK-dependent attenuation of ATM. In A-T cells, partial compen-
sation for ATM absence was provided by ATR and DNA-PK, with
distinct roles and kinetics. The results highlight intricate relationships
between these PIKKs in the DDR.
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Introduction

The integrity of organismal DNA is constantly challenged by

endogenous and exogenous DNA damaging agents. Cells respond to

DNA damage by activating an elaborate signal transduction network

termed the DNA damage response (DDR), which includes DNA

repair pathways and many special circuits that temporarily modu-

late cellular metabolism until damage repair is completed (Chatter-

jee & Walker, 2017; Lanz et al, 2019). The DDR is vigorously

activated by the highly cytotoxic DNA double-strand breaks (DSBs;

Goodarzi & Jeggo, 2013; Goldstein & Kastan, 2015). The apical

transducers that orchestrate the DSB response are three serine-thre-

onine protein kinases, ataxia-telangiectasia, mutated (ATM), ataxia-

telangiectasia and Rad3-related (ATR) and DNA-dependent protein

kinase (DNA-PK), which belong to a family of PI3-kinase-related

protein kinases (PIKKs; Lovejoy & Cortez, 2009; Blackford & Jack-

son, 2017; Menolfi & Zha, 2019).

Double-strand breaks incite activation of all three PIKKs, but

ATM is considered the chief transducer of the DSB response

multi-branched network (Shiloh & Ziv, 2013; Paull, 2015). DNA-

PK’s most documented role is its coordination of DSB repair via

nonhomologous end-joining (NHEJ)—the major DSB repair path-

way in mammalian cells (Davis et al, 2014; George et al, 2019).

ATR has a prominent role in coordinating the cellular response to

replication stress (Flynn & Zou, 2011; Saldivar et al, 2017). The

three PIKKs maintain complex functional relationships in these

responses to genotoxic stress (Blackford & Jackson, 2017). In

view of the cardinal roles of these PIKKs in the DDR, their inhibi-

tors are regarded as potential cancer drugs (O’Connor, 2015;

Brown et al, 2017).

ATM null alleles cause the autosomal recessive genome insta-

bility syndrome, ataxia-telangiectasia (A-T), whose hallmarks are

cerebellar degeneration, immunodeficiency, chronic lung disease,

premature aging, chromosomal instability, cancer predisposition,

and acute sensitivity to DSB-inducing agents (Savitsky et al, 1995;

Rothblum-Oviatt et al, 2016). Null alleles of ATR cause embryonic

lethality in homozygotes, and hypomorphic ATR mutations lead

to the genome instability syndrome, ATR-Seckel (O’Driscoll et al,

2003). Hypomorphic mutations in the PRKDC gene encoding the
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catalytic subunit of DNA-PK lead to severe combined immunodefi-

ciency (SCID; van der Burg et al, 2009; Woodbine et al, 2013).

The crosstalk between the three PIKKs may affect the phenotypes

associated with their corresponding mutations. For example, it

has been suggested that ATR and/or DNA-PK might partially

compensate for ATM absence in A-T patients (Tomimatsu et al,

2009; Shiloh & Ziv, 2013).

Previous phosphoproteomic surveys of the DDR have

provided a broad overview of its numerous branches by identi-

fying damage-induced phosphorylations, many of which were

subsequently studied in detail (Matsuoka et al, 2007; Bennetzen

et al, 2010; Bensimon et al, 2010; Beli et al, 2012). In such

studies, it is important to discriminate between PIKK-mediated

phosphorylations, which typically occur on the S/TQ motifs

(Matsuoka et al, 2007; Blackford & Jackson, 2017) and PIKK-

dependent events, which can also occur on other motifs and

be mediated by PIKK-activated, downstream kinases. PIKK-

dependent events can be identified using PIKK inhibitors,

which are constantly being improved. For example, our previ-

ous phosphoproteomic analysis of the DSB response (Bensimon

et al, 2010), demonstrated that only 60% of DSB-induced phos-

phorylations in a human melanoma cell line were ATM-depen-

dent, leaving the dependence of the rest in question.

Information is still lacking about the division of labor between

the three major PIKKs in the cellular response to genotoxic

stress. The emergence of increasingly specific PIKK inhibitors

(Leahy et al, 2004; Golding et al, 2009; Foote et al, 2013),

coupled with technological advances in discovery phosphopro-

teomics (Junger & Aebersold, 2014), and targeted phosphopro-

teomics (Aebersold et al, 2016) provide now advanced

experimental approach to this question.

We conducted a label-free quantitative phosphoproteomic analy-

sis after induction of DSBs or replication stress in the presence of

inhibitors against each of the above three PIKKs. The experiments

were carried out in WT and A-T lymphoblasts. The results of this

high-throughput screen were substantiated using selected reaction

monitoring (SRM)—a quantitative targeted proteomic technique

with accuracy and reproducibility that are superior to those of non-

targeted proteomic approaches (Picotti & Aebersold, 2012; Picotti

et al, 2013). This experimental setup enabled us to address several

cardinal questions concerning PIKK regulation and crosstalk in

response to DNA damage, one of which is PIKK redundancy and

possible compensation for the absence of one by the other two. We

show that, while some ATM-dependent phosphorylations are

indeed missing in A-T cells, others are taken over by ATR or DNA-

PK. ATR- and DNA-PK-dependent compensation for ATM absence

occurs in distinct kinetics and involves different subsets of ATM

substrates. Interestingly, ATR/DNA-PK compensation for chemical

inhibition of ATM is more modest than such compensation when

ATM is absent altogether. We also obtained evidence for DNA-

PK-dependent attenuation of ATM’s response to DSBs, in agree-

ment with a previous suggestion of such mechanism. Our results

demonstrate fine-tuned relationships among the three PIKKs and

present them as a coordinated functional module at the core of the

cellular response to genotoxic stress. Comparison of our results with

an extensive meta-analysis of 34 published screens highlights

proteins with repeated appearance as strong candidates for novel

DDR factors.

Results

Dissection of phosphoproteome dynamics in response to DSBs

Global quantitative phosphoproteomic analysis (Fig 1A) was carried

out in human lymphoblast lines, NL-550 (derived from a healthy

individual) and AT59RM (derived from an A-T patient). Cells were

treated with the radiomimetic drug, neocarzinostatin (NCS), in the

presence of selective inhibitors against ATM (KU60019, denoted

hereafter ATMi; Golding et al, 2009), ATR (AZ20, ATRi; Foote et al,

2013), and DNA-PK (NU7441, DNA-PKi) (Leahy et al, 2004;

Fig EV1). Samples were collected 20, 60, and 240 min after NCS

addition and subjected to the phosphoproteomic analysis pipeline

shown in Fig 1A.

