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Abstract
The genetic disorder, ataxia-telangiectasia (A-T), is caused by loss of the homeostatic 
protein kinase, ATM, and combines genome instability, tissue degeneration, cancer 
predisposition, and premature aging. Primary fibroblasts from A-T patients exhibit 
premature senescence when grown at ambient oxygen concentration (21%). Here, 
we show that reducing oxygen concentration to a physiological level range (3%) dra-
matically extends the proliferative lifespan of human A-T skin fibroblasts. However, 
they still undergo senescence earlier than control cells grown under the same condi-
tions and exhibit high genome instability. Comparative RNA-seq analysis of A-T and 
control fibroblasts cultured at 3% oxygen followed by cluster analysis of differentially 
expressed genes and functional enrichment analysis, revealed distinct transcriptional 
dynamics in A-T fibroblasts senescing in physiological oxygen concentration. While 
some transcriptional patterns were similar to those observed during replicative se-
nescence of control cells, others were unique to the senescing A-T cells. We observed 
in them a robust activation of interferon-stimulated genes, with undetected expres-
sion the interferon genes themselves. This finding suggests an activation of a non-
canonical cGAS-STING-mediated pathway, which presumably responds to cytosolic 
DNA emanating from extranuclear micronuclei detected in these cells. Senescing A-T 
fibroblasts also exhibited a marked, intriguely complex alteration in the expression of 
genes associated with extracellular matrix (ECM) remodeling. Notably, many of the 
induced ECM genes encode senescence-associated secretory phenotype (SASP) fac-
tors known for their paracrine pro-fibrotic effects. Our data provide a molecular di-
mension to the segmental premature aging observed in A-T patients and its associated 
symptoms, which develop as the patients advance in age.
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1  |  INTRODUC TION

The stability of cellular DNA is challenged by DNA damaging agents, 
most of which are metabolic by-products such as reactive oxygen spe-
cies (ROS), and occasionally exogenous agents such as environmental 
chemicals and radiations. These agents induce tens of thousands of DNA 
lesions in a cell each day (Tubbs & Nussenzweig, 2017). The response to 
this ceaseless assault on genome integrity is the DNA damage response 
(DDR)—a broad, multi-tiered signal transduction network that activates 
lesion-specific DNA repair pathways while modulating numerous cellu-
lar circuits (Chatterjee & Walker, 2017). The rapid, highly structured, and 
fine-tuned DDR is vigorously activated by DNA double-strand breaks 
(DSBs) (Goldstein & Kastan, 2015). Genetic defects that ablate import-
ant DDR components lead to severe genome instability disorders (Taylor 
et al.,  2019). Among their hallmarks are progressive degeneration of 
specific tissues, cancer predisposition, and segmental premature aging, 
highlighting the genome instability-aging link. Importantly, combinations 
of sequence variations in DDR genes play a role in the broad range of 
morbidity in the general population, including differences in aging pace 
and aging-associated diseases (Yousefzadeh et al., 2021).

The autosomal-recessive genome instability disorder, ataxia-
telangiectasia (A-T) is caused by null alleles in the ATM gene 
(Savitsky et al., 1995), which encodes the ATM protein kinase. A-T 
is characterized primarily by progressive cerebellar degeneration, 
oculocutaneous telangiectasia, chronic lung disease, predisposition 
to malignancies, immunodeficiency, chromosomal instability, acute 
sensitivity to ionizing radiation (IR), and segmental premature aging 
(Rothblum-Oviatt et al., 2016). The premature aging component of 
A-T recently gained special attention, and probably contributes to 
many A-T symptoms (Aguado et al., 2022; Shiloh & Lederman, 2017).

ATM is a homeostatic serine–threonine kinase whose most docu-
mented role is mobilizing the complex DSB response by phosphorylating 
numerous substrates in its many branches (Shibata & Jeggo, 2021). ATM 
is activated by DNA DSBs (Bakkenist & Kastan, 2003) as well as by ROS 
(Guo et al., 2010), in its capacity as a player in the cellular response to 
oxidative stress. It also plays a role in maintaining mitochondrial homeo-
stasis and several other metabolic pathways (Lee & Paull, 2021).

Poor growth in culture of primary skin fibroblast lines from A-T 
patients was reported early on (Elmore & Swift, 1976; Hoar, 1975). 
However, it was subsequently found that the initial growth of A-T fi-
broblast lines at early passage levels was comparable to that of con-
trol cell lines, but A-T cells senesced much earlier than controls (Shiloh 
et al., 1982)—an observation that was subsequently confirmed Davis 
& Kipling, 2009 and references therein. The premature senescence of 
primary A-T fibroblasts was attributed to another hallmark of these 
cells—accelerated telomere shortening (Metcalfe et al., 1996).

Cellular senescence is a usually irreversible condition that in-
cludes cell cycle arrest, marked alterations in chromatin organization, 
genome stability, transcriptome dynamics, and numerous metabolic 

circuits, and a multi-faceted senescence-associated secretory pheno-
type (SASP) (Wiley & Campisi, 2021). Primary cell lines undergo rep-
licative senescence after certain passage levels (Hayflick, 1998), but 
senescence can also be induced by oncogene activation, oxidative or 
genotoxic stresses, mitochondrial dysfunction, nutrient deprivation, 
interference with proteostasis, cell cycle inhibition, and epigenetic 
modifiers (Shmulevich & Krizhanovsky, 2021). The SASP is highly vari-
able, dynamic and cell type-dependent, leading to the secretion of a 
broad variety of bioactive molecules including pro-inflammatory cy-
tokines, and other factors with paracrine effects. The SASP can thus 
enable senescent cells to markedly affect their tissue environment. 
While cellular senescence plays important roles in developmental and 
tissue repair processes and eliminates damaged cells from tissues, thus 
serving as a barrier against neoplasia, evidence is mounting that accu-
mulation of senescent cells in aging tissues is associated with tissue 
dysfunction, and aging-associated morbidity (Di Micco et al., 2021).

Accelerated cellular senescence in certain tissues might contribute 
to the complex, progressive A-T symptomatology. We asked whether 
the premature senescence of cultured A-T fibroblasts is similar to the 
replicative senescence (RS) of fibroblasts from control donors, only ac-
celerated, or it has other, unique characteristics. In view of ATM's role in 
maintaining the cellular redox balance, we asked whether bringing oxy-
gen concentration closer to physiological levels (Keeley & Mann, 2019) 
might relieve this phenotype. If not, would accelerated senescence of 
A-T cells under physiological oxygen levels still reflect the pathway 
dynamics characterizing senescing control cells? We addressed these 
questions by monitoring the growth and senescence parameters of A-T 
and control fibroblast lines at ambient versus 3% oxygen concentration, 
followed by comprehensive transcriptomic and pathway analyses.

