
Sequence analysis

Effect of tokenization on transformers for
biological sequences
Edo Dotan1,2, Gal Jaschek3, Tal Pupko 2,�, Yonatan Belinkov1,�

1The Henry and Marilyn Taub Faculty of Computer Science, Technion – Israel Institute of Technology, Haifa 3200003, Israel
2The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv
69978, Israel
3Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, United States
�Corresponding authors. The Henry and Marilyn Taub Faculty of Computer Science, Technion – Israel Institute of Technology, Haifa 3200003, Israel.
E-mail: belinkov@technion.ac.il (Y.B.); The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv
University, Tel Aviv 69978, Israel. E-mail: talp@tauex.tau.ac.il (T.P.)
Associate Editor: Alfonso Valencia

Abstract
Motivation: Deep-learning models are transforming biological research, including many bioinformatics and comparative genomics algorithms,
such as sequence alignments, phylogenetic tree inference, and automatic classification of protein functions. Among these deep-learning algo-
rithms, models for processing natural languages, developed in the natural language processing (NLP) community, were recently applied to bio-
logical sequences. However, biological sequences are different from natural languages, such as English, and French, in which segmentation of
the text to separate words is relatively straightforward. Moreover, biological sequences are characterized by extremely long sentences, which
hamper their processing by current machine-learning models, notably the transformer architecture. In NLP, one of the first processing steps is
to transform the raw text to a list of tokens. Deep-learning applications to biological sequence data mostly segment proteins and DNA to single
characters. In this work, we study the effect of alternative tokenization algorithms on eight different tasks in biology, from predicting the func-
tion of proteins and their stability, through nucleotide sequence alignment, to classifying proteins to specific families.
Results: We demonstrate that applying alternative tokenization algorithms can increase accuracy and at the same time, substantially reduce the
input length compared to the trivial tokenizer in which each character is a token. Furthermore, applying these tokenization algorithms allows
interpreting trained models, taking into account dependencies among positions. Finally, we trained these tokenizers on a large dataset of pro-
tein sequences containing more than 400 billion amino acids, which resulted in over a 3-fold decrease in the number of tokens. We then tested
these tokenizers trained on large-scale data on the above specific tasks and showed that for some tasks it is highly beneficial to train database-
specific tokenizers. Our study suggests that tokenizers are likely to be a critical component in future deep-network analysis of biological se-
quence data.
Availability and implementation: Code, data, and trained tokenizers are available on https://github.com/technion-cs-nlp/BiologicalTokenizers.

1 Introduction
Since the development of modern DNA sequencing technolo-
gies, there has been a rapid growth of available genomic data.
While a relatively small bacterial genome such as Escherichia
coli is roughly five million bases (Markowitz et al. 2012,
https://doi.org/10.1093/nar/gkr1044), the complete sequence
of a human genome is more than three billion bases long
(Nurk et al. 2022, https://doi.org/10.1126/science.abj6987).
Current large-scale protein datasets are growing at an expo-
nential rate and already encompass hundreds of billions of
amino acids (Steinegger and S€oding 2018, https://doi.org/10.
1038/s41467-018-04964-5). In light of the increasing size
and length of biological sequence datasets, new processing
methods are needed.

Deep-learning algorithms transformed many fields (LeCun
et al. 2015, https://doi.org/10.1038/nature14539), including
computer vision (Voulodimos et al. 2018, https://doi.org/10.
1155/2018/7068349) and biomedical research (Rudas et al.
2023, https://doi.org/10.1371/journal.pdig.0000106). They

were recently introduced to comparative genomics (Eraslan
et al. 2019, https://doi.org/10.1038/s41576-019-0122-6,
Koumakis 2020, https://doi.org/10.1016/j.csbj.2020.06.017,
Talukder et al. 2021, https://doi.org/10.1093/bib/bbaa177,
Alharbi and Rashid 2022, https://doi.org/10.1186/s40246-
022-00396-x, Miller et al. 2022, https://doi.org/10.1038/
s41467-022-33397-4). The use of deep learning for
genomic analysis is a game-changer and gains momentum as
neural network solutions usually outperform traditional
algorithms (Kulmanov et al. 2018, https://doi.org/10.1093/
bioinformatics/btx624, Jumper et al. 2021, https://doi.org/
10.1038/s41586-021-03819-2). Both natural human lan-
guages and biological sequences are composed of discrete
characters (letters and nucleotides, respectively). These
characters are the building blocks of sophisticated structures,
i.e. text and genomes, which include elements such as
sentences and genes, respectively. Although natural
language processing (NLP) architectures can be adapted
to biological problems, considerable differences remain be-
tween human language and genomic data (List et al. 2016,