We identified a total of 9,690 phosphopeptides corresponding to

2,818 proteins. 1,322 phosphopeptides were modulated in response

to NCS in WT cells, out of which 598 represented phosphorylations

and 724 represented dephosphorylations in at least one time point

(Table EV1, Appendix Fig S1). Of note, some of the phosphoryla-

tions identified in this study were well-documented DNA damage-

responsive sites, such as pS343/NBS1 (Gatei et al, 2000), pS824/

KAP-1 (Ziv et al, 2006), pS3205/DNA-PK (Douglas et al, 2002),

pS831/TP53BP1 (Jowsey et al, 2007), pS139/H2AX (Rogakou et al,

1998), pS183/PPM1G (Beli et al, 2012), pS272/RAD9 (Chen et al,

2001), pS635/RAD50 (Linding et al, 2007), pS317/CHK1 (Zhao &

Piwnica-Worms, 2001), pS114/PNKP (Segal-Raz et al, 2011), and

pS1083/SMC3 (Luo et al, 2008).

Initial gene-ontology (GO) analysis showed that NCS-responsive

phosphorylation and dephosphorylation targets were highly enriched

for nuclear compartment proteins. NCS-induced phosphorylations

were also enriched for DNA damage-related biological processes and

mRNA processing players (Fig 1B). In order to identify possible

involvement of protein kinases other than the PIKKs in the DSB

response, we performed linear motif analysis using the Perseus

software (Tyanova et al, 2016b; Fig 1C). The most significantly

enriched phosphorylation motif was S/TQ—the common PIKK

target motif (FDR q-value: 4*10�56). Nevertheless, this motif was

included in only 21% of NCS-induced phosphorylation sites, in

agreement with previous studies (Bensimon et al, 2010), implicating

other kinases in this phosphorylation cascade. Notable enriched

motifs among phosphorylated sites were those of casein kinases 1

(FDR q-value: 1.1*10�3). Dephosphorylated sites were enriched for

motifs recognized by cell cycle kinases, among them CDC2 and

CDKs (FDR q-value: 3.1*10�6 and 8.2*10�6, respectively). This

result probably further unfolds the robust regulation of the

damaged-induced cell cycle checkpoints via protein phosphorylation

(Shaltiel et al, 2015).

Identification of strong, novel DDR factor candidates

Many high-throughput functional and proteomic screens were

carried out over the past two decades aimed at discovering key play-

ers in the DDR. The wealth of information obtained through these

screens can be further amplified if the data of these screens are

collated, allowing prioritization of candidate DDR factors for in-

depth functional studies in view of their repeated appearance in

screens. We constructed a database that contains manually curated

information provided by the data of 34 such screens (Kolas et al,
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Figure 1. Modulation of the cellular phosphoproteome following NCS treatment.

A Schematic workflow of the phosphoproteomic experiment. Cells were treated with 20 ng/ml NCS in the presence of selective inhibitors of ATM (KU60019, 5 µM), ATR (AZ20,
0.5 µM), DNA-PK (NU7441, 5 µM), or DMSO (inhibitor solvent). Inhibitors were added 30 min prior to NCS treatment, and samples were collected 20, 60, and 240 min
following NCS addition. Protein extracts were digested into peptides and subsequently enriched for phosphopeptides, which were measured using LC-MS/MS and subjected
to label-free quantification and subsequent data processing and analysis using the MaxQuant (Cox & Mann, 2008; Tyanova et al, 2016a) and the Perseus (Tyanova et al,
2016b) software. An FDR of 0.05 together with a minimal fold change of twofold was applied to determine regulation in response to NCS and PIKK inhibitors.

B Enriched GO cellular compartments (gray) among NCS-induced phosphorylations and dephosphorylations, and GO biological processes (purple-red) among NCS-
induced phosphorylations, in WT cells. Enrichment was tested using the Fisher exact test implemented in Perseus (Tyanova et al, 2016b).

C Enriched motifs among NCS-induced phosphorylations (yellow) and dephosphorylations (gray) in WT cells. Enrichment was tested using the Fisher exact test
implemented in Perseus (Tyanova et al, 2016b).
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2007; Matsuoka et al, 2007; Stokes et al, 2007; Lovejoy et al,

2009; Paulsen et al, 2009; Bennetzen et al, 2010; Bensimon et al,

2010; Chou et al, 2010; Hurov et al, 2010; O’Connell et al, 2010;

O’Donnell et al, 2010; Piwko et al, 2010; Smogorzewska et al, 2010;

Cotta-Ramusino et al, 2011; Kondo & Perrimon, 2011; Menzel et al,

2011; Stirling et al, 2011; Adamson et al, 2012; Beli et al, 2012;

Floyd et al, 2013; Jungmichel et al, 2013; Sirbu et al, 2013; Benzina

et al, 2015; Boucas et al, 2015; Elia et al, 2015; Herr et al, 2015;

Izhar et al, 2015; Kavanaugh et al, 2015; Raschle et al, 2015; Boeing

et al, 2016; Kozlov et al, 2016; Lopez-Saavedra et al, 2016; Baranes-

Bachar et al, 2018; Olivieri et al, 2020). Queries to this database

provide a “profile” for a candidate protein according to the screens

in which it was identified. Repeated appearance in various types of

screens strongly suggests the involvement of the candidate protein

in central DDR pathways. Using this approach, we recently identi-

fied the DDR roles of the RNA processing factor, PABPN1 (Gavish-

Izakson et al, 2018) and the proteasome chaperone, ubiquilin 4

(Jachimowicz et al, 2019).

We matched the list of phosphorylation/dephosphorylation

targets obtained in our screen with this database and obtained such

profiles for our hits (Table EV2). We expect this analysis to make

our data an interesting and useful resource for investigators inter-

ested in identifying new players in the DDR arena using the candi-

date approach.

PIKK control of phosphoproteome dynamics in response to DSBs

Using PIKK-directed chemical inhibitors, we determined the relative

share of ATM, ATR and DNA-PK in NCS-induced phosphoproteome

dynamics (Table EV1). Jointly, the three PIKKs governed 70% of

the NCS-response (Fig 2A). Fifty-one percent of the NCS-induced

changes in the phosphoproteome were ATM-dependent, roughly

similar to a previous study from our lab (Bensimon et al, 2010).

ATRi and DNA-PKi influenced 34% and 28% of NCS-induced

phosphoproteome alterations, respectively. Only 25% of the PIKK-

dependent phosphorylations following NCS treatment occurred

on the S/TQ motif, indicating that a large portion of the PIKK-

dependent effect on the phosphoproteome was likely indirect.