2  |  RESULTS

2.1  |  The accelerated senescence of primary 
A-T fibroblasts is retained at physiological oxygen 
concentration

Six control and six A-T primary skin fibroblast lines were used in this 
study (Table S1). All donors were unrelated to each other. Western 
blotting analysis (not shown) indicated that all A-T cell lines were 
devoid of ATM protein, like in most A-T patients (Gilad et al., 1996), 
due to either homozygosity or compound heterozygosity for null 
ATM alleles (Table S1). We monitored growth rate and senescence 
readouts in three control and three A-T cell lines (Table S1), which 
were cultured at either ambient or 3% oxygen concentrations. 
Compared to ambient oxygen, 3% O2 improved the ability of both 
A-T and control cell lines to thrive and extended their lifespan in 
culture, with markedly higher improvement in A-T cells (Figures 1a 
and S1). Despite this general improvement, at 3% O2 A-T cell lines 
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still stopped proliferating earlier than control cell lines in terms of 
cumulative population doublings (CPD) or passage levels (Figures 1a 
and S1). At both oxygen levels, other proliferative readouts such as 
colony forming efficiency (CFE) and rate of DNA synthesis declined 
earlier in A-T cells compared to controls (Figure 1b,c). Furthermore, 
the fraction of senescence-associated β-galactosidase (SA-β-Gal)-
positive cells—a major senescence hallmark—increased earlier in 
A-T cells (Figure  1d). Two readouts of DNA damage and genome 

instability—amounts of γH2AX nuclear foci and appearance of cy-
toplasmic micronuclei—were reduced in both genotypes at 3% O2 
compared to ambient O2 but remained higher in A-T cells compared 
to controls (Figure 1e,f and S2). Collectively, these results suggested 
that, despite the enhancement of proliferation and the marked delay 
of cellular senescence conferred by growth in 3% oxygen, an inher-
ently premature senescence remained a prominent characteristic of 
primary A-T skin fibroblasts.

F I G U R E  1 Characterization of cellular senescence in primary skin fibroblasts from A-T patients and controls under physiological versus 
ambient oxygen concentrations. (a) Cumulative population doubling (CPD) curves of a control (Ctrl; a healthy donor) and an A-T fibroblast 
line as a function of time in 21% and 3% O2 concentrations. (b) Quantification of colony-forming efficiency of three control and three A-T 
fibroblast lines as a function of passage level, in 21% and 3% O2. (c) Quantification of EdU-positive cells in the same experiment as in B. (d) 
Quantification of SA-β-Gal-positive cells in the same experiment. (e) Amounts of γH2AX nuclear foci in the same experiment. (f) Amounts of 
micronuclei-positive cells in the same experiment. (t-test, n = 3).
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F I G U R E  2 Up-regulation of the interferon pathway in primary A-T fibroblasts senescing in 3% oxygen. (a) Schematic experimental 
workflow. (b) Gene expression cluster A1 (Figure S3) representing genes whose expression sharply rises in A-T cells around p. 13. The 
X-axis represents the different conditions defined by genotypes and passage levels. The Y-axis shows normalized gene expression levels. 
The red trend-line passes through the mean expression values corresponding to each condition, with STD error bars shown. Asterisk (*) 
indicates senescing cells. (c) Heat map of 19 selected, functionally significant genes included in Cluster A1. The figure shows the normalized 
(transcripts per kilobase million, TPM) expression level of each gene. Blue represents down-regulation, yellow represents up-regulation. 
The chosen genes are all identified as part of the interferon pathway or interferon targets. Asterisk (*) indicates senescing cells. (d) STRING 
protein–protein interaction (PPI) network of proteins encoded by genes in cluster A1. The node colors denote the log2 of expression 
fold change of the late passage level (p. 21) versus the early passage level (p. 5) in A-T cells. Red-circled nodes correspond to the genes 
present in the interferon-related heat map in C. The highlighted subnetwork corresponds to the densest region of the network according 
to the MCODE algorithm and is entirely part of the interferon pathway. (e) Global gene set enrichment analysis (GSEA) for Interferon and 
Interferon-related gene sets. Top panel are the GSEA plots. Below is an enrichment table, in which the enriched Hallmark gene set and 
normalized enrichment score (NES) are shown in columns 2 and 3, respectively. Adjusted p-value and number of leading-edge genes are in 
columns 4 and 5. Asterisk (*) indicates senescing cells. (f) A heat map of selected ISGs presenting their relative expression in A-T, control and 
IR-treated cells.
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F I G U R E  2  (Continued)
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F I G U R E  3  (Continued)
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Primary A-T fibroblasts exhibit accelerated telomere shortening 
(Metcalfe et al., 1996; Pandita, 2001). Notably, this characteristic was re-
tained under 3% oxygen (Figure S3). Since under this oxygen concentra-
tion A-T cells could reach considerably higher passage levels compared to 
under ambient atmosphere (Figure 1a), by the time they finally senesced 

their telomeres were markedly eroded (Figure S3). Notably, the rapid pre-
mature senescence of A-T fibroblasts under ambient oxygen, with telo-
meres considerably longer than those of cells growing under 3% oxygen, 
suggests that telomere shortening was not the primary cause of this pre-
mature senescence but rather alterations in various physiological circuits.
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F I G U R E  3 Altered ECM regulation and up-regulated SASP in senescing A-T fibroblasts. (a) Gene expression clusters A2 and A3. (b) A 
heat map of functionally significant genes included in clusters A2 and A3 (83 genes total, 62 from cluster A2 and 21 from A3). The figure 
represents the normalized (TPM) expression level of each gene. These genes were identified as part of the ECM. (c) STRING PPI networks 
corresponding to clusters A2 and A3. The two upper networks one includes genes only from i. cluster A2 and ii. cluster A3. The above 
iii. network is a superposition of both. The different colors of the nodes are based on log2 of the fold-change in gene expression at a 
late passage level (p. 21) versus early passage level (p. 5) in A-T cells. (d) GSEA plots and table for ECM and ECM-related gene sets. NES: 
normalized enrichment scores. (e) Representative heat map of SASP-related gene expression comparing A-T, control and IR-treated cells.
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    |  9 of 19HAJ et al.

