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2 Random variables

2a The definition

Discrete probability defines a random variable X as a function X : Ω → R. The
probability of a possible value x ∈ R is P

(

X = x
)

= P
(

{ω ∈ Ω : X(ω) = x}
)

. The
probability of an interval, say, P

(

a < X < b
)

is the sum of probabilities of all possible
values x ∈ (a, b):

(2a1) P
(

a < X < b
)

=
∑

x∈(a,b)

P
(

X = x
)

.

Equivalently,

(2a2) P
(

a < X < b
)

= P
(

{ω ∈ Ω : a < X(ω) < b}
)

.

Continuous probability cannot use (2a1), since P
(

X = x
)

it typically 0. Only
(2a2) is used. The set {ω ∈ Ω : a < X(ω) < b} must be an event (otherwise its probability is
not defined). The following definition uses intervals of the form (−∞, x] rather than (a, b),
but it is the same, as we’ll see. As usual, (Ω,F , P ) is a given probability space.

2a3 Definition. A random variable is a function X : Ω → R such that

∀x ∈ R {ω ∈ Ω : X(ω) ≤ x} ∈ F .

2b Distribution function

2b1 Example. Let (Ω,F , P ) be the square (0, 1)× (0, 1) with the Lebesgue measure (recall
1f13), and

X(s, t) = |s − t| for s, t ∈ (0, 1) .

(Recall Sect. 1a; interpret s as the time of one friend, t — the other; X shows how long one
of them has to wait for the other. Note that ω = (s, t).)

For x = 1/3 the set {ω ∈ Ω : X(ω) ≤ x} was considered in Sect. 1a (its probability is 5/9).
For another x ∈ (0, 1) it is similar;12 the probability is13 2x(1−x)+x2 = 2x−x2 = x(2−x).
For x = 0 the set is the diagonal (s = t) of probability 0; for x < 0 the set is empty (therefore,
of probability 0). For x ≥ 1 the set is the whole Ω (therefore, of probability 1).

(2b2) P
(

X ≤ x
)

=











0 for x ∈ (−∞, 0],

x(2 − x) for x ∈ [0, 1],

1 for x ∈ [1,∞).

1

1

x

p

12The set {ω ∈ Ω : X(ω) ≤ x} = {(s, t) ∈ (0, 1) × (0, 1) : |s − t| ≤ x} is a Borel set, since it is the
intersection of the open set (0, 1)× (0, 1) and the closed set {(s, t) ∈ R

2 : |s− t| ≤ x}. The set is also Jordan
measurable (just a polygon), therefore its Lebesgue measure is equal to its area.

13Or, even simpler, 1 − 2 · 1

2
(1 − x)2 = x(2 − x).
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2b3 Definition. A (cumulative) distribution function of a random variable X is the function
FX : R → [0, 1] defined by

FX(x) = P
(

X ≤ x
)

for x ∈ R .

So, (2b2) is an example of a distribution function. Note that it is continuous. In contrast,
a discrete distribution has a discontinuous distribution function:

b
b
b

x1 x2 xn
...

p1

p2

...

pn

1

Any combination of discrete and continuous is also possible:

x

p

1

2b4 Example. Let (Ω,F , P ) be as in 2b1, and

Y (s, t) = (t − s)+ =

{

t − s when s ≤ t,

0 when s ≥ t.

(Friend A waits for friend B during Y .) Here P
(

Y = 0
)

= 1/2, but the rest of the
distribution is continuous:

1

1

0.5

y

p

2b5 Example. The uniform distribution U(0, 1) has a very simple distribution function

1

1

x

p

Turn to decimal digits,

X =
(

0.α1α2 . . .
)

10 =
∞

∑

k=1

αk

10k
, αk ∈ {0, 1, . . . , 9} ;

X ∼ U(0, 1) means that α1, α2, . . . are independent discrete random variables, each one
distributed uniformly on {0, 1, . . . , 9} (recall 1f4). Binary digits βk,

X =
(

0.β1β2 . . .
)

2 =

∞
∑

k=1

βk

2k
, βk ∈ {0, 1} ,
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are independent random variables, namely, indicators of corresponding independent events
Bk = {βk = 1}, P

(

Bk

)

= 1/2:
B1

B2

B3

(Just infinite coin tossing.)