Notably, there are documented PIKK-mediated phosphorylations

which are not on the PIKK-canonical substrate motif, predominantly

by DNA-PK, suggesting that some of the non-S/TQ sites might still

be direct PIKK targets (Lees-Miller & Meek, 2003; Jette & Lees-

Miller, 2015). Ninety-four percent of NCS-induced phosphoryla-

tions on the S/TQ motif were PIKK-dependent, and some of these

phosphorylations were modulated by more than one PIKK.

Remarkably, 90% of them were ATM-dependent and only 26%

were ATR-dependent and 12%—DNA-PK-dependent (Fig 2B),

pointing to the central role of ATM in direct damage-induced phos-

phorylations.

PIKK involvement in the cellular response to replication stress

ATM is regarded as the major transducer of the DSB response while

ATR is considered a major coordinator of the response to replication

stress (Flynn & Zou, 2011). We compared the share of the load by

the three PIKKs in the response to DSBs and the response to replica-

tion stress, which we induced using hydroxyurea (HU) treatment.

NL-550 human lymphoblastoid cells were treated with HU for

60 min in the presence or absence of PIKK inhibitors and subjected

to a similar processing and analysis as in the NCS-experiment

(Fig 1A). Interestingly, ATM-dependent phosphorylation sites iden-

tified in the previous experiment, 20 min after NCS treatment, were

enriched for ATR-dependent sites that we subsequently found to be

phosphorylated in response to HU (enrichment factor 3.1, FDR q-

value: 4.9*10�8; Fig 2C, Table EV3). This set of substrates was

enriched for the S/TQ motif (enrichment factor 4.7, FDR q-value:

2.7*10�5), presumably representing direct ATM/ATR-mediated

phosphorylations. For example, Western blotting analysis confirmed

that 1 h after HU treatment, pS824/KAP-1, which is ATM-dependent

following NCS treatment, was ATR-

dependent (Fig 2D). ATM-dependent pT68/CHK2, which is typical

for the DSB response (Zhou et al, 2000), was still ATM- rather

than ATR-dependent in response to HU, possibly representing a

response to DSBs that follow replication fork collapse. Interestingly,

when ATR was inhibited, pS824/KAP-1 and pT68/CHK2 showed

ATM-dependent hyper phosphorylation 2 h following HU treat-

ment, which might stem from ATM activation due to collapsed

replication forks.

Elevated response of ATM to DSBs upon DNA-PK inhibition

Our attention was caught by a subset of NCS-induced phosphoryla-

tions that displayed a unique pattern: 4 h after NCS treatment, their

level was further elevated in WT cells treated with DNA-PKi

compared with cells that were not treated with this inhibitor

(Fig 3A, Table EV4). Importantly, this phenomenon was not

observed in A-T cells, suggesting it represented ATM-dependent

phosphorylations (Fig 3B). We used K-means clustering to divide

this cluster into two sub-clusters, with strong or moderate ATM

dependence (Fig 3A, bottom two clusters).

To further substantiate the ATM-dependent nature of this clus-

ter’s elevated phosphorylations, we examined its enrichment for

sites that we previously found to be ATM-dependent. Indeed, 94%

of the phosphorylations in this cluster were ATM-dependent in at

least one of the time points after NCS treatment (enrichment FDR q-

value: 5.4*10�17; Fig 3C). Using linear motif analysis, we found

that the S/TQ motif was highly enriched in this subset (48% of the

phosphorylations, enrichment FDR q-value: 5.7*10�13; Fig 3C).

Interestingly, 46% of the proteins included in this subset were

annotated as involved in DNA or chromatin binding (GO terms:

DNA binding, chromatin binding, histone binding; enrichment FDR

q-value: 1.8*10�5; Table EV4). Notably, some of the sites whose

phosphorylation was enhanced by DNA-PKi were found on well-

documented DDR players; e.g., H2AX, NBS1, TOPBP1, KAP-1,

SMC1, and RIF1 (Fig 3D). Further validation of this pattern was

carried out in NL-550 and U2-OS cells focusing on three ATM

targets in this group, pS824/KAP-1, pS343/NBS1, and pS395/NUMA

(Vidi et al, 2014; Salvador Moreno et al, 2019). For this purpose,

we used Western blotting analysis based on phospho-specific anti-

bodies directed against these sites (Figs 3E and EV2). Collectively,

these results suggest that DNA-PK might negatively regulate ATM

or positively regulate a factor that counteracts ATM’s activity. Alter-

natively, continuous inhibition of DNA-PK, which has a central

role in the NHEJ repair pathway (Davis & Chen, 2013), might lead

to accumulation of unrepaired DSBs and thus enhance ATM-

mediated signaling.
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B Venn diagram depicting the relative share of the three PIKKs in NCS-induced phosphorylations occurring on S/TQ sites.
C The profile of a group of substrates targeted by ATM 20 min after neocarzinostatin (NCS) addition and by ATR 1 h after hydroxyurea (HU) addition. Box plots depict
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D Western blotting analysis confirming that the ATM substrate, pS824/KAP1 is targeted by ATR in response to HU. pS345/CHK1—an established ATR substrate—served
as a positive control for ATR activation.

Source data are available online for this figure.
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We examined the temporal dynamics of this phenomenon by moni-

toring the S824/KAP-1 phosphorylation site. This phosphorylation in

DNA-PKi-treated cells reached its usual peak level but did not exhibit

its subsequent normal decline (Fig 3F). Furthermore, when in the

same experimental setup we added ATMi after these phosphoryla-

tions had reached their peak level, one hr following NCS addition,

the phosphorylations rapidly declined, suggesting that ATM contin-

ues to phosphorylate these sites at the time they normally decay

(Fig 3E). Moreover, a combination of pretreatment with DNA-PKi

and treatment with ATMi one hr after NCS addition, showed that

DNA-PKi-dependent continuous phosphorylation of the tested

substrates depended on sustained ATM activity (Fig 3E).
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ATR and DNA-PK partially compensate for ATM’s absence
in A-T cells

ATM, ATR, and DNA-PK share redundant roles in the DDR while

keeping their own non-redundant functions. It has been suggested

that complete loss of one of them, such as that of ATM in A-T

patients, might be partly compensated for by one or both the other

two (Shiloh & Ziv, 2013). We examined this possibility by carrying

out our experiments concomitantly in WT and A-T cells. While 259

of the 314 strictly ATM-dependent sites in WT cells did not respond

to NCS treatment in A-T cells, 55 did respond (Table EV5). Since

these phosphorylations were strictly ATM-dependent in WT cells,

their occurrence in A-T cells presumably reflects the action of other

kinases. Indeed, 85% of the “compensated sites” in A-T cells were

ATR- or DNA-PK-dependent, of which 67% were ATR-dependent

and 33% DNA-PK-dependent (Fig 4A). Importantly, the exclusively

ATM-dependent S/TQ sites represented a more prominent role for

ATR in their phosphorylation in A-T cells, where 82% of them

depended on ATR (Fig 4B). Interestingly, however, the kinetics of

the “compensated site” phosphorylation was slower in A-T cells

than in WT cells (Fig 4C).