2.2  |  Transcriptome dynamics in A-T fibroblasts 
senescing at physiological oxygen levels: Unique and 
common patterns

2.2.1  |  Generation of an RNA-seq dataset

RNA-seq analysis was carried out on three control and four A-T cell 
lines (Table S1). The cells were grown in 3% O2 and sampled at dif-
ferent passage levels that represent their genotype-specific senes-
cence progression (Figure 2a). In view of the presumed role of DNA 
damage in the accelerated senescence of A-T cells, we added to this 
analysis a commonly used standard of DNA damage-induced senes-
cence: three control fibroblast lines that had been irradiated with 
10 Gy of X-ray and subsequently allowed to senesce for 10 days 
(Figure  2a). The analysis encompassed a total of 19,792 genes 
whose expression was readily detected, of which 12,813 were 
protein-coding. Principal component analysis (PCA) of the entire 
gene set (n = 19,792) revealed global transcriptomic trends based 
on shared gene expression patterns (Figure S4A). It confirmed that 
the experimental conditions defined by genotype, passage level, 
and radiation treatment dominantly affected gene expression pat-
terns. Similarly, hierarchical clustering showed a marked separation 
of transcriptional patterns between genotypes, but the separa-
tion based on passage levels was less definite in the entire gene 
set (Figure  S4B). In order to retrieve DEGs in various conditions, 
we applied a multiple comparison test. A total of 2625 DEGs were 
identified (Table S2). Each comparison test was followed by a sepa-
ration criterion to filter out genes with unstable expression across 
replicates (see Methods). Finally, a total of 2299 DEGs were found 
to be significantly up- or down-regulated across the various experi-
mental conditions (Table S2). Using real-time PCR (qPCR) we vali-
dated the transcriptional dynamics reflected in the high-throughput 
analysis of several DEGs representing different functional groups 
(see below) (Figure S5). Further analysis was based on this DEG set 
unless noted otherwise.

2.2.2  |  Identification of gene expression patterns

Genes with similar expression patterns are often functionally re-
lated. We therefore clustered the genes in the final DEG set accord-
ing to shared temporal expression patterns across passage levels and 
genotypes. Twenty-eight clusters with distinct expression patterns 
were obtained and were divided into six groups according to their 
similarities (Figure S6).

2.2.3  |  Physiological pathways represented in gene 
clusters with A-T-specific expression patterns

Gene ontology (GO) enrichment analysis was used to reveal the 
corresponding physiological circuits in specific clusters. In cluster 
A1 (genes with expression levels sharply rising in A-T cells around 
passage level 13, Figures 2b and S6), a highly significant functional 
group represented the interferon (IFN) response, with classi-
cal IFN-stimulated genes (ISGs) (e.g., MX1, IFIT2, IFIT3, IFI44, and 
TNFAIP3) strongly induced (Figures 2c and S7A; Table S3). Imposing 
these genes onto a protein–protein interaction (PPI) network dem-
onstrated extensive interactions among their protein products 
(Figure 2d). The results were further corroborated by a global gene 
set enrichment analysis (GSEA) using all protein-coding genes in the 
dataset (Figure 2e). Applying GSEA to low versus high passage A-T 
cells as well as high-passage A-T versus high-passage control cells 
showed enrichment of the IFN response and high expression of 
several ISGs (MX2, OAS2, OAS3, IFIT1, DDX58, TAP1, USP18, ITGAV, 
BST2, ISG15, and ISG20) as well as genes encoding the pattern rec-
ognition receptor (PRR) effectors (STAT1 and IRF7) that regulate 
the expression of ISGs (Figures 2e,f and S7A). These observations 
were confirmed using a public dataset (GEO accession GSE35347) 
(Nayler et al., 2012). In that study, the authors used human primary 
skin fibroblasts from controls and A-T patients growing in ambi-
ent oxygen concentration, to study the effect of their ATM geno-
type on their conversion to pluripotent stem cells. We performed 
a GSEA analysis on that dataset (Figure S8). Gene expression data 
were clustered using a UMAP analysis, illustrating the quality and 
relevance of these data (Figure S8A). The interferon response was 
found as a top hit in this GSEA analysis (Figure S8B), confirming the 
link between ATM depletion and the interferon response pathway. 
Indeed, elevated expression of the majority of these ISGs in se-
nescing cells was previously documented ([Mullani et al., 2021] and 
references therein). Interestingly, only a few of them were mod-
erately increasing in senescing control cells (Figures 2f and S7A). 
Therefore, these findings highlight a feature of senescing cells 
that is profoundly expressed in A-T cells senescing under physi-
ological O2 concentration. Strikingly, IFNs themselves were not ex-
pressed in A-T fibroblasts. The robust activation of IFN response 
along with the ISGs activation in the absence of IFN expression 
was also observed in a previous study on the premature aging dis-
ease, Hutchinson-Gilford progeria syndrome (HGPS) (Kreienkamp 
et al., 2018), suggesting that the upregulation of ISGs in senesc-
ing A-T fibroblasts, similar to HGPS fibroblasts, is probably a cell-
intrinsic and IFN-independent process.

F I G U R E  4 Part of the SASP is down-regulated in senescent A-T fibroblasts under physiological oxygen concentrations. (a) Gene 
expression cluster B1. (b) A heat map of 33 SASP-related genes included in cluster B1. (c) STRING PPI network of the proteins encoded 
by the genes in cluster B1. The different colors of the nodes are based on log2 of the fold-change in gene expression of A-T cells at early 
passage (p. 5) versus control cells at early passage (p.5). The highlighted sub-network corresponds to the densest region of the network 
according to the MCODE algorithm, which represents parts of the TNF-alpha signaling via NF-κB and the cellular response to chemokines. 
(d) Complementary GSEA for the SASP-related NF-κB gene set.
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10 of 19  |     HAJ et al.

F I G U R E  5 Global GSEA identifies enrichment patterns of p53 target genes. (a) GSEA plots and table related to p53 target genes. 
Asterisks (*) denote senescing cells. (b) Heat maps showing expression levels of selected genes in p53-mediated signaling. The heat map 
on the left represents a union of 105 leading-edge genes and the right map includes 33 of the leading-edge genes that passed DE and 
separation tests. The figure is based on normalized Transcripts per Kilobase Million (TPM) gene expression levels. Asterisks (*) denote 
senescing cells.
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    |  11 of 19HAJ et al.