Received: 23 August 2023; Revised: 20 February 2024; Editorial Decision: 1 April 2024; Accepted: 11 April 2024
The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(4), btae196
https://doi.org/10.1093/bioinformatics/btae196
Advance Access Publication Date: 12 April 2024
Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae196/7645044 by guest on 05 June 2024

https://orcid.org/0000-0001-9463-2575
https://github.com/technion-cs-nlp/BiologicalTokenizers
https://doi.org/10.1093/nar/gkr1044
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1038/nature14539
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1371/journal.pdig.0000106
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1016/j.csbj.2020.06.017
https://doi.org/10.1093/bib/bbaa177
https://doi.org/10.1186/s40246-022-00396-x
https://doi.org/10.1186/s40246-022-00396-x
https://doi.org/10.1038/s41467-022-33397-4
https://doi.org/10.1038/s41467-022-33397-4
https://doi.org/10.1093/bioinformatics/btx624
https://doi.org/10.1093/bioinformatics/btx624
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2

https://doi.org/10.1186/s13062-016-0145-2, Yu et al. 2019,
https://doi.org/10.1073/pnas.1814684116, Dotan et al.
2023, https://openreview.net/forum?id=8efJYMBrNb). One
major difference is that natural languages are typically com-
posed of many different words, each composed of characters
from a given alphabet, while DNA biological sequences are
composed of long stretches of nucleotide characters and the
definition of a word is not intuitive.

When analyzed using deep neural networks, long sequen-
ces raise memory consumption and run-time challenges.
These challenges are held both when analyzing natural lan-
guages and biological sequence data. Different approaches to
tackle these issues have emerged, including: (i) developing
specific architectures for long sequences (Lin et al. 2021,
http://arxiv.org/abs/2106.04554, Rao et al. 2021, https://pro
ceedings.mlr.press/v139/rao21a.html); (ii) splitting the data
into smaller segments (Dotan et al. 2023); (iii) K-mer repre-
sentation of all possible nucleotides (Ji et al. 2021, https://
doi.org/10.1093/bioinformatics/btab083).

In NLP, tokenization is the process of segmenting a run-
ning text into words or subword units (e.g. splitting “He’s
walking” into [He, ‘s, walk, ing]). Tokenization reduces the
size of the vocabulary, which consists of a fixed set of items
serving as atomic units. Tokenization may also help handling
unknown words—e.g. if the word “walked” is unknown,
splitting it to [walk, ed] may help associating it with the
known unit “walk.” Modern tokenization algorithms are
data-driven and do not necessarily correspond to linguisti-
cally meaningful units. For example, the word
“Bioinformatics,” might be split into three subwords,
“Bioin,” “form,” and “atics.” Tokenization algorithms split
such words into common subwords and thus enable NLP-
based methods to put these tokens in context. This may result
in increased ability to infer meanings. Subwords tokenizers
include “Byte-Pair Encoding” (BPE), “WordPiece,” and
“Unigram” (Schuster and Nakajima 2012, https://doi.org/10.
1109/ICASSP.2012.6289079, Sennrich et al. 2016, https://
doi.org/10.48550/arXiv.1508.07909, Kudo 2018, http://
arxiv.org/abs/1804.10959). The BPE and WordPiece token-
izers initialize a dictionary consisting of all the characters in
the raw text, and progressively select pairs of tokens to merge
and add them as a new token to the dictionary. BPE and
WordPiece differ in how pairs are selected: while BPE adds
the most frequent pair, WordPiece adds the pair that maxi-
mizes the frequency of the pair divided by the product of the
frequencies of the two tokens (see Section 2). The Unigram
methodology is different. It initializes a dictionary consisting
of a very large number of relevant tokens. The dictionary is
next trimmed by removing noncontributing tokens, which
are inferred by applying a specific loss function (see
Section 2).

While text tokenization of human languages such as
English is a standard NLP methodology, when DNA sequen-
ces are analyzed, each nucleotide is typically considered a to-
ken. Thus, while human languages such as English contain
very large dictionaries of thousands of tokens, genomic data
contain considerably smaller dictionaries (four items). The
number of tokens being processed is also different. Typical
text in English can range from a few dozens to a few million
tokens. This is in contrast to genomic data in which, using
the dictionary of the four nucleotides, “A,” “C,” “G,” and
“T,” the number of tokens representing the entire genome
will be the number of nucleotides (Fig. 1a). One can think of

different dictionaries, based on K-mers (Ji et al. 2021). For
example, one that contains all the possible pairs: “AA,”
“AC,” “AG,” “AT,” “CA” … “TT.” This raises the size of
the dictionary by a power of two (i.e. 16) and reduces the
length of the sequences by approximately two folds (Fig. 1b).
Of note, the conversion of nucleotides to codons has a similar
impact as the dictionary size is 64 (61 sense codons and three
stop codons) and the sequence length is reduced by a factor
of three.

The genome of each species contains various repetitive ele-
ments, which vary in type and length. We expect data-driven
biological tokenizers to assign a token for such repetitive ele-
ments. Notably, repetitive elements comprise more than half
of the human genome (Richard et al. 2008, https://doi.org/
10.1128/MMBR.00011-08). The existence of such repetitive
elements motivates the employment of data-driven token-
izers, which can substantially reduce the number of tokens to
process without a substantial increase in the size of the dictio-
nary. Of note, reducing the number of tokens partially allevi-
ates the problems encountered with long sequences.
However, too large dictionaries forbid capturing shared ele-
ments among sequences. Which tokenizer best balances be-
tween these two constraints is an open question. In this
study, we focus on comparing transformers trained on data
processed by different tokenizers, in terms of performance
and input length.