We examined whether the extent of compensation by ATR and

DNA-PK varied over a time course by following the PIKK depen-

dence of the “compensated sites” at 20 and 240 min after NCS

addition. The early and late phases of the compensation for ATM

absence showed distinct profiles (Fig 4D). The early phase was

largely DNA-PK-dependent and included some well-documented

ATM substrates, such as pS139/H2AX, pS824/KAP-1, and pS114/

PNKP (Fig 4D and E). The late phase was largely ATR-dependent,

encompassed a larger number of targets, and also included known

ATM substrates such as pS343/NBS1, pS824/KAP-1, pS183/

PPM1G, and pS317/CHK1 (Fig 4D and E). Western blotting analy-

sis confirmed the pattern: pS824/KAP-1 and pS114/PNKP showed

early compensation, which was DNA-PK-dependent, while pS824/

KAP-1 and pS343/NBS1 showed late compensation, which was

ATR-dependent (Fig 4F). This analysis also confirmed that some

substrates, such as pS395/NUMA, were not compensated for ATM

absence. Similar compensation patterns by ATR/DNA-PK were

observed in an additional A-T cell line (L-119; Appendix Fig S2).

Taken together, our results demonstrate that some

phosphorylation targets that depend exclusively on ATM in WT

cells can be targeted in A-T cells by DNA-PK or ATR. Of these,

very few can be compensated in A-T cells as early as 20 min

following NCS treatment, and these phosphorylations are largely

DNA-PK-dependent. Late-phase compensation is more substantial

and is largely ATR-dependent.

Compensation for chemical inhibition of ATM in WT cells

Since a certain degree of compensation for ATM’s absence was

observed in A-T cells, we asked whether this phenomenon could

also be observed in WT cells treated with an ATM inhibitor. We

first asked whether certain early ATM-dependent substrates had

lost their responsiveness to ATM inhibitor at a late phase of the

DSB response. Such phenomenon could represent ATR/DNA-PK-

dependent compensation. We identified a group of 18 exclusively

ATM-dependent sites, which were ATM-dependent 1 h after NCS

addition, and were still NCS-responsive at 4 h, but lost their

responsiveness to ATMi at that time point (Fig 5A, Table EV6).

Since they were not affected by ATRi nor DNA-PKi at any time

point, we asked whether some of them might be compensated

by one or two of these kinases only upon inhibition of ATM.

We speculated that overlapping this group of sites with the one

compensated by ATR/DNA-PK in A-T cells might direct us to

the compensating kinase. This group was enriched for substrates

that were compensated by ATR in A-T cells (enrichment factor:

15.8, FDR q-value: 5.3*10�10, against a background of the WT

NCS-responsive phosphoproteome; Fig 5B). Interestingly, this

group was also enriched for substrates that were ATR-dependent

following HU treatment (enrichment factor: 9.4, FDR q-value:

1.8*10�5, against a background of the WT NCS-responsive phos-

phoproteome). Since this group was enriched for substrates that

could be targeted by ATR in different situations (lack of ATM

in A-T cells or replication stress in WT cells), we surmised

that these sites represented ATR-dependent compensation under

ATM inhibition.

Using Western blotting analysis and double inhibition of ATM

and ATR, we found that pS343/NBS1, which was included in the

group of sites that were compensated upon ATM inhibition, was

indeed ATM-dependent at the beginning of the response, but

◀ Figure 3. Chemical inhibition of DNA-PK enhances ATM-mediated phosphorylations in WT cells.

A A cluster of 71 neocarzinostatin (NCS)-induced phosphorylations that were enhanced upon continuous inhibition of DNA-PK. Untreated cells are marked UT. This
cluster breaks down into two distinct groups according to their ATM dependence 240 min after NCS addition. Clusters were obtained using K-means algorithm
implemented in Perseus on Z-scored intensities. Box plots depict 71 phosphopeptides measured in two independent biological replicates. The box indicates the range
from first to third quartiles, and the central band represents the median. Upper and lower whiskers extend from the box to the maximum and minimum values
which are not farther than 1.5 times the interquartile range (IQR).

B Depicted are phosphopeptides from (A) that responded to NCS treatment in A-T cells. No significant elevation was observed in these phosphorylations in A-T cells
following continuous inhibition of DNA-PK. Box plots depict 19 phosphopeptides measured in two independent biological replicates. The box indicates the range from
first to third quartiles, and the central band represents the median. Upper and lower whiskers extend from the box to the maximum and minimum values which are
not farther than 1.5 time the interquartile range (IQR).

C The cluster depicted in (A) was enriched for ATM-dependent phosphorylations and the S/TQ phosphorylation motifs. Enrichment was tested using the Fisher exact
test implemented in Perseus (Tyanova et al, 2016b).

D STRING-Network representation of the proteins in the same cluster. Proteins phosphorylated on the S/TQ motif are marked with a yellow border, and the thickness of
connecting lines represents the combined score for interaction confidence according to STRING.

E Western blotting analysis of selected phosphorylations in the above cluster showing DNA-PKi-induced elevation.
F Temporal dynamics of DNA-PK-dependent attenuation of pS824/KAP-1.

Source data are available online for this figure.
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ATMi’s effect on its phosphorylation was largely lost at the later

phase of the DSB response (Fig 5C). Nevertheless, it did not demon-

strate strong ATR dependency at this time point, and only concomi-

tant inhibition of ATM and ATR led to complete loss of its

phosphorylation. We therefore suggest that this phosphorylation is

ATR-dependent only upon ATM inhibition. Notably, this ATR-medi-

ated compensation did not depend on NCS dose (Appendix Fig S3).

It should also be noted that this pattern was unique to a subset of

ATM substrates that was smaller than the one compensated for in

A-T cells, and was not demonstrated by ATM targets such as pS824/

KAP-1 or pS395/NUMA (Fig 5C), although pS824/KAP-1 did show

compensation in A-T cells (Fig 4F).

SRM confirms the patterns identified by shotgun proteomics

Our shotgun phosphoproteomic analysis revealed novel PIKK

targets and various patterns of PIKK-dependent phosphorylation in

response to genotoxic stresses. Results of high-throughput proteomic

analysis are usually validated by testing the dynamics of individual

proteins or PTMs using Western blotting analysis, as we did for

some phosphorylation targets. However, this validation strategy is

highly restricted by the availability of high quality phospho-specific

antibodies against the corresponding sites. SRM is a quantitative

mass-spectrometric technology that enables the validation of puta-

tive phosphorylations identified using high-throughput approaches,
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Figure 4. PIKK-dependent compensation for ATM absence in A-T cells.