Other notable clusters were A2, which included genes whose ex-
pression rose in senescing A-T cells (Figures 3a,b and S6), and A3, A4, 
and C3 with genes whose expression declined in senescing A-T cells 
(Figures 3a,b and S6). Surprisingly, both the up- and down-regulated 
genes in these clusters take part in similar processes, mostly related 
to extracellular matrix (ECM) remodeling and organization (Figure 3b 
and Table S3). Furthermore, the PPI map that corresponds to a com-
bined list of the up- and down-regulated ECM genes shows that the 
protein products of these genes all fall into the same interaction 
map (Figure 3c), suggesting that they are functioning and interacting 
together. The ECM genes include those encoding for insoluble and 
structural components (collagens and laminins) as well as soluble and 
secreted factors (TIMP3, TGFb2, IGFBP7, LIF, IL11, and TGFb2) and 
shed receptors (PTGER3, ITGB1/5, and ITGA3/6) (Figure  3b). The 
ECM alterations in A-T cells were also reflected on a global scale 
using GSEA (Figures 3d and S7B). Interestingly, all the GSEA com-
parisons pointed to enrichment of the epithelial-to-mesenchymal 
transition (EMT) in senescing A-T cells (Figure 3d), which was pre-
viously observed in A-T cells in ambient oxygen (GEO GSE35347 
dataset; Figure S8C). EMT is a process that reflects massive ECM 
deposition that is known to be enhanced by the SASP and is recog-
nized as a key driver of age-related fibrosis and tumorigenesis (De 
Blander et al., 2021). Indeed, many of the up-regulated ECM genes 
are also part of the SASP (LIF, DKK1, SPP1, TGFB2, IL11, and IGFBP7; 
Figure 3b). Increased expression of these SASP genes in senescing 
cells has been documented, and prematurely senescing A-T cells 
seem to be no exception. Elevated expression of additional SASP 
genes in A-T cells was also observed when we looked at the entire 
dataset (e.g., ADAMTS12/14, CCN2, SERPINE1, TNFRSF12A, IGFBP2, 
BDNF, SFRP1, STC2, BMP2, IL32, IL1B, IL6, FGF2/5, NRG1, CCL2, CCL5, 
HBEGF, FAS, and ICAM1) (Figures 3e and S7B). Expression of some of 
the SASP factor genes was moderately or highly rising also in con-
trol cells at advanced passage levels, or after irradiation, but some 
of them were specific for A-T cells and may be part of their unique 
SASP profile (Figures 3e and S7B).

On the other hand, other pro-inflammatory SASP genes were 
constitutively repressed in A-T cells (Cluster C3, Figure 4a). That is, 
while their expression level was down-regulated as the control cells 
progressed through passages and in response to IR, it was completely 
repressed in A-T cells already at the early passages. Interestingly, the 
majority of them belong to the CXCL chemokine family (e.g., CXCL1, 
CXCL2, CXCL3, CXCL5, CXCL6, and CXCL8) (Figure 4b), and their en-
coded proteins were highly interacting (Figure  4c). GSEA analysis 
on A-T versus control cells at an early passage level showed down-
regulation of the NF-κB signaling pathway (Figure 3d). Importantly, 
these SASP factors were gradually declining in control cells as they 
advanced in passage levels and were repressed upon radiation-
induced senescence (Figure 4a). Overall, the results demonstrated 
a unique SASP in prematurely senescing A-T fibroblasts growing 
in physiological oxygen concentrations, along with deregulation of 
genes encoding ECM components.

Using GSEA, we examined the behavior of genes in the p53-
mediated response pathway in our dataset. Several p53-target genes 

were up-regulated in a passage-dependent manner in both A-T and 
control cells (Figure 5a), indicating involvement of the p53 pathway 
in senescence progress in both genotypes. Similar results were ob-
tained in A-T cells in the GEO GSE35347 dataset (Figure S8D)—a no-
table finding in view of the absence in A-T cells of the ATM protein, 
p53's major upstream regulator in the response to DSBs. A closer 
examination of these genes revealed many p53 target genes includ-
ing the p21Wai1/CiP1 protein, a pleiotropic inhibitor of cyclin/cyclin-
dependent kinase complexes that mediate cell cycle progression 
(Figure  5b). These results suggest that the p53-p21 axis might be 
activated in senescing A-T cells growing at low oxygen levels, but 
with a unique gene expression signature.

Another senescence axis is the 16INK4a–pRb pathway (Di Micco 
et al.,  2021). Increasing expression of the CDKN2A and CDKN2B 
genes encoding the p16 and p15 proteins, respectively, was ob-
served in senescing control and A-T cells but less so in irradiated 
cells. Similarly, RB1 expression rose during senescence in both geno-
types but remained relatively low following irradiation. These results 
suggest involvement of the 16INK4a–pRb axis in mediating the cell 
cycle arrest in both A-T and control cells undergoing senescence, 
and points to the similarity of replicative senescence in control and 
A-T cells, which is distinctive from that of IR-treated cells, which re-
lies heavily on the activation of the p53–p21 axis.

2.2.4  |  Overall comparison of 
transcriptomic patterns

The irradiated control cells allowed us to compare the transcriptomic 
dynamics associated with RS at 3% oxygen and IR-induced senes-
cence (IRIS) of these cells. When we compared the transcriptomes 
of ‘young’ (passage 5) versus senescing (passage 35) control cells, 
we identified 968 DEGs (415 up-regulated and 553 down-regulated). 
Similar comparison of the vigorously growing, early passage control 
cells and the same cells senescent after irradiation identified 817 
DEGs (501 up-regulated and 316 repressed). The DEG lists shared 96 
up-regulated (Figure 6a) and 94 down-regulated genes (Figure 6b), 
which we regarded as a core of senescence-associated transcrip-
tomic signatures. These core signatures were used in global GSEA 
comparing actively growing ‘young’ A-T cells (passage 5) and senesc-
ing A-T cells (passage 21). Importantly, both parts of this core (up- 
and down-regulated genes) were significantly enriched in this GSEA 
(Figure 6c,d), and the enrichment directions (up- or down-regulation) 
were similar in control and A-T cells. These results further demon-
strate that the transcriptome dynamics in prematurely senescing A-T 
cells is similar in many respects to that of RS or IRIS in control cells. 
Notably, both parts of this core (up-  and down-regulated genes) 
were significantly enriched when we compared A-T cells at passage 
21 with control cells at the same passage (data not shown), highlight-
ing the premature aspect of the senescence of cells devoid of ATM.