2b6 Example. Still X =
(

0.β1β2 . . .
)

2. We have

X = Y +
1

2
Z , Y and Z are independent,

Y =
(

0.β10β30β50 . . .
)

2 =
∞

∑

k=1

β2k−1

22k−1
,

1

2
Z =

(

0.0β20β40β6 . . .
)

2 =
∞

∑

k=1

β2k

22k
.

The distribution function of Y is continuous but bizarre:

1

1

y

p

The distribution function of Z is the same.

2b7 Example. Still X =
(

0.β1β2 . . .
)

2. Introduce

γ1 = β1β2, γ2 = β3β4, . . . ;

Y =
(

0.γ1γ2 . . .
)

2 =
∞

∑

k=1

β2k−1β2k

2k
.

Binary digits γk of Y are independent random variables, namely, indicators of corresponding
independent events Ck = {γk = 1}, P

(

Ck

)

= 1/4:
C1

C2

C3

The distribution function of Y is continuous but bizarre:

1

1

y

p

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b
b

b
bb
b

b
b

b
b

b
bb b

bbb
b bb b

b

b
b

b
b

b
bb
b

bbb b
bb b

bbbb
b bb b

bbb b bb b

b

b

b
b

b
b

b
bb b

bbb
b bb b

bbbb
b bb b

bbb b bb b

b
bbbb

b bb b
bbb b bb b

bbbb b bb b bbb b bb b

b

b

b

b

b
b
b

b
bb
b

bbb
b bb b

bbbb b
bb b

bbb b bb b

b
bbbb

b bb b
bbb b bb b

bbbb b bb b bbb b bb b

b
b

b
bbb
b bb b

bbb b bb b
bbbb b bb b bbb b bb b

bbbbb b bb b bbb b bb b bbbb b bb b bbb b bb b

b

b

b

b

b
b

b
b

b
bb b

bbb
b bb b

bbbb
b bb b

bbb b bb b

b
bbbb

b bb b
bbb b bb b

bbbb b bb b bbb b bb b

b
b

bbbb
b bb b

bbb b bb b
bbbb b bb b bbb b bb b

bbbbb b bb b bbb b bb b bbbb b bb b bbb b bb b

b
b

b
bbbb

b bb b
bbb b bb b

bbbb b bb b bbb b bb b
bbbbb b bb b bbb b bb b bbbb b bb b bbb b bb b

bbbbbb b bb b bbb b bb b bbbb b bb b bbb b bb b bbbbb b bb b bbb b bb b bbbb b bb b bbb b bb b
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You see, random digits often lead to bizarre distributions. However, discrete probability
also can lead to bizarre distributions.

2b8 Example. Let X be a discrete random variable distributed geometrically:

x 0 1 2 . . .
P

(

X = x
)

p pq pq2 . . .

where p ∈ (0, 1) is a parameter. Let Y = sin X (in radians, of course). The distribution
function of Y is bizarre, and discontinuous on every interval (a, b) ⊂ (0, 1):

1

1

y

p

b

bbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbb
bbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbb
bbbbbbbb

bbbbbb

bbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb
bbbbbbbbbbbb

bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb

bbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb
bbbbbbbb

bbbbbb

bbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb

bbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbb
bbbbbbbb

bbbbbb

bbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb
bbbbbbbbbbbb

bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb

bbbbbb

bbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbb

bbbbbbb b
bbbbbbb bbbbb

bbbbb bbbbbbbb bbb
bbbbb bbbbbbbb bbbbbbbb bbbbbbbb b

bbbbbbb b

bbbbbb

b bbbb bbb
bbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb b

bbbbbbb b
bbbbbbbb

bbbbbb

bbbbb bbb
bbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb

bbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbb
bbbbbbbb

bbbbbb

bbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb
bbbbbbbbbbbbbb

bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb

bbbbbb

bbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb
bbbbbbbbbbbb

bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb

bbbbbb

bbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb
bbbbbbbb

bbbbbb

bbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb

bbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbb
bbbbbbbb

bbbbbb

bbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbb

bbbbbbb

(The case p = 0.03 is shown.)

2c Density

Usually we deal with smooth distribution functions, like (2b2). Such a function F has a
piecewise continuous derivative f , f(x) = F ′(x), and is the integral of f :

F (x) =

∫ x

−∞
f(x1) dx1

1

1

2

b

f

F

F (b) − F (a) =

∫ b

a

f(x) dx

1

1

2

b

b

f

F

At some points f may be discontinuous. No need to define a value of f at such points, since
these values do not influence the integral.