A A subset of exclusive ATM-dependent sites in WT cells, which responded to neocarzinostatin (NCS) also in A-T cells. Their dependencies in A-T cells are shown.
B Dependencies of S/TQ phosphorylations within the same subset.
C The first time points at which “compensated sites” from (A) responded to NCS in WT and A-T cells are presented.
D Temporal kinase dependencies of the “compensated sites” in A-T cells. Shown are the numbers of "compensated sites" in A-T cells, which depended on each kinase at

the 20 and 240 min time points. The early ones depend mainly on DNA-PK, while the later ones—on ATR.
E STRING-Network representation of the proteins that were included in the early, DNA-PK-dependent compensation (purple) or the late, ATR-dependent compensation

(green). Proteins phosphorylated on the S/TQ motif are highlighted by yellow margins. The thickness of connecting lines represents the combined score for interaction
confidence according to STRING.

F Western blotting analysis confirming high-throughput results for selected ATM substrates.
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without the need for substrate-specific antibodies. This targeted

proteomic technique provides mass-spectrometric measurement of

predefined peptides with accuracy and reproducibility superior to

shotgun proteomics (Picotti & Aebersold, 2012; Picotti et al, 2013).

In order to validate specific phosphorylations and phosphorylation

patterns using SRM, we carried out a second, independent large-

scale experiment in which we treated WT (NL-550) and A-T (AT59RM)

cells with NCS in the presence of PIKK inhibitors, including combi-

nations of two inhibitors, and collected samples at 20 and 240 min

following NCS addition. Protein extracts were digested into peptides

and enriched for phosphopeptides, and samples were spiked-in with

specific heavy peptides to enable accurate quantification. We

applied this approach to 99 phosphopeptides—including known

DDR targets and control irrelevant sites that should not be modu-

lated in response to DNA damage (Table EV7). Importantly, the

SRM results were in agreement with the shotgun data, concerning

both the phosphorylation of individual proteins and the dynamic

patterns reflected in the shotgun experiments.

Thirty-eight sites were modulated in response to NCS in WT cells

(Table EV8). Seven of them were hyper-phosphorylated following

long inhibition of DNA-PK, among them pS9/HMGA1, pS183/

PPM1G, pS824/KAP1, pS243/ACINUS, and pS3205/DNA-PKcs

(Fig 6A, C, D, E and F). Out of 28 sites that were exclusively ATM-

dependent in WT cells, 17 were NCS-responsive in A-T cells as well.

Of these, two showed early-phase compensation for ATM absence

in A-T cells, which was DNA-PK-dependent, with pS824/KAP1

being a prominent example (Fig 6D). Thirteen sites demonstrated

late-phase compensation in A-T cells, which was ATR-dependent,

among them p140/RAP80, pS183/PPM1G, and pS824/KAP1

(Fig 6B–D). The compensated sites typically reached lower intensity

in A-T cells compared with WT cells. Of note, 11 sites that

responded to NCS in an exclusively ATM-dependent manner in WT

cells did not respond at all in A-T cells, as exemplified by pS243/

ACINUS and pS3205/DNA-PK (Fig 6E and F). Some of the

substrates that were compensated by ATR in A-T cells, such as

p140/RAP80, also exhibited ATR-dependent compensation in WT

cells upon ATM inhibition, which was evident in cells treated with

both ATMi and ATRi (Fig 6B). On the other hand, some substrates,

such as pS183/PPM1G, were compensated in A-T cells, but not in

WT cells under ATM inhibition, demonstrating the lesser scope of
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Figure 5. Compensation for chemical inhibition of ATM in WT cells.

A A group of exclusively ATM-dependent sites that were ATM-dependent 1 h after NCS addition and were still phosphorylated or dephosphorylated 4 h after treatment,
but were not affected by ATMi at that time point. Box plots depict 18 phosphopeptides measured in two independent biological replicates. The box indicates the
range from first to third quartiles, and the central band represents the median. Upper and lower whiskers extend from the box to the maximum and minimum values
which are not farther than 1.5 times the interquartile range (IQR).

B This group was enriched for sites that were compensated in an ATR-dependent manner in A-T cells. Box plots depict nine phosphopeptides measured in two
independent biological replicates. The box indicates the range from first to third quartiles, and the central band represents the median. Upper and lower whiskers
extend from the box to the maximum and minimum values which are not farther than 1.5 times the interquartile range (IQR).

C Western blotting analysis of pS343/NBS1, which is compensated upon ATM inhibition, and pS824/ KAP-1 and pS395/NUMA, which are not compensated under these
conditions.
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Figure 6. Representative SRM measurements of specific phosphorylation sites.

A–F Cells were either untreated (UT) or treated with neocarzinostatin (NCS) in the presence or absence of PIKK inhibitors. Intensities from three independent biological
replicates were normalized against reference synthetic standards and are depicted as mean � SEM.
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compensation upon chemical ATM inhibition compared with the

compensation upon ATM absence (Fig 6C).

To account for possible off-target effects of the ATM inhibitor

that we used, we tested the dynamics of 21 phosphopeptides in the

presence of another ATM inhibitor, KU55933 (Hickson et al, 2004),

applied to HeLa cells. Eighteen out of them were elevated in

response to NCS in both datasets, 18 and 17 of them showed ATM

dependency when tested with KU60019 or KU55933, respectively

(Fig EV3, Table EV9). ATM substrates that responded to NCS in A-T

cells are particularly interesting with regard to possible inhibitor off-

targets. Out of the 21 phosphopeptides, there were 11 KU60019-

inhibited phosphopeptides that responded to NCS in A-T cells, 10 of

these were inhibited also by KU55933. These results demonstrate

high correlation between substrates suppressed by both inhibitors

and largely reduce the possibility that our results were confounded

by inhibitor off-target effects.

Discussion

We explored the dynamics of the cellular phosphoproteome follow-

ing DSB induction and its dependence on the PIKKs, ATM, ATR,

and DNA-PK. The successive application of shotgun proteomics and

targeted proteomics enabled us to discover and extensively validate

new patterns of PIKK regulation and crosstalk (Fig 7). The pivotal

role of ATM, ATR, and DNA-PK in the cellular response to genotoxic

stress was strongly reflected in our results, and ATM remained the

dominant PIKK in the DSB response network. It was interesting to

identify among ATM targets in this network some ATR targets in the

response to replication stress.

We were intrigued by the phenomenon of enhanced and

sustained phosphorylation of certain ATM substrates upon chemi-

cal inhibition of DNA-PK. A similar observation was made also

upon prolonged inhibition of ATR in HU-treated cells. A simple

explanation could be that DNA-PK inhibition leaves many DSBs

unrepaired, causing persistent ATM-mediated phosphorylations.