We wondered how the current A-T data obtained at 3% O2 
would compare with senescence signatures obtained in senescing 
human cells grown at ambient oxygen. For this purpose, we carried 
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out a parallel GSEA using a previous comprehensive dataset obtained 
in human fibroblasts, HCA2 cells, keratinocytes, and melanocytes 
growing in ambient oxygen (Hernandez-Segura et al.,  2017). The 

senescence-associated core signature in that dataset was subdivided 
into up- and down-regulated gene sets. Here too, GSEA showed the 
significant enrichment of the Hernandez-Segura et al.  (2017) core 
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signature in our dataset, in similar directions (up- or down-regulated) 
(Figure 6c,d). This result suggests that the senescence of our cells at 
3% oxygen shares common features with that observed at ambient 
oxygen.

We then turned to genes whose expression patterns are not in-
cluded in the shared portions of the Venn diagrams in Figure 6a,b. 
Their expression patterns were therefore specific to either RS or 
IRIS. The RS- and IRIS-specific gene sets were used in global GSEA 
comparing passages 5 and 21 of A-T cells. The results indicated that 
both up- and down-regulated genes generally behaved similarly in 
senescing A-T cells (Figure  6e). Interestingly, genes up-regulated 
in RS showed higher enrichment in A-T cells (NES = 3.37) than IRIS 
up-regulated genes (NES = 2.28). Similarly, down-regulated genes in 
RS were also down-regulated in senescing A-T cells at higher signif-
icance (NES = −2.26) than down-regulated IRIS genes (NES = −2.07). 
This analysis therefore revealed closer transcriptomic proximity be-
tween senescing A-T cells and control cells in RS compared to irra-
diated control cells.

Collectively, the results suggest that the transcriptomic dynam-
ics in A-T cells senescing prematurely at 3% O2 shares patterns with 
RS and IRIS of control cells at both physiological and ambient oxygen 
levels, with higher similarity to RS.

3  |  DISCUSSION

Understanding many A-T symptoms remains a challenge, particu-
larly in view of ATM's expanding roles in cellular metabolism (Lee & 
Paull, 2021). The contribution of premature aging to A-T symptoma-
tology presumably increases as the patients advance in age (Aguado 
et al., 2022; Shiloh & Lederman, 2017). The premature senescence 
of A-T fibroblast lines probably represents this component of the 
disease in the culture dish. A major difference between the in vivo 
tissue environment and the incubator setting is the oxygen concen-
tration (Keeley & Mann, 2019). The extended lifespan of primary cell 
lines obtained by lowering the surrounding oxygen concentration is 
an established observation (Chen et al., 1995; Parrinello et al., 2003). 
The combination of elevated endogenous DNA damage and im-
paired redox balance, both emanating from ATM's absence, is proba-
bly an important driver of the accelerated senescence of primary A-T 

fibroblasts growing in ambient oxygen concentration. Indeed, the 
improved lifespan and proliferation rate under reduced oxygen level 
was relatively higher in A-T cells than in control cells, but a marked 
difference still remained between the two genotypes with regard to 
lifespan until senescence, suggesting additional causes of this funda-
mental phenotype of A-T fibroblast lines. We therefore undertook to 
identify cellular pathways at the core of this A-T phenotype without 
its exacerbation by ambient oxygen levels. We asked whether the 
premature senescence of primary A-T fibroblasts at 3% O2 exhibits 
similar characteristics to those of replicative senescence of control 
cells, which occurs at later stages of growth in culture, or whether 
A-T cells might show different senescence-associated reflected in 
transcriptomic patterns.

The predominant group of ISGs, whose expression rose in se-
nescing A-T cells, does indeed reflect a well-documented compo-
nent of replicative senescence (Frisch & MacFawn, 2020). Notably, 
the rise in ISG expression was more moderate in control cells, em-
phasizing their vigorous expression in senescing A-T cells. A crucial 
inducer of the interferon response is the cGAS-STING signaling 
axis, whose major canonical activator is cytoplasmic DNA, which 
can be generated by excessive DNA damage (Ritchie et al., 2022). A 
primary mechanism leading to the presence of genomic DNA frag-
ments in the cytosol is micronuclei (MN) formation during mitosis. 
MN eventually rupture spilling their DNA content into the cytosol 
thereby activating the cGAS-STING cytosolic DNA-sensing path-
way (Bakhoum et al., 2018; Dou et al., 2017; Harding et al., 2017; 
MacDonald et al., 2023). Indeed, we observed elevated numbers of 
micronuclei in our senescing A-T fibroblast lines, under both oxy-
gen concentrations. Accumulation of cytoplasmic DNA and subse-
quent activation of cGAS-STING, along with interferon production 
and ISGs activation, were previously observed in A-T cells growing 
under ambient oxygen Aguado et al., 2021 and references within. 
Moreover, pharmacological inhibition of either cGAS or STING in 
A-T brain organoids ameliorated many senescence signatures and 
improved neuronal synaptic activity and survival in these organoids 
(Aguado et al., 2021).

Importantly, in our experiments, the expression of interferon 
genes themselves was not elevated in senescing control or A-T fibro-
blasts despite the elevation of ISGs expression. Notably, a previous 
study showed that hypoxia led to transcriptional and translational 

