TAU:0366-2141,2180
| Analysis 3,4
| 2014/2015
|
- Lecturer
- Prof. Boris Tsirelson
(School of Mathematical Sciences).
- Instructors
- Adi Glücksam
- Yonatan Shelah
- Prerequisites
- Analysis 2; Linear algebra 2a
- Grading policy
- First semester exam (01.02; 03.03)
- Final exam (01.07; 08.09)
LECTURE NOTES
Preliminaries
- Conventions, notation, terminology etc.
- Euclidean space Rn.
- Basics of differentiation.
Differentiation
- Open mappings and constrained optimization.
- Inverse function theorem.
- Implicit function theorem.
Integration
- Basics of integration.
- Iterated integral.
- A glimpse into Lebesgue's theory.
- Change of variables.
- Improper integral.
Manifolds and differential forms
- From path functions to differential forms.
- Manifolds in Rn.
- Integration, from local to global.
- Divergence, flux, Laplacian.
- From boundary to exterior derivative.
- Stokes' theorem.
Summary
TEXTBOOKS
ADDITIONAL LITERATURE
- Theodore SHIFRIN, "Multivariable mathematics" (2005 Wiley).
- John H. HUBBARD, Barbara Burke HUBBARD, "Vector calculus, linear
algebra, and differential forms" (2002 Prentice).
- Vladimir A. ZORICH, "Mathematical analysis II" (2004
Springer). (Our library has 8 copies.)
- Wendell FLEMING, "Functions of several variables" (1977
Springer). (Our library has 3 copies.)
- (History, if you like) Hans Samelson, "Differential Forms,
the Early Days; or the Stories of Deahna's Theorem and of Volterra's Theorem",
The American Mathematical Monthly, Vol. 108, No. 6 (Jun. - Jul., 2001), pp. 522-530.
-
יורם לינדנשטראוס,
"חשבון אינפיניטסימלי מתקדם" חלק ב' (יש לנו 11 עתקים).
-
אלכס קופרמן,
"חשבון דיפרנציאלי ואינטגרלי 2",
אוסף תרגילים, פתרונות והסברים.
James Nearing, Chapter 8 "Multivariable Calculus" of the
course "Mathematical
Tools for Physics".