Alternatively, this phenomenon might reflect negative regulation of

ATM by DNA-PK, which is relieved upon DNA-PK inhibition.

Indeed, such mechanism was recently reported (Finzel et al, 2016;

Zhou et al, 2017). Zhou et al (2017) showed that DNA-PK phos-

phorylates ATM on multiple sites, leading to attenuation of its

activity. They suggested that the excitatory effect of DNA-PKi on

ATM activity does not result from impaired activity of the NHEJ

pathway of DSB repair, since down-regulation of the genes encod-

ing central NHEJ players such as XRCC4 or LIG4 did not yield a

similar effect. A third possibility is DNA-PK-dependent activation

of one or more phosphatases. However, our finding that this

process involves sustained ATM activity argues against this mecha-

nism and favors the one based on DNA-PK-mediated attenuation of

ATM activity (Finzel et al, 2016; Zhou et al, 2017), further demon-

strating the delicate crosstalk between the PIKKs in maintenance of

genome stability.

An important question concerning the PIKKs’ role in the cellular

response to genotoxic stress is the extent of redundancy among

them. An extreme situation for testing such redundancy is provided

by A-T cells: ATM is absent from the outset in these cells and

DNA-PK and ATR function in an ATM-deficient environment. Do

they function differently than in ATM-proficient cells? The severe

clinical and cellular phenotype of A-T indicate that even if ATR/

DNA-PK-dependent compensation does occur, it is far from

substantial replacement of ATM. Our data do show that in A-T

cells, DNA-PK and ATR phosphorylate limited subsets of bona fide

ATM substrates, albeit not at the same kinetics and extent as ATM-

mediated phosphorylation. This phenomenon attests to a potential

of DNA-PK and ATR to act on ATM substrates, which is not imple-

mented when ATM is present. It has been demonstrated that

certain substrates can be phosphorylated by more than one PIKK

in vitro, despite being targeted by a single PIKK in cells. For exam-

ple, pS15/p53 is phosphorylated in vitro by both ATM and DNA-PK

(Lees-Miller et al, 1992), but after the induction of DSBs in cells

this site is not targeted by DNA-PK (Jimenez et al, 1999). pS251/

XLF is readily phosphorylated by DNA-PK in vitro, but is an ATM

target in cells (Yu et al, 2008). The balance between the action of

different PIKKs on the same substrates in WT as in A-T cells is

apparently affected by the degree of PIKK activation in response to

different stresses and their relative affinity to specific substrates in

response different stimuli. Presumably, ATM absence in A-T cells

alters this balance and allows the other two PIKKs to approach

targets they can phosphorylate but do not do so in the presence of

ATM. In this regard, it is interesting that ATM target sites phospho-

rylated by ATR in A-T cells were enriched for sites that were ATR-

dependent following HU in WT cells, but were not targeted by ATR

in NCS-treated WT cells. Thus, inherent capability of ATR that is

normally activated in response to other genotoxic stresses is

exploited in A-T cells. ATR-dependent compensation in ATM-null

cells might contribute to the extreme chemo- and radiosensitivity

observed in ATM-deficient cancer cells treated with ATRi (Weber &

Ryan, 2015).

Notably, chemical inhibition of ATM led to some ATR-dependent

compensation involving significantly fewer substrates taken care

of by ATR than in A-T cells. For example, of the two major ATM

substrates, pS343/NBS1 and pS824/KAP-1, which were phosphory-

lated by ATR in A-T cells, only the first one was phosphorylated

in an ATR-dependent manner in ATMi-treated WT cells. This

might reflect different rewiring of cellular signaling circuits follow-

ing short-term absence of ATM activity vs. permanent total lack of

ATM. It should also be noted that the physiological results of lack

of ATM and presence of inactive ATM in cells are extremely dif-

ferent, with the latter situation leading to a more severe cellular

and organismal phenotype. In mice, the Atm-knockout genotype is

viable with variable recapitulation of the A-T phenotype, while

expression of catalytically inactive Atm is embryonic lethal (Daniel

et al, 2012; Shiloh & Ziv, 2012; Yamamoto et al, 2012). This strik-

ing difference might stem from a more severe disruption of the

DDR by the presence of “kinase-dead” Atm at the damage sites

compared with lack of ATM altogether (Daniel et al, 2012; Shiloh

& Ziv, 2012; Yamamoto et al, 2012). Our findings suggest that

this could be due to the more limited compensation for an inac-

tive ATM, compared with the wider compensation for total

absence of ATM.

The limited compensation for ATM absence in A-T patients by

DNA-PK and ATR raises the possibility that without such compensa-

tion the A-T phenotype would have been more severe. It also

suggests that drugs that further enhance the action of DNA-PK and

ATR on ATM targets could potentially be used to alleviate some of

the symptoms of this disease.

ª 2020 The Authors The EMBO Journal e104400 | 2020 11 of 18

Sapir Schlam-Babayov et al The EMBO Journal



Materials and Methods

Cell culture

NL-550 (WT), AT59RM (A-T), and L-119 (A-T) lymphoblastoid cell

lines were grown in RPMI medium supplemented with 15% fetal

calf serum (FCS), penicillin, and streptomycin, at 37°C in 5% CO2

atmosphere. U2-OS and HeLa cells were grown in DMEM medium

supplemented with 10% FCS, penicillin, and streptomycin at 37°C

in 5% CO2 atmosphere.

Chemical treatments

NCS and HU (Sigma-Aldrich, St. Louis, MO, USA) were diluted in

phosphate-buffered saline (PBS) prior to addition to the culture

medium. The inhibitors against ATM, ATR, and DNA-PK (KU60019,

AZ20, and NU7441, respectively) were obtained from Tocris

Bioscience (Bristol, UK) and dissolved in DMSO prior to addition to

the culture medium. Unless otherwise specified, the chemicals were

added to the following final concentrations in the culture medium:

20 ng/ml NCS, 1 mM HU, 5 µM KU60019, 0.5 µM AZ20, and 5 µM

NU7441. All chemical treatments remained in the culture through-

out the experiments and were not washed.

Western blotting analysis

Cells were washed in PBS and subsequently lysed for 30 min at 4°C

in RIPA lysis buffer. Cell lysates were clarified by centrifugation,

and the protein concentration was determined using the Bradford

assay. Lysates were separated using SDS–PAGE and transferred onto

nitrocellulose or PVDF membranes. Membranes were then incu-

bated overnight at 4°C with primary antibodies diluted in Tween–

tris-buffered saline (TTBS) containing 1% bovine serum albumin

(BSA) and 0.02% azide.