F I G U R E  6 Senescent A-T cells exhibit replicative senescence-like gene expression signature. (a) Venn diagram showing the overlap 
of differentially up-regulated genes in control cells undergoing RS or IRIS. (b) Venn diagram showing the overlap of differentially down-
regulated genes in the same cells as in A. (c) GSEA plots for senescent A-T cells (p. 21) compared to proliferative A-T cells (p. 5). The blue 
curve represents the “RS-IR shared genes up” signature from the overlap region in (a) and the red curve represents the Hernandez-Segura 
et al. (2017) up-regulated senescence signature; both are positively enriched (up-regulated) in senescing A-T cells. (d) GSEA plots comparing 
senescent A-T cells (p. 21) compared to proliferative A-T cells (p. 5). The “RS-IR shared genes down” signature from the overlap region in 
(b) (blue line) and the Hernandez-Segura down-regulated senescence signature (red line) are both negatively enriched (down-regulated) in 
senescing A-T cells. (e) GSEA plots for senescent A-T cells (p. 21) compared to proliferative A-T cells (p. 5). The type-specific up-regulated 
signatures in senescence (“IR-up” or “RS-up”) were derived from the non-overlapping parts of the Venn diagram in (a). The “RS-up” signature 
(blue line) shows a greater positive correlation (NES = 2.79, Adjusted p-value = 1.33E-10) than the “IR-up” signature (red line) (NES = 2.1, 
Adjusted p-value = 1.33E-10). (f) GSEA plots for senescent A-T cells (p. 21) compared to proliferative A-T cells (p. 5). The type-specific down-
regulated signatures in senescence (“IR-down” or “RS-down”) were derived from the non-overlapping parts in the Venn diagram in (b). The 
“RS-down” signature (blue line) shows a greater negative correlation (NES = −2.81, Adjusted p-value = 1.33E-10) than the “IR-down” signature 
(red line) (NES = −2.22, Adjusted p-value = 3.99E-10).
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down-regulation of the interferon genes (Miar et al., 2020). The ca-
nonical pathway downstream of interferons finally culminating in 
ISGs activation involves the stimulation of the interferon receptors, 
IFNAR1/IFNAR2, and subsequent activation of the STAT1/2 proteins 
(Borden et al., 2007). Importantly, our data do show elevated STAT1/
interferon-like response in addition to ISG expression in senescing 
A-T cells. Similarly, primary fibroblasts from Hutchinson-Gilford 
progeria (HGP) patients were found to exhibit a robust interferon-
like response, but the interferons themselves were not expressed 
in these cells. Furthermore, the cGAS-STING pathway could acti-
vate STAT1 and upregulate the ISG expression in HGP cells via a 
cell-intrinsic non-canonical pathway that was independent of inter-
ferons expression (Kreienkamp et al., 2018). Collectively, our find-
ings suggest that in A-T cells growing under 3% oxygen, an intrinsic 
non-canonical activation of STAT1/interferon-like response may act 
downstream of cGAS-STING, ending in ISG induction. Given the in-
volvement of the cGAS-STING pathway in inflammation, senescence 
and disease, inhibitors of cGAS (Lama et al., 2019) or STING (Haag 
et al., 2018) could potentially be used to treat age-related chronic 
inflammation in A-T patients.

Another major functional group of genes that was modulated in 
a distinct manner in senescing A-T cells was the ECM. Aberrant ECM 
deposition has been observed in senescent cells, and contributes to 
various age-related pathologies, including chronic fibrotic diseases, 
and cardiovascular diseases (Blokland et al., 2020; Levi et al., 2020). 
Importantly, while certain ECM genes were sharply down-regulated in 
senescing A-T fibroblasts, many others exhibited enhanced expression 
as A-T cells were advancing towards senescence. Moreover, the pro-
tein products of both up-regulated and down-regulated genes in this 
group function in the same processes, suggesting severe disarray in 
ECM dynamics in these cells. These proteins take part in the formation 
of insoluble structural factors (e.g., collagens) as well as soluble and se-
creted factors. Importantly, several soluble ECM components are also 
SASP factors (Birch & Gil, 2020; Roger et al., 2021), and indeed among 
the up-regulated genes were those encoding the SASP factors, DKK1, 
SPP1, CCN2, the pro-fibrotic TGFβ2 factor, and the TGFβ downstream 
effectors, SERPINE1, IL11, and IGFBP7 (Han et al., 2022). In addition 
to promoting senescence in a paracrine manner, TGFβ2, IL11, and 
SERPINE1 can promote epithelial to mesenchymal transition (EMT) 
and fibrosis [reviewed in (Lovisa, 2021)].

While the expression of several SASP genes rose in senescing A-T 
cells, that of other pro-inflammatory SASP genes remained stably 
low in senescing control and A-T cells as well as the irradiated cells. 
A prominent class in this group was the CXCL chemokine family, 
which is often over-expressed in senescent cells (Coppe et al., 2010; 
Lopes-Paciencia et al.,  2019). Notably, the SASP composition is 
highly heterogeneous among cell types and reflects epigenetic and 
environmental variations (Hernandez-Segura et al., 2018). The SASP 
pattern that we observed might characterize fibroblasts grown at 
physiological oxygen concentrations. Interestingly, two recent stud-
ies in murine cultured cells and tissues showed that low oxygen levels 
or treatment with hypoxia-mimetic compounds reduces the activ-
ity of the transcription factor NF-κB and the secretion of several 

downstream pro-inflammatory SASP factors (Seno et al., 2018; van 
Vliet et al., 2021), and expression of the CXCL family is indeed reg-
ulated by NF-κB (Coppe et al., 2010; Lopes-Paciencia et al., 2019).

Genes encoding SASP factors, such as DKK1, SPP1, and IGFBP7, 
were up-regulated in our senescing A-T fibroblasts. These genes 
are driven by p53—another apical regulator of cellular senescence 
(Lopes-Paciencia et al.,  2019) via its downstream effector, p21, 
which can provoke a specific type of SASP independently of NF-κB 
(Sturmlechner et al., 2021). Of note, p53 is considered a negative reg-
ulator of NF-kB-dependent pro-inflammatory SASP genes (Lopes-
Paciencia et al., 2019). Thus, under physiological oxygen levels, the 
NF-κB-mediated secretome might be inhibited in senescing A-T cells 
while p53-dependent pathways are up-regulated. Collectively, these 
findings highlight the importance of the surrounding oxygen con-
centration as determinant for pro-inflammatory SASP expression 
and composition.

In addition to its involvement in the SASP, p53 is a key regulator 
of the cell cycle checkpoints that are induced by DNA damage (most 
notably after DSB induction), following its ATM-dependent activa-
tion and stabilization. p53 acts in this cardinal DDR pathway in its 
capacity as transcription regulator (Vaddavalli & Schumacher, 2022). 
Prolonged cell cycle arrest may lead to senescence (Sheekey & 
Narita, 2021). A central p53 target gene in this pathway is CDKN1A, 
which encodes the CDK inhibitor, p21WAF1/CIP1. Accordingly, p21 lev-
els were markedly increased in our irradiated control cells, and this 
pathway was also up-regulated in unirradiated, senescing A-T cells, 
suggesting that accumulation of DNA damage plays a role in their 
premature senescence.