2c1. A function f : R → R is called a density of a random variable X, if

(2c2) P
(

a < X < b
)

=

∫ b

a

f(x) dx

whenever −∞ < a < b < ∞.
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Unfortunately, 2c1 is not a definition, since the integration is not specified. Usually, f is
Riemann integrable on every bounded interval (a, b), and we may use Riemann integration
in 2c2. However, the integral

∫ x

−∞ f(x1) dx1 is improper (rather than Riemann):
∫ x

−∞
f(x1) dx1 = lim

a→−∞

∫ x

a

f(x1) dx1 .

Similarly,
∫ +∞

−∞
f(x) dx = lim

a→−∞

b→+∞

∫ b

a

f(x) dx .

As you probably guess,
∫ +∞

−∞
f(x) dx = 1

whenever f is a density of a random variable.14

Sometimes f is not Riemann integrable even on bounded intervals.

2c3 Example. Let X ∼ U(0, 1) (that is, X is a random variable distributed uniformly on
(0, 1)), and Y = X2. (Think, say, about the area of a random square.) Then

FY (y) = P
(

Y ≤ y
)

= P
(

X2 ≤ y
)

= P
(

X ≤ √
y

)

=
√

y for y ∈ [0, 1] ;

FY (y) =











0 for y ∈ (−∞, 0],
√

y for y ∈ [0, 1],

1 for y ∈ [1, +∞);

fY (y) =

{

1
2
√

y
for y ∈ (0, 1),

0 otherwise.

Now fY is not Riemann integrable on (0, 1), since it is not bounded. Improper integral is
used here:

∫ b

0

fY (y) dy = lim
a→+0

∫ b

a

fY (y) dy .

More generally, if f has singularities, say, at 1/3 and 2/3, we write
∫ 1

0

f(x) dx = lim
ε→0+

(
∫ 1/3−ε

0

f(x) dx +

∫ 2/3−ε

1/3+ε

f(x) dx +

∫ 1

2/3+ε

f(x) dx

)

etc.
In principle, a density f may be such a bizarre function that Riemann integration is

utterly inapplicable. Then so-called Lebesgue integration must be used in 2c2.15

14We’ll return to the point later.
15We’ll return to Lebesgue integral later. If you are curious to see a bizarre density, here is the simplest

example known to me:

f(x) = 1 +
2

π
arctan

( ∞
∑

k=1

1

k
sin(·2kxπ)

)

for x ∈ (0, 1) .

Sorry, I am unable to draw its graph; it is dense in the rectangle [0, 1] × [0, 2].
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If f is Riemann integrable on (a, b), then the two-dimensional region {(x, y) ∈ R
2 : x ∈

(a, b), y ∈ (0, f(x))} is Jordan measurable, and its area is equal to
∫ b

a
f(x) dx. In general,

Lebesgue measure of the area is equal to Lebesgue integral of the function.
Anyway, a density is defined in terms of integration rather than differentiation.

Consequently, a density may be changed at will (or left undefined) at any point, or finite set
of points.16

Is there a density of a discrete distribution? A discussion follows.

Y: Consider for instance the function F =
1

and differentiate it. Clearly, F ′(x) = 0
for x 6= 0. For x = 0 we have

F ′(0) = lim
ε→0

F (0 + ε) − F (0)

ε
= lim

ε→0

1

ε
= ∞ .

So, the function

f(x) =

{

∞ for x = 0,

0 otherwise

is the derivative of F . Thus, the density of a discrete distribution exists.
N: First, you treat limε→0 as limε→0−; your derivative is in fact one-sided. Second, it is

illegal for f to take on the value ∞.
Y: For f : R → R is is illegal, but for f : R → [0, +∞] it is legal. One-sided limit. . .

so what? I mean, a discontinuous function is a limit of a sequence of continuous functions,
1

= limn→∞

1

−
1
n

and I take the limit of derivatives,

f = lim
n→∞

fn , fn = F ′
n =

n

−
1
n

It is as legal as, say, using improper integral instead of Riemann integral. Call it improper
derivative, if you want.

N: Anyway, your ‘improper density’ is useless. Consider for example

f(x) =











∞ for x = 0,

∞ for x = 1,

0 otherwise.