Anti-ATM (cat #2873), anti-pS345/CHK1 (cat #2348), anti-pT68/

CHK2 (cat #2197), and anti-pS395/NUMA (cat #3429) antibodies

were purchased from Cell Signaling Technology (Cell Signaling

Technology, Beverly, MA). Anti-CHK1 (cat #ab80615), anti-pS1981/

ATM (cat #2152-1), and anti-pS2056/DNA-PK (cat #ab18192) anti-

bodies were purchased from Abcam (Cambridge, UK). Anti-PNKP

(cat #A300-258A), anti-pS824/KAP1 (cat #A300-767A), and anti-

pS114/PNKP (cat #BL3846) antibodies were purchased from Bethyl

p p p p p p p p p p
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dependent
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Figure 7. A model of PIKK collaboration in the cellular response to genotoxic stress, based on the results of this study.

ATM-proficient cells respond to DSBs with initial, robust ATM-mediated phosphorylation of numerous substrates, after which ATM’s activity is attenuated in a
DNA-PK-dependent manner. In ATM-deficient cells, some ATM substrates are targeted by DNA-PK at the early phase of the response, or by ATR in the later phase,
but to a lesser extent than in WT cells. ATR-dependent compensation for ATM absence in A-T cells includes significantly more substrates than that of DNA-PK
and involves sites that ATR usually targets in response to genotoxic stresses other than DSBs. A few of these can be targeted by ATR also when ATM is chemically
inhibited in WT cells.
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Laboratories (Montgomery, TX, USA). Anti-HSC70 (cat #sc-7298)

was purchased from Santa-Cruz Biotechnology (Dallas, TX, USA).

Anti-KAP1 (cat #610680) was purchased from BD Biosciences (San

Jose, CA, USA), and Anti-NBS1 (cat # NB100-143) was purchased

from Novus Biologicals (Littleton, CO, USA).

The membranes were then washed with TTBS buffer. This was

followed by incubation for 1 h with peroxidase-conjugated

secondary antibodies in TTBS containing 1% skim-milk, and subse-

quent washes in TTBS. Chemiluminescence was performed using

Luminata HRP substrate and detected either by films or by the

Fusion FX imaging system.

Discovery phosphoproteomics

Sample preparation
Samples were prepared in biological duplicates. Cells were collected

at the indicated time points following NCS or HU treatment, washed

twice in ice-cold phosphate-buffered saline, and spun down for

5 min at 1,000 g. Cell pellets were re-suspended in 8 M urea solu-

tion containing 0.1 M ABC, 0.1% RapiGest, and cocktail 2 and 3

phosphatase inhibitors. Disulfide bonds were reduced with tris(2-

carboxyethyl)phosphine (TCEP) at a final concentration of 10 mM

at 37°C for 30 min. Free thiols were alkylated with 20 mM iodoac-

etamide at room temperature for 30 min in the dark. The bicin-

choninic acid protein assay was used to measure protein

concentration. A volume corresponding to 1.1 mg total protein was

subsequently diluted to a final concentration of 1 M urea and

digested overnight at 37°C with sequencing grade modified trypsin

at a protein-to-enzyme ratio of 75:1. Peptides were desalted on a

C18 Sep-Pak cartridge and dried under vacuum.

Phosphopeptides were isolated from digested lysates with tita-

nium-di-oxide (TiO2) resin (GL Sciences, Tokyo, Japan) by a

protocol modified from (Bodenmiller et al, 2007; Zhou et al,

2013). The dried peptides were rigorously dissolved in a solution

of 80% acetonitrile (ACN) and 6% trifluoroacetic acid (TFA)

solution, followed by incubation with the TiO2 resin in rotation

for 1 h at room temperature. The resin was washed twice with

80% ACN/6% TFA solution, twice with 80% ACN/0.1% TFA,

and finally twice with 0.1% TFA. Phosphopeptides were eluted

with a 0.3 M NH4OH solution and desalted using C18 ultrami-

crospin columns. Prior to sample injection, samples were re-

suspended in a 2% ACN/0.1% FA buffer that contained the iRT

retention time kit (Biognosys AG, Schlieren, Switzerland; Escher

et al, 2012).

LC-MS/MS analysis
LC-MS/MS analysis was performed using an Easy-nLC 1000 HPLC

system coupled to the Orbitrap Elite mass spectrometer (Thermo

Fisher Scientific, Waltham, MA, USA). Peptides were separated by

reversed-phase chromatography on an Acclaim PepMap 100 RSLC

C18 column (150 × 0.075 mm, 2 Å particle size, Thermo Fisher

Scientific) at a flow rate of 300 nl/min. Gradient elution was

performed using mobile phases A (water/acetonitrile/formic acid,

98:2:0.15) and B (acetonitrile/water/formic acid, 98:2:0.15), with a

gradient from 5% to 30% B in 180 min. The mass spectrometer was

operated in data-dependent acquisition mode, with one full MS scan

in the orbitrap analyzer (scan range 350–1,600 m/z, resolution

120,000) followed by 15 dependent MS/MS scans in the linear ion

trap. Collision-induced dissociation was performed at 35% normal-

ized collision energy, and singly charged precursors or precursors of

unknown charge state were excluded for fragmentation. Dynamic

exclusion was enabled for 30 s.

Database search and label-free quantification
Raw data were analyzed with MaxQuant (Cox & Mann, 2008;

Tyanova et al, 2016a) software (version 1.5.3.5) and the Andromeda

search engine (Cox et al, 2011), with an FDR threshold of 0.01 (PSM

and phosphosite level), against the complete human UniProt data-

base. Minimal score for modified peptides was 40. For in silico

digestion, trypsin was used as the protease with a maximum of two

missed cleavages. The minimal peptide length was set to eight

amino acids. The peptide search included carbamidomethyl-cysteine

as a fixed modification and phosphorylation on serine/ threonine/

tyrosine, N-terminal acetylation, and methionine oxidation as vari-

able modifications. Peptide mass tolerance was set to 20 and

4.5 ppm for the first search and main search, respectively. A maxi-

mum of two gapped scans was allowed. The “match between runs”

feature was enabled.

Data processing and peptide filtering
MS2 spectra of phosphopeptides do not always provide enough

information to correctly localize the phosphate group. This poses

an even greater problem in experiments with a large number of

samples, which reduces the overlap of localized sites between

samples. We therefore considered phosphopeptides with the same

sequence and an identical number of phosphate groups and

acetylations as a single entity, and in cases in which several dif-

ferent phosphate localizations were identified for this entity, we

assigned to it the one with the highest probability. In cases in

which the same sequence with the same amount of phosphate

groups and acetylations appeared with different oxidation status,

we considered the form with the lowest number of missing

values.