Another pathway with a central role in cellular senescence is the 
16INK4a–pRb signaling axis (Di Micco et al., 2021). Interestingly, ex-
pression of the genes encoding p16 and p15 (CDKN2A and CDKN2B, 
respectively) as well as the RB1 gene, was elevated in both senescing 
A-T and control cells but not in the irradiated cells. This result sug-
gests that the premature senescence of A-T fibroblasts shares driv-
ing pathways with RS of control cells, which are not activated during 
the rapid senescence induced by acute DNA damage.

In sum, the transcriptome dynamics of A-T cells showed greater 
similarity to that of replicative senescence of control cells than to 
that of irradiated cells. Furthermore, this dynamics showed strong 
similarity to the transcriptome of control human fibroblasts senesc-
ing in ambient oxygen concentration. This means that in physiolog-
ical oxygen concentration, prematurely senescing A-T fibroblasts 
mobilize gene expression dynamics that is basically similar to that of 
the common replicative senescence observed under ambient oxy-
gen. We conclude that the accelerated senescence of A-T skin fibro-
blasts is a major feature of their cellular phenotype, which is partly 
alleviated by physiological oxygen concentration but still persists as 
an inherent characteristic of these cells. It exhibits several molecular 
characteristics of RS but also unique transcriptomic patterns, most 
notably the complex ECM-associated gene expression pattern, the 
interferon-like response, and a unique SASP gene expression. We 
find that in the absence of ATM, the p53-p21, and p16-RB1 path-
ways are preserved but lead to a unique gene expression signature. 
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Notably, several SASP factors whose genes are up-regulated in se-
nescing A-T cells can induce senescence in a paracrine manner and 
promote EMT–a major process during fibrosis and tumorigenesis. 
Thus, accumulation of senescent cells in body tissues of A-T patients 
probably underlies at least part of the premature aging observed in 
these individuals as they advance in age.

4  |  MATERIAL S AND METHODS

4.1  |  Human primary fibroblast cultures and 
procedures

Human skin fibroblasts from A-T patients and unrelated donors 
unaffected with A-T were grown in complete Dulbecco's modified 
Eagle's medium (DMEM) at 37°C in 5% CO2 and ambient (21%) or 
3% O2. Growth curves were constructed by seeding in triplicates 
3.5 × 104 cells/well in 12-well plates and counting them after trypsi-
nization every 24 h for 5 consecutive days. The number of popu-
lation doublings (PDs) per passage was obtained by counting the 
cells after trypsinization according to the formula, PD = (Nf/N0)log2, 
where N0 is the number of the initially seeded cells and Nf is the 
number of the cells at the following trypsinization. The number of 
CPD was calculated as the sum of PDs over passages. Colony for-
mation efficiency was measured according to (Shiloh et al.,  1982), 
and immunoblotting—according to (Jachimowicz et al.,  2019). SA-
β-gal activity was monitored using the Senescence Detection Kit 
(Biovision). SA-β-Gal–positive cells were scored in multiple fields. At 
least 100 cells were identified per condition.

EdU incorporation to cellular DNA was monitored using a Cell 
Proliferation Assay Kit (Millipore). Edu-positive cells in randomly se-
lected fields were counted using the ImageJ software (NIH). At least 
100 cells were scored for each condition.

4.2  |  Telomere length analysis

In-gel hybridization analysis was done as previously described 
(Lamm et al.,  2009). Briefly, genomic DNA was digested with the 
HinfI restriction endonuclease, electrophoresed, denatured, and an-
alyzed using in-gel hybridization with a telomeric probe, (AACCCT)3, 
to visualize the telomeric restriction fragments (TRFs). Mean TRF 
length (MTL) and standard deviation were calculated using TeloTool 
(Gohring et al., 2014).

4.3  |  RNA sample preparation and RNA sequencing

Total RNA was isolated using Qiazol Lysis Reagent (Qiagen) 
and purified using the MiRNeasy system (Qiagen). RNA purity 
(260/230 and 280/260 OD ratios) was measured using Nanodrop 
Spectrophotometer (Nanodrop 1000). RNA concentration was 
measured using Fluorometer (Thermo Scientific), and RNA integrity 

was evaluated using the Agilent 4200 TapeStation system (Agilent 
Technologies). RNA-seq was carried out by Novogene using the 
Illumina NovaSeq 6000 Sequencing System.

4.4  |  Real-time PCR (RT-qPCR)

One μg of total RNA was used to synthesize the corresponding 
cDNA using the GoScript™ Reverse Transcriptase Kit (Promega). 
RT-qPCR was performed using the Power SYBR™ Green PCR 
Master Mix (Thermo) and the StepOne RT-qPCR System (Thermo). 
Primers are listed in Table  1. The reactions were carried out in 
triplicates and averaged, and computaional analysis was done 
using the delta–delta Ct formula with the GAPDH gene as normal-
izing control.

4.5  |  Quality control and read processing

Quality control checks on the raw sequencing data (FASTQ files) 
were performed using FastQC v0.11.9 (Andrews,  2010). Adaptor 

TA B L E  1 RT-PCR primers.

Gene Orientation sequence

OAS2 Forward GCTTC​CGA​CAA​TCA​ACA​GCCAAG

Reverse CTTGA​CGA​TTT​TGT​GCC​GCTCG

STAT1 Forward ATGGC​AGT​CTG​GCG​GCT​GAATT

Reverse CCAAA​CCA​GGC​TGG​CAC​AATTG

MX1 Forward GGCTG​TTT​ACC​AGA​CTC​CGACA

Reverse CACAA​AGC​CTG​GCA​GCT​CTCTA

ISG15 Forward AGATC​ACC​CAG​AAG​ATCG

Reverse TGTTA​TTC​CTC​ACC​AGGATG

FBN2 Forward CCGAA​GGT​TTC​ACT​GGT​GATGG

Reverse CCATC​TCA​CAC​TCG​CAG​CGATA

RPELP Forward CGCCA​TCA​ACA​ACA​GGC​TGGAA

Reverse CGCCA​TCA​ACA​ACA​GGC​TGGAA

VCAM1 Forward GATTC​TGT​GCC​CAC​AGT​AAGGC

Reverse TGGTC​ACA​GAG​CCA​CCT​TCTTG

ANKRD1 Forward CGACT​CCT​GAT​TAT​GTA​TGGCGC

Reverse GCTTT​GGT​TCC​ATT​CTG​CCAGTG

LIF Forward AGATC​AGG​AGC​CAA​CTG​GCACA

Reverse GCCAC​ATA​GCT​TGT​CCA​GGTTG

SERPINE1 Forward CTCAT​CAG​CCA​CTG​GAA​AGGCA

Reverse GACTC​GTG​AAG​TCA​GCC​TGAAAC

TGFB2 Forward AAGAA​GCG​TGC​TTT​GGA​TGCGG

Reverse ATGCT​CCA​GCA​CAG​AAG​TTGGC

CCN2 Forward CTTGC​GAA​GCT​GAC​CTG​GAAGA

Reverse CCGTC​GGT​ACA​TAC​TCC​ACAGA

GAPDH Forward TTGGC​TAC​AGC​AAC​AGGGTG

Reverse GGGGA​GAT​TCA​GTG​TGGTGG
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clipping and leading and trailing low quality or N bases trimming was 
done using Trimmomatic v0.36 (Bolger et al.,  2014) in paired-end 
mode. Additional quality control checks were done after trimming, 
using the same FastQC program.