What is the corresponding distribution function F ? Is it
1

1/2 or maybe
1

1/3 , etc?
You see, 2 · ∞ = ∞.

Y: That is right, ‘∞’ does not calibrate a singularity. Let us denote the derivative of
1

by δ, then

F =
1

1/2 =⇒ f(x) =
1

2
δ(x) +

1

2
δ(x − 1) ,

F =
1

1/3 =⇒ f(x) =
1

3
δ(x) +

2

3
δ(x − 1) .

16In fact, on any set of zero Lebesgue measure.
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N: If you put δ(x) =

{

∞ for x = 0,

0 otherwise,
you get 2δ = δ. Your new notation ‘δ(0)’ is not

better than our old ‘∞’.
Y: The ‘new’ function δ (invented long ago by a physicist Paul Dirac, not by me just

now) is specified not by δ(x) =

{

∞ for x = 0,

0 otherwise,
but by

∫ b

a

δ(x) dx =

{

1 if 0 ∈ (a, b),

0 if 0 /∈ [a, b].

N: A function consists of its values, not integrals. Could you agree if I introduce a ‘new’
number ∆ ‘defined’ by ∆ + 1 = ∆, ∆ − 1 = −∆ ?

Y: However, physicists use Dirac’s delta-function! It is useful, and does not lead to
paradoxes (unless you insist that it must belong to ‘old-fashioned’ functions).

N: Not just physicists. Also mathematicians use Dirac’s ‘delta-function’. It exists, but
not among functions. It exists among so-called Schwartz distributions17 (known also as
‘generalized functions’). Use them, if you are acquainted with their theory, otherwise you
do not know what is legal and what is not.

According to the conventional terminology, a density is a function (rather than, say,
a Schwartz distribution), and the integral in (2c2) is treated (most generally) as Lebesgue
integral.18

If X has a density fX , then its distribution function FX is continuous.19 That is, a discon-
tinuous FX has no density. In particular, discrete distributions have no densities.

If FX is continuous, it does not mean that X has a density. Bizarre distribution functions
of examples 2b6, 2b7 are continuous, but nevertheless, have no densities.20

2d Distributions

2d1 Proposition. Let X : Ω → R be a random variable, and B ∈ B (that is, B ⊂ R is a
Borel set). Then the set {ω ∈ Ω : X(ω) ∈ B} is an event.21

The probability P
(

X ∈ B
)

= P
(

{ω ∈ Ω : X(ω) ∈ B}
)

is therefore well-defined for
every Borel set B ⊂ R (not just interval).

2d2 Proposition. Let X : Ω → R be a random variable. Then the function PX : B → [0, 1]
defined by

(2d3) PX(B) = P
(

X ∈ B
)

17Schwartz distributions are in general not probability distributions; the two ideas of ‘distribution’ are
related but different.

18It conforms with proper and improper Riemann integration when the latter is applicable.
19Which follows from the theory of Lebesgue integration.
20There is a necessary and sufficient condition for existence of a density, the so-called absolute continuity.

These bizarre functions are continuous but not absolutely continuous.
21That is, belongs to F . As usual, (Ω,F , P ) is a given probability space.
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is a probability measure on (R,B).22

2d4 Definition. The probability measure PX defined by (2d3) is called the distribution of
a random variable X.

Note that (R,B, PX) is another probability space.
Clearly,

(2d5) FX(x) = PX

(

(−∞, x]
)

.

Thus, PX = PY implies FX = FY . The converse is also true.

2d6 Proposition. If FX = FY then PX = PY .

You can easily deduce 2d6 from 1f11.
So, distributions are in a one-one correspondence with distribution functions. A good

luck; we cannot draw a distribution itself, but we can draw (the graph of) its distribution
function.

2d7 Definition. Random variables X, Y are called identically distributed, if PX = PY .

The latter definition is applicable also to the case of different probability spaces
(Ω1,F1, P1), (Ω2,F2, P2), when X : Ω1 → R, Y : Ω2 → R. (Usually, speaking about
two random variables, we mean ‘on the same probability space’.)