The resulting data was analyzed using Perseus (Tyanova et al,

2016b) software. The data were filtered out for peptides identified in

the decoy database and potential contaminants. The log2 trans-

formed intensities were normalized to the median of each sample.

To examine which phosphopeptides responded to stimuli, we first

determined which responded to NCS or HU at each time point sepa-

rately. For this purpose, we filtered for phosphopeptides that had at

least two true values in either NCS/HU-treated or NCS/HU-

untreated samples of the specific time point. Missing values were

then imputed by replacing them with random, low intensity values

that formed a normal distribution with a width of 30%, and down-

shift of 1.9 standard deviations of the general data distribution. To

account for batch effect between the replicates, we next performed

principle component analysis (PCA) and subtracted the first compo-

nent. Student’s t-test was applied with a Benjamini–Hochberg FDR

of 5%, and only phosphopeptides that changed at least twofold

were considered. Phosphopeptides that were inconsistently phos-

phorylated and dephosphorylated in different time points were fil-

tered out of subsequent analysis. To determine PIKK dependence,

NCS/HU-treated samples were compared with samples treated with

NCS/HU in the presence of a specific kinase inhibitor, with a

Benjamini–Hochberg FDR of 5% and a minimal fold change of

twofold.
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Annotation enrichment analysis
Annotations enrichment was examined using Fisher exact test

implemented in Perseus (Tyanova et al, 2016b), with an FDR

threshold of 0.02. GO annotation enrichments were tested against

the entire set of phosphorylated proteins identified in this study as

background, and the enrichment was calculated relative to proteins,

meaning that phosphopeptides belonging to the same protein were

counted as one entity.

Motif analysis
Linear motif analysis was carried out using Fisher exact test imple-

mented in Perseus (Tyanova et al, 2016b), with an FDR threshold of

0.02, against the entire set of phosphopeptides identified in this

study as background. Only phosphorylation sites with localization

probability greater than 0.75 were considered for motif analysis.

Network analysis
The interaction network was generated by the STRING database

(Szklarczyk et al, 2019) and processed with Cytoscape (Shannon

et al, 2003). The network was filtered for interactions with a confi-

dence score higher than 0.4, with the intensity of the edges indica-

tive of the confidence score.

Targeted phosphoproteomics

Sample preparation
Samples were prepared in biological triplicates by a procedure simi-

lar to the one used to prepare the samples for discovery phospho-

proteomics, with the following modifications: From a starting

amount of 0.7 mg total protein mass, phosphopeptides were

enriched using TiO2 by a protocol modified from Bodenmiller et al

(2007) and Zhou et al (2013). Briefly, the dried peptides were

dissolved in an 80% acetonitrile (ACN), 2.5 % TFA, 1 M glycolic

acid solution, and then transferred to a 200 µl tip pre-loaded with

TiO2 and processed as described in (Zhou et al, 2013). The enriched

phosphopeptides were eluted, desalted, and re-suspended in a 2%

ACN/0.1% FA buffer that contained diluted synthetic reference

peptide mix (see below) and iRT retention time kit (Biognosys AG,

Schlieren, Switzerland; Escher et al, 2012).

The samples were analyzed on a 5500 QTRAP hybrid triple quad-

rupole/ion trap mass spectrometer (SCIEX, Framingham, MA, USA)

equipped with a nanoelectrospray ion source. Chromatographic

separation was performed by a nanoLC AS2 (SCIEX) coupled to a

15-cm (75 lm ID) fused silica emitter (MSwil, Zurich, Switzerland),

self-packed with prontoSIL C18 AQ 3 lm resin (WICOM, Heppen-

heim, Germany). Peptides were separated at a flow rate of 300 nL/

min, in a gradient of solvent A (98% water/2% ACN/0.1% FA) and

solvent B (98% ACN/2% water/0.1% FA) from 2% to 35% in

65 min (65 min gradient, 2–35%). The instrument was operated in

scheduled positive SRM mode at a unit resolution (0.7 m/z half-

maximum peak width) for both Q1 and Q3 analyzers. Unless further

optimized, collision energies (CEs) were calculated according to the

formulas: CE = 0.044 × m/z precursor + 5.5 and CE = 0.051 × m/z

precursor + 0.55, for doubly and triply charged precursor ions,

respectively.

The SRM experiment reported in Fig EV3 was conducted with

the following modifications to the procedure described above:

Samples were prepared as a single replicate and enriched for

phosphopeptides with Ti-IMAC beads (a generous gift from Dr.

Mingliang Ye, Dalian Institute of Chemical Physics, China).

Synthetic reference phosphopeptides were utilized for identification

and relative quantification unless otherwise specified in Table EV9.

Targeted assay generation
Targeted assays were generated using synthetic phosphopeptides

(Thermo Fisher) labeled with heavy isotopes at the C-terminal Lys

(+8 Da) or Arg (+10 Da) (unless otherwise mentioned in

Table EV7). The successful synthesis of each peptide was first con-

firmed by identification of the peptide in shotgun proteomic analy-

sis. Peptides were mixed in pools and analyzed on a 5500 QTRAP to

generate full MS2 fragment ion chromatograms of the y-ion and b-

ion series for the 2+ and 3+ precursors. For selected phosphopep-

tides, neutral loss (�98 Da) ions were also included in the transition

list. Skyline (MacLean et al, 2010) and Panorama (Sharma et al,

2014) were used to generate a library from the acquired full MS2

fragment ion chromatograms. For each synthetic phosphopeptide,

the 4-8 most intense fragment ions were selected for the targeted

assays, taking into account phosphorylation site localization.

Targeted data analysis
Skyline (MacLean et al, 2010) was used for targeted data analysis

(version 4.0.9.11707). SRM peak integration was manually con-

firmed. The reference synthetic standards were used to validate

peptide identity by analogy of chromatographic and fragmentation

properties (rdotp > 0.9), and interfered transitions were removed

for quantification. Relative quantification and statistical analysis

were performed using MSstats (Choi et al, 2014) (version 3.12.3)

with the following modifications to default parameters: Normaliza-

tion was performed by equalizing the medians of the reference

synthetic standards; Tukey’s median polish (TMP) was used as

summary method. We selected an adjusted FDR q-value of 0.05 as a

cutoff for significance.

The experiment described in Fig EV3 was analyzed with Skyline

(version 20.1.0.31). A twofold change was selected as a cutoff that

deems a phosphopeptide as regulated, and no further statistical

analysis was performed on those samples.

Data availability

The mass spectrometry proteomics data were deposited to the

ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al,

2019) partner repository (https://www.ebi.ac.uk/pride/) with the

dataset identifiers PXD015455, PXD020884.

Expanded View for this article is available online.
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