4.6  |  Alignment and gene expression

Sequenced reads were aligned to the human genome (hg19) using 
Rsubread v2.0.0 (Liao et al.,  2019) ‘align’ function (sortReadsBy-
Coordinates = True, detectSV = False) in paired-end mode, with 
the human UCSC refseq genes (hg19) GTF as an external annota-
tion file (Speir et al.,  2016). Alignment statistics were examined 
using Rsubread's ‘propmapped’ function and Picard v2.5.0 (“Picard 
Toolkit” 2019) ‘CollectRnaSeqMetrics’. Bam files of each sample that 
was sequenced on several lanes were merged at this stage using the 
Samtools v1.3.1 (Danecek et al., 2021) ‘merge’ command. Gene ex-
pression count matrix was calculated using Rsubread ‘featureCounts’ 
(countMultiMappingReads = False) in paired end mode to count 
the number of reads that map to each gene, with the GENCODE 
GRCh37 (hg19) v25 GTF as an external annotation file (Harrow 
et al., 2012). The reads were then normalized by TPM (Transcripts 
per Kilobase Million) using the total exonic length acquired from the 
same GENCODE database. In order to remain with only genes that 
were robustly expressed in the samples, we continued only with 
genes that had a value of at least 1.0 TPM in all replicates of at least 
one biological condition in the dataset.

4.7  |  PCA and hierarchical clustering

PCA and hierarchical clustering were done using the R v3.5.3 ‘stats’ 
package. Visualization was done through the ‘ggthemes’ and ‘facto-
extra’ packages.

4.8  |  Differential expression analysis

Differential gene expression was calculated using DESeq2 (Love 
et al., 2014) package v1.26.0, using the thresholds: adjusted p < 0.05 
and absolute log2 fold change >1.5. This was done for 10 compari-
sons throughout the dataset (Table 1). In order to combat the high 
variability between the different human samples and further in-
crease the veracity of the resulting genes, an additional step was 
taken for each comparison called ‘separation tests’. For each gene 
that passed our DESeq2 thresholds, we verified that the respec-
tive differential expression was consistent throughout all replicates 
(minimum log2 fold change of >1.2). If one or more replicate samples 
did not show this trend, the gene was removed from the respec-
tive gene set. The number of remaining genes and percentage of re-
moved genes are shown in Table 1. Finally, a union of the genes that 
passed all stages up to this point was created, to be used in the next 
step of the analysis.

4.9  |  Cluster and enrichment analysis

The final gene set of differentially expressed genes (DEGs) under-
went cluster analysis using EXPANDER v8.0 (Hait et al., 2019) and 
the integrated CLICK algorithm (Sharan et al., 2003), in order to group 
together genes that show similar behaviors over a set of conditions. 
The full list of clusters can be viewed in Table  S3. GO functional 
enrichment analysis of the clusters was performed using clusterPro-
filer v3.14.3 (Yu et al., 2012) and the Bioconductor genome wide an-
notation for human v3.10.0 (Carlson, 2019). The background genes 
were the full list of expressed genes in the dataset, the threshold 
was adjusted p < 0.05, calculated using Benjamini & Hochberg cor-
rection. Heatmap visualization was done using Heatmapper (Babicki 
et al., 2016).

4.10  |  Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (Subramanian et al.,  2005) was also 
performed using clusterProfiler v3.14.3 (Yu et al.,  2012), with the 
Molecular Signatures Database (MSigDB) (Liberzon et al.,  2011) 
Hallmark gene set v7.2 (Liberzon et al., 2015). This was performed on 
the entire set of expressed protein-coding genes; log2 fold change 
values were calculated manually adding � = 0.5 to the raw TPM val-
ues (to avoid FC inflation for lowly expressed genes), and once again 
a threshold of adjusted p < 0.05 using Benjamini & Hochberg cor-
rection. The comparisons are detailed in the respective GSEA table 
and plots. Visualization was done with the help of the R package 
‘enrichplot’ v1.6.1 (Yu, 2019).

4.11  |  PPI network visualization of selected genes

The PPI networks were built using the Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING) (Huang et al.,  2018). The 
PPI network was then visualized using Cytoscape software v3.9.1 
(Shannon et al., 2003). Nodes were colored based on the relevant 
log2 fold change. Next, the molecular complexes were extracted 
by isolating the densest part of these networks using MCODE app 
v2.0.0 (Bader & Hogue, 2003), under default settings. Enrichment of 
the MCODE subnetworks was done using the stringApp enrichment 
tool from Cytoscape (Doncheva et al., 2019).

4.12  |  Public expression data analysis from gene 
expression omnibus

The microarray expression data (GSE35347) (Nayler et al., 2012) was 
obtained from NCBI Gene Expression Omnibus using the GEOquery 
R package v2.40.0 (Davis & Meltzer,  2007). Only primary skin fi-
broblasts samples, isolated from Ctrl and A-T patients were used 
(Ctrl: GSM866594, GSM866595, GSM866596 A-T: GSM866606, 
GSM866607, and GSM866608). Differentially Expressed Genes 
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were defined using the “Limma” R package v.3.26.8 (Ritchie 
et al.,  2015). Ranked genes were analyzed using the Gene Set 
Enrichment Analysis (GSEA; v1.58.0) (Subramanian et al., 2005) with 
the molecular signatures database (MSigDB v7.5.1) gene sets (h: hall-
mark gene sets). GSEA graph was generated using ClusterProfiler 
v3.15 (Yu et al., 2012).
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