Every probability measure on (R,B) corresponds to some random variable23 on some

probability space. The proof is immediate: given a probability measure P : B → [0, 1],
consider a probability space (R,B, P ) and a random variable X : R → R, X(ω) = ω for all
ω ∈ R.24

2d8 Proposition. Let P be a probability measure on (R,B). Then the corresponding
distribution function

F (x) = P
(

(−∞, x]
)

satisfies the following conditions.
(a) ∀x ∈ R 0 ≤ F (x) ≤ 1.
(b) F increases, that is, x1 ≤ x2 =⇒ F (x1) ≤ F (x2).
(c) F (−∞) = 0, that is, lim

x→−∞
F (x) = 0.

(d) F (+∞) = 1, that is, lim
x→+∞

F (x) = 1.

(e) F is right continuous, that is, F (x+) = F (x).

You can prove the proposition easily, using a simple but important consequence of sigma-
additivity given below.

22A probability measure on (Ω,F) was defined in Sect. 1e for any σ-field F on any set Ω. In particular,
it is well-defined for the case (Ω,F) = (R,B).

23Of course, there are many such random variables.
24In the next section we’ll see that, moreover, every probability measure on (R,B) corresponds to some

random variable defined on the standard probability space, (0, 1) with Lebesgue measure.
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2d9 Exercise. Prove that

An ↑ A =⇒ P
(

An

)

↑ P
(

A
)

,

An ↓ A =⇒ P
(

An

)

↓ P
(

A
)

for any events A1, A2, . . .

Here ‘An ↑ A’ means that A1 ⊂ A2 ⊂ . . . and A = A1 ∪ A2 ∪ . . . Similarly, ‘An ↓ A’
means that A1 ⊃ A2 ⊃ . . . and A = A1 ∩ A2 ∩ . . . .25 And of course, P (An) ↑ P (A) means
that P (A1) ≤ P (A2) ≤ . . . and P (A) = limk→∞ P (Ak).

Did you understand why F must be right continuous but not left continuous? Since

xn ↓ x =⇒ (−∞, xn] ↓ (−∞, x] ,

however,
xn ↑ x 6=⇒ (−∞, xn] ↑ (−∞, x] ;

in fact, (−∞, xn] ↑ (−∞, x) except for a degenerate case.
Note that all our examples of distribution functions (including bizarre examples) satisfy

2d8(a–e).

2d10 Exercise. Using (2c2) and 2d8(c,d) prove that F (x) =
∫ x

−∞ f(x1) dx1 and
∫ +∞
−∞ f(x) dx = 1 whenever a density exists.

Is there a uniform distribution on the whole R ? A discussion follows.

Y: For every n there is a uniform distribution U(−n, n) on the interval (−n, n). Its limit
for n → ∞ is the uniform distribution on R.

N: The distribution function for U(−n, n) is

Fn(x) =











0 for x ∈ (−∞,−n],
x+n
2n

for x ∈ [−n, n],

1 for x ∈ [n, +∞). −n n

1

x

p

Its limit for n → ∞ is F (x) = limn→∞
x+n
2n

= 1
2
. However, F is not a distribution function,

it violates 2d8(c,d).
Y: I feel, something is wrong with 2d8(c,d).
N: I can say it in other words. Imagine the uniform distribution P on R. What is

P
(

[−1, 1]
)

?
Y: It tends to 0, since [−1, 1] is an infinitesimal part of the whole R.
N: You must return to Sect. 1c; especially, see page 4. You say, P

(

[−1, 1]
)

tends to 0,
and you must add something like ‘when n → ∞’, but you have no n here, unless you use an
infinite sequence of models (these are U(−n, n)) instead of a single model. You must say:

25Generally, An → A =⇒ P
(

An

)

→ P
(

A
)

also for non-monotone sequences A1, A2, . . . if limAn is
defined appropriately. However, we do not need it now.
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P
(

[−1, 1]
)

= 0. Similarly, P
(

[−2, 2]
)

= 0 and so on. However, [−n, n] ↑ R and you get
P (R) = 0 instead of P (R) = 1.

Y: Recall, you agree to define
∫ +∞
−∞ f(x) dx as limn→∞

∫ n

−n
f(x) dx. Similarly, I may define

P (B) = limn→∞ Pn(B) for any Borel set B ⊂ R; here Pn is U(−n, n). Why not?
N: First, the limit need not exist. For example, it does not exist for B = [1, 2] ∪ [4, 8] ∪

[16, 32] ∪ . . . Second, your definition gives P
(

[n, n + 1)
)

= 0 for every n, but P (R) = 1, in
contradiction to sigma-additivity.

