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AUTHOR’S VIEWS

It takes three to the DNA damage response tango
Sapir Schlam-Babayov , Yael Ziv, and Yosef Shiloh

The David and Inez Myers Laboratory of Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of 
Medicine, Tel Aviv, Israel

ABSTRACT
The DNA damage response is robustly activated by DNA double-strand breaks and controlled by three 
apical protein kinases of the PI3-kinase-related protein kinase (PIKK) family: ataxia-telangiectasia, mutated 
(ATM), ataxia-telangiectasia and Rad3-related (ATR) and DNA-dependent protein kinase (DNA-PK). 
Phosphoproteomic analysis reveals the relative share of these PIKKs in coordinating this network, and 
compensation by ATR and DNA-PK for ATM absence in the genetic disorder, ataxia-telangiectasia (A-T).
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Cells respond to genotoxic stress by activating an elaborate signal 
transduction network termed the DNA damage response 
(DDR).1 The DNA double-strand break (DSB) – a critical 
DNA lesion – robustly activates this network. Three PI3-kinase- 
related protein kinases (PIKKs) – ataxia-telangiectasia, mutated 
(ATM), ataxia-telangiectasia and Rad3-related (ATR) and DNA- 
dependent protein kinase (DNA-PK) – are apical regulators of 
this signaling cascade.2 ATM is best known for its role as the 
primary transducer of the DSB response, DNA-PK – for its 
prominent part in the nonhomologous end joining pathway of 
DSB repair, and ATR – for coordinating the replication stress 
response.2 Evidence suggests that the three PIKKs maintain 
complex relationships in the DSB response. Their central roles 
in maintaining genome integrity have made them attractive 
targets for cancer therapy.3,4 Germline null alleles of the ATM 
gene cause in humans the genome instability syndrome, ataxia- 
telangiectasia (A-T), and hypomorphic mutations in the genes 
encoding ATR and the catalytic subunit of DNA-PK lead to 
ATR-Seckel syndrome and severe combined immunodeficiency 
(SCID), respectively.5

We carried out a high-throughput, phosphoproteomic ana
lysis to determine the relative shares of the three PIKKs in the 
phosphoproteome dynamics that follow DSB induction.6 We 
dissected this response using chemical inhibitors of them, and 
the analysis was carried out in cell lines derived from healthy 
donors and A-T patients. A-T cells, which are devoid of ATM, 
were used to unravel possible compensatory responses of ATR 
and/or DNA-PK to ATM’s absence. The results of the high- 
throughput screen were extensively validated using a targeted 
proteomic technique, selected reaction monitoring (SRM). We 
also matched our results against a panel of 34 previous screens 
for DDR factors in an effort to highlight strong candidates for 
new DDR factors and thereby create a useful resource for their 
future, detailed investigations.

Crosstalk between the PIKKs was reflected in the data by 
a group of ATM substrates that showed sustained phosphor
ylation upon DNA-PK inhibition. We tied this phenomenon to 
the previously reported DNA-PK-mediated attenuation of 
ATM that occurs following direct phosphorylation of ATM 
by DNA-PK.7,8 An important question concerning the func
tional relationships between the PIKKs is whether they can 
take over each other’s role under certain circumstances. This 
question is particularly relevant to genetic disorders caused by 
loss or impaired function of these proteins, and to tumor cells 
in which their genes are mutated. The total absence of ATM in 
most A-T patients led us to ask whether ATR and DNA-PK 
operate differently when the third member of the trio is lack
ing. We found that while most ATM-dependent substrates in 
the DSB response in control cells indeed did not respond to 
DSB induction in A-T cells, some did respond in these cells in 
an ATR- or DNA-PK-dependent manner. The substrate group 
that is ATR-dependent in A-T cells is the bigger one and 
follows a slower kinetics compared to that in control cells. 
The portion that is ‘compensated’ by DNA-PK is smaller and 
follows a more rapid kinetics (Figure 1).

The ability of ATR and DNA-PK to act in A-T cells on 
substrates that they normally do not target suggests that different 
PIKK family members can potentially recognize the same tar
gets. There is, in fact, ample evidence that different PIKKs can 
phosphorylate the same substrates in vitro. However, phosphor
ylation in cells is determined and modulated by the physiological 
context, and is not promiscuous. Notably, the group of ATM 
substrates that were ‘compensated’ for by ATR in A-T cells after 
DSB induction was enriched for substrates that ATR usually 
targets in control cells in response to replication stress. We 
surmise that ATR’s ability to partially compensate for ATM 
absence might also contribute to the selective sensitivity of 
some ATM-null tumors to ATR inhibitors.3
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Interestingly, we observed certain ATR-dependent compen
sation also after inducing DSBs while ATM is chemically inhib
ited. However, in this situation, ATR’s compensatory activity 
spanned fewer targets than in A-T cells. It is important to note 
that the physiological situations conferred by ATM absence and 
ATM inhibition are markedly different. Striking evidence for 
this is the difference between the moderate phenotype of Atm- 
deficient mice and the embryonic lethality conferred in this 
organism by expression of catalytically inactive Atm.9,10 

Studies have shown that inactive ATM is recruited to DSB 
sites similarly to active ATM. Plausibly, the presence of cataly
tically inactive ATM in these sites attenuates the compensatory 
activity of ATR and DNA-PK that is observed in A-T cells, and 
this could contribute to a harsher cellular and organismal phe
notype when ATM is present but catalytically inactive.

Our study sheds light on the fine-tuned relationships 
between the three PIKKs in health and disease (Figure 1). 
These findings raise a question whether drugs that would 
enhance the ATR/DNA-PK-dependent compensation for 
ATM loss could be used to ameliorate A-T symptoms. The 
crosstalk between the PIKKs also has implications for the 
development of cancer therapy drugs that target these protein 
kinases. Further understanding of these relationships will affect 
both fields.

Abbreviations

A-T Ataxia-telangiectasia
ATM Ataxia-telangiectasia, mutated

ATR Ataxia-telangiectasia and Rad3-related
DDR DNA damage response
DNA-PK DNA-dependent protein kinase
DSB Double-strand break
PIKK PI3-kinase-related protein kinase.
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Figure 1. Potential mechanism for PI3-kinase-related protein kinase (PIKK) collaboration in the cellular response to genotoxic stress. In cells proficient for ataxia- 
telangiectasia, mutated (ATM), ATM responds rapidly to DNA double-strand breaks (DSBs) by phosphorylating numerous substrates. As the response progresses, ATM’s 
activity is attenuated in a manner dependent on the DNA-dependent protein kinase (DNA-PK). In ATM-deficient cells, many ATM-dependent branches of the DDR are 
missing, but some ATM substrates are targeted by ataxia-telangiectasia and Rad3-related (ATR) or DNA-PK. The compensation by DNA-PK occurs rapidly and 
encompasses fewer substrates, while the ATR-mediated compensation occurs later and involves a bigger subset of targets, many of which are normally targeted by 
ATR following replication stress. A fraction of the ATR-dependent compensation observed in A-T cells also occurs when ATM is chemically inhibited. Figure taken from 
Schlam-Babayov et al.6
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