Y: I feel, something is wrong with sigma-additivity. It is too restrictive.
N: I do not agree. Anyway, let me ask you another question. How could I choose a real

number x ∈ R at random, uniformly on the whole R ?
Y: What is the problem? Just choose it at once.
N: No, that is an illusion. Try to do it gradually, like choosing X ∼ U(0, 1) by tossing

a coin for its binary digits (though you may prefer decimal digits). What are digits of your
number (uniform on the whole R)? They must be independent and uniform, all digits, both
of the fractional part and of the integral part.

Y: Nice, that is a way to choose x gradually. Just choose digits by tossing a coin.
N: And I get a two-sided infinite sequence (. . . , β−2, β−1, β0, β1, β2, . . . ). Should I write

X = ±∑+∞
k=−∞ βk2

k ? Almost surely, the sum does not converge, since infinitely many of
β1, β2, . . . are non-zero. Your two-sided digital monster is not a real number.

Such a set function as

P (B) = lim
n→∞

1

2n
mes

(

B ∩ [−n, n]
)

is legal26 and sometimes useful. However, P is not a probability measure. Speaking about
‘uniform distribution on the whole R’ one escapes the usual probability theory. In principle,
you may try it if you know what are you doing. However, in the framework of the usual
probability theory, there is no uniform distribution on the whole R (or another
set of infinite Lebesgue measure). By the way, discrete probability says the same: there is
no uniform distribution on {1, 2, . . .}; there is no countably infinite symmetric probability
space.

Every distribution P corresponds to a distribution function F satisfying 2d8(a–e).

2d11 Exercise. Prove that

P
(

X ∈ (−∞, x]
)

= FX(x) ;

P
(

X ∈ [x, +∞)
)

= 1 − FX(x−) ;

P
(

X ∈ [a, b]
)

= FX(b) − FX(a−) ;

P
(

X ∈ [a, b)
)

= FX(b−) − FX(a−) ;

P
(

X ∈ (−∞, x)
)

= FX(x−) ;

P
(

X ∈ (x, +∞)
)

= 1 − FX(x) ;

P
(

X ∈ (a, b)
)

= FX(b−) − FX(a) ;

P
(

X ∈ (a, b]
)

= FX(b) − FX(a) ;

P
(

X ∈ [a, b] ∪ (c, d)
)

= FX(d−) − FX(c) + FX(b) − FX(a−) (a < b < c < d) .

2d12 Exercise. Prove that

P
(

X = x
)

= FX(x) − FX(x−)

26However, one must bother about existence of the limit.
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and
P

(

X ∈ B
)

=
∑

x∈B

(

FX(x) − FX(x−)
)

for any finite or countable set B ⊂ R. Can you generalize the formula for uncountable sets?

2d13 Exercise. For the random variable X of Example 2b8 prove that

P
(

X ∈ B
)

=
∑

A∩B

(

FX(x) − FX(x−)
)

=
∑

k:sink∈B

pqk

for any Borel set B ⊂ R; here A = {sin k : k = 0, 1, 2, . . .} is a countable set dense in [−1, 1].
Can you generalize the formula for non-Borel sets?

2d14 Definition. A number x ∈ R is called an atom of (the distribution of) a random
variable X, if

P
(

X = x
)

> 0 .

The random variable X (as well as its distribution) is called nonatomic, if

∀x ∈ R P
(

X = x
)

= 0 .

Clearly, X is nonatomic if and only if FX is continuous. If X has a density then it is
nonatomic. The converse is false (think, why).27

2d15 Definition. The support of (the distribution of) a random variable X is the set of all
x ∈ R such that

∀ε > 0 P
(

x − ε < X < x + ε
)

> 0 .

The support is always a closed set S of probability 1; I mean, P
(

X ∈ S
)

= 1. In fact,
the support is the least closed set of probability 1.

2d16 Exercise. Find atoms and the support of the bizarre distribution of Example 2b8.

2e Quantile function

The notion of a median appears even in newspapers; it was proposed to replace ‘mean salary’
with ‘median salary’, that is, a number higher than a half of the salaries and lower than the
other half.

2e1 Definition. Let X be a random variable, x ∈ R, p ∈ (0, 1). The number x is called a
p-quantile of X, if

(2e2) P
(

X < x
)

≤ p ≤ P
(

X ≤ x
)

.

A median is an 1
2
-quantile.

27I do not like the term ‘continuous distribution’ since it is somewhat ambiguous; some people interpret
it as ‘nonatomic distribution’, others as ‘distribution that has a density’.
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In terms of FX we may rewrite (2e2) as

(2e3) FX(x−) ≤ p ≤ FX(x) .

If FX is continuous, it means simply

(2e4) FX(x) = p .

2e5 Example. Recall Example 2b1:

FX(x) =











0 for x ∈ (−∞, 0],

x(2 − x) for x ∈ [0, 1],

1 for x ∈ [1,∞).

1

1

x

p

FX

Here FX is continuous, thus (2e2) becomes (2e4), and x is uniquely determined by p:

x(2 − x) = p; 1 − (1 − x)2 = p;

(1 − x)2 = 1 − p; x = 1 −
√

1 − p .

1

1

p

x

X∗

It is the function inverse to FX , or rather, to the restriction FX |(0,1). In particular, the
median is

Me(X) = 1 −
√

1 − 1

2
= 1 − 1√

2
≈ 0.293

1

1

x

p

FXb1/2

Me(X) 1

1

p

x

X∗

bMe(X)

1/2

Usually, FX is continuous and strictly increasing on some [a, b] such that FX(a) = 0,
FX(b) = 1. Then, denoting by F−1

X the function inverse to FX |(a,b), we have F−1
X : (0, 1) →

(a, b), and F−1
X (p) is a p-quantile for every p ∈ (0, 1). The case a = −∞, b = +∞ is also usual;

here, FX is continuous and strictly increasing on the whole R, and F−1
X : (0, 1) → (−∞, +∞).

Of course, it can happen that a = −∞ but b < +∞ (or the opposite).
However, a p-quantile need not be unique, since a distribution may have a gap:

xmin
p

xmax
p

p b b

{x : FX(x) = p} = [xmin
p , xmax

p ] .

Here, every x ∈ [xmin
p , xmax

p ] is a p-quantile. See Example 2b6 for a lot of gaps. In fact, the
support is the complement of the union of all gaps (treated as open intervals).

On the other hand, a single number may be a p-quantile for many values of p, since a
distribution may have an atom:

pmin
x

pmax
x

x

FX(x−) = pmin
x < pmax

x = FX(x) .



Tel Aviv University, 2006 Probability theory 24

Here, x is a p-quantile for every p ∈ [pmin
x , pmax

x ].
We define the quantile line of X as the set of all (x, p) ∈ R

2 such that

p ∈ (0, 1) and x is a p-quantile,

or p = 0 and FX(x−) = 0,

or p = 1 and FX(x) = 1.

For example:
FX

quantile line

In general, the quantile line is not a graph of a function p = f(x), nor x = g(p), since its
intersection with a vertical or horizontal line may be a segment rather than a single point.
However, for every u the line x + p = u intersects the quantile line at one and only one
point.28

The quantile line divides R2 into two regions. One region, above the line and to the left,
is {(x, p) ∈ R

2 : FX(x−) ≤ p}; the other region, below and to the right, is {(x, p) ∈ R
2 : p ≤

FX(x)}; I mean closed regions; their intersection is the quantile line {(x, p) ∈ R
2 : FX(x−) ≤

p ≤ FX(x)}.
The graph {(x, p) ∈ R

2 : p = FX(x)} is a subset of the quantile line. Their relation is easy
to describe: replace every vertical segment of the quantile line with its highest point, and
you get the graph. Using the lowest point instead, you get the graph of the left-continuous
function x 7→ FX(x−) = P

(

X < x
)

. Choosing an arbitrary point, you get a function f such
that FX(x−) ≤ f(x) ≤ FX(x+) for all x. Then f(x−) = FX(x−) and f(x+) = FX(x+)
despite the arbitrary choice.

b

b

(An elementary case is shown on the picture, but the statements hold in full generality,
including bizarre functions of 2b6, 2b7, 2b8.)

Similarly, we may replace every horizontal segment of the quantile line with a single point
chosen arbitrarily on the segment. (Horizontal rays at p = 0 and p = 1 are just removed.)
We get the graph {(x, p) ∈ R × (0, 1) : x = g(p)} of a function g : (0, 1) → R such that g(p)
is a p-quantile.

b

b

28The quantile line can be described by continuous functions u 7→ xu, u 7→ pu of the new variable u = x+p.
Moreover, 0 ≤ xu+∆u − xu ≤ ∆u, 0 ≤ pu+∆u − pu ≤ ∆u. Of course, x + p is only a convenient trick; x + 2p

works equally well.
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2e6 Definition. A function X∗ : (0, 1) → R is called a quantile function of a random
variable X, if X∗(p) is a p-quantile of X whenever p ∈ (0, 1).

1
p

x

b

b

In the invertible case, X∗ = F−1
X , and so, a quantile function is unique. In general,

X∗(p−) and X∗(p+) are uniquely determined, but X∗(p) ∈ [X∗(p−), X∗(p+)] is arbitrary if
X∗ is discontinuous at p. Anyway, X∗ is an increasing function.29 Also,30

X∗ is continuous ⇐⇒ FX is strictly increasing ;

X∗ is strictly increasing ⇐⇒ FX is continuous .
(2e7)

Try to apply it to Examples 2b6, 2b7, 2b8.
The two regions can be described in terms of X∗ as well as FX :

(2e8)

FX(x−) ≤ p ⇐⇒ x ≤ X∗(p+) ,

p ≤ FX(x+) ⇐⇒ X∗(p−) ≤ x ,

FX(x−) ≤ p ≤ FX(x+) ⇐⇒ X∗(p−) ≤ x ≤ X∗(p+) ;

the latter describes the quantile line; of course, FX(x+) = FX(x).
Looking at the discrete case,

b
b
b

x1

x2

xn

...

p1
p2 ... pn

1

X∗

we see that X∗ is distributed like X. Indeed, X∗(·) = x1 on an interval of length p1;
X∗(·) = x2 on an interval of length p2; and so on.31

2e9 Theorem. Let (Ω,F , P ) be a probability space, X : Ω → R a random variable, and
X∗ : (0, 1) → R a quantile function of X. Consider X∗ as a random variable on the
probability space (0, 1) (equipped with Lebesgue measure). Then random variables X and
X∗ are identically distributed.

It means simply that the set {p ∈ (0, 1) : X∗(p) ≤ x} is either
(

0, FX(x)
)

or
(

0, FX(x)].
(Both cases are possible; think, why.)

Theorem 2e9 is useful for simulating random variables.32 Having a random numbers
generator that gives p distributed uniformly on (0, 1), we get x = X∗(p) distributed like X.

29Not strictly increasing, in general.
30Strict increase of FX does not relate to x such that FX(x) = 0 or FX(x) = 1.
31Arbitrary values at jumping points do not matter.
32Other ways may be more effective for special distributions, but this way is quite universal.
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Moreover, the quantile function may be used for constructing a random variable from
scratch. Assume that F is a function satisfying 2d8(a–e). For now we do not know, whether
F = FX for some X, or not.33 Nevertheless we may define the quantile line of F as {(x, p) ∈
R

2 : F (x−) ≤ p ≤ F (x)}. It appears that all needed properties of the quantile line follow
from 2d8(a–e). As we know, a quantile line leads to a quantile function X∗ : (0, 1) → R.
Though, there is no X for now. However, we may take X = X∗; the very X∗ is a random
variable! It appears that FX = F . So, Conditions 2d8(a–e) are not only necessary but also
sufficient.

2e10 Theorem. For any function F : R → R, Conditions 2d8(a–e) are necessary and
sufficient for existence of a probability measure P on (R,B) such that

∀x ∈ R P
(

(−∞, x]
)

= F (x) .

If such P exists, it is unique (recall 2d6), and we get the following fact.

2e11 Corollary. The formula

∀x ∈ R P
(

(−∞, x]
)

= F (x)

establishes a one-one correspondence between probability distributions P on R and functions
F satisfying 2d8(a–e).

2e12 Corollary. For every function f : R → R satisfying34

∀x f(x) ≥ 0 ,
∫ +∞

−∞
f(x) dx = 1

there is one and only one distribution P such that f is a density of P .

Indeed, the function F (x) =
∫ x

−∞ f(x1) dx1 satisfies 2d8(a–e).

33In other words, we do not know, whether or not F (x) = P
(

(−∞, x]
)

for some probabilty measure P on
(R,B); recall the paragraph before 2d8.

34The function must be good enough for its integral to exist; recall Sect. 2c.