2 Materials and methods
2.1 Outline
We aim to train and evaluate alternative tokenizers. The in-
put is a set of biological sequences. Different biological tasks
are considered, e.g. classifying the sequence into several cate-
gories. The tokenizers are applied to the input sequences cre-
ating a list of integers, which represent the different tokens.
Such lists are used to train a deep-learning network model (in
our case, a transformer). A single transformer (Vaswani et al.
2017, http://arxiv.org/abs/1706.03762) is trained for each bi-
ological task and each tokenizer. The performance is mea-
sured on transformer processing test data (which were
processed with the same tokenizer as the training data). In ad-
dition, we report the effect on the number of input tokens,
which is a proxy for memory and runtime consumption.

2.2 Tokenizers
We evaluated five different tokenizers on biological sequen-
ces: BPE, Unigram, WordPiece, “words,” and “pairs.”
“Words” is a trivial tokenizer, in which the dictionary

Figure 1. Different tokenization algorithms can be applied to biological
sequences, as exemplified for the sequence “AAGTCAAGGATC.” (a) The
baseline “words” tokenizer assumes a dictionary consisting of the
nucleotides: “A,” “C,” “G,” and “T.” The length of the encoded
sequence is 12, i.e. the number of nucleotides; (b) the “pairs” tokenizer
assumes a dictionary consisting of all possible nucleotide pairs. The
length of the encoded sequences is typically halved; (c) a sophisticated
dictionary consisting of only three tokens: “AAG,” “TC,” and “GA.”
Using this dictionary, the encoded sequence contains only five tokens.

2 Dotan et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae196/7645044 by guest on 05 June 2024

https://doi.org/10.1186/s13062-016-0145-2
https://doi.org/10.1073/pnas.1814684116
https://openreview.net/forum?id=8efJYMBrNb
http://arxiv.org/abs/2106.04554
https://proceedings.mlr.press/v139/rao21a.html
https://proceedings.mlr.press/v139/rao21a.html
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.48550/arXiv.1508.07909
https://doi.org/10.48550/arXiv.1508.07909
http://arxiv.org/abs/1804.10959
http://arxiv.org/abs/1804.10959
https://doi.org/10.1128/MMBR.00011-08
https://doi.org/10.1128/MMBR.00011-08
http://arxiv.org/abs/1706.03762

contains all possible amino-acids or nucleotides. In the
“pairs” tokenizer, the dictionary contains all possible pairs of
characters (amino-acids or nucleotides). Of note, while in
“words” and “pairs” the dictionary size is fixed, it is a tun-
able parameter in the other three tokenizers. Thus, we tested
various values for the dictionary size. For each computational
task and for each combination of tokenizer and dictionary
size, a different transformer was trained, and its performance
evaluated (as described below). We would like to emphasize
the differences in applying tokenizers to natural languages
versus biological sequences. In most natural languages, there
are three levels of text representation: characters, words, and
sentences. In contrast, biological sequences have only two
levels, as they lack the space character that separates words
in natural languages.

2.2.1 BPE (byte-pair encoding)
Initially, BPE was a general-purpose compression algorithm
(Gage 1994, https://dl.acm.org/doi/10.5555/177910.
177914), but it has since been adopted for tokenizing textual
data. It was first utilized for machine translation with recur-
rent neural networks (Sennrich et al. 2016) and later for
transformers (Vaswani et al. 2017). The tokenizer creates a
base vocabulary from unique characters in the pre-tokenized
data and then gradually merges the most frequent pair, add-
ing each new one to the vocabulary. This process stops when
the vocabulary size reaches a hyperparameter that must be
determined before training the tokenizer.

2.2.2 WordPiece
This tokenizer is similar to BPE (Schuster and Nakajima
2012). Like BPE, it uses the entire set of characters in pre-
tokenized data to create a base vocabulary and progressively
adds new tokens to it. Unlike BPE, which adds the most fre-
quent pair, WordPiece selects the pair that maximizes a cer-
tain score calculated as:

score ¼
f1;2

f1×f2

Here, f1;2 is the frequency of the pair of elements, while f1

and f2 are the frequencies of the two separate elements.

2.2.3 Unigram
Unigram (Kudo 2018) takes a different approach than BPE
and WordPiece. It begins with a heuristic identification of an
initialized vocabulary, which is later trimmed. There are dif-
ferent ways to create the initial vocabulary, e.g. selecting the
most frequent sub-strings in the corpus or using a different
tokenizer such as BPE with specific hyperparameters that
yield a large vocabulary. Next, the Unigram tokenizer pro-
gressively removes tokens from the vocabulary by searching
for tokens whose removal improves the model fit, as quanti-
fied using a loss function (detailed below). Usually, more
than one token is removed at a time, since computing the loss
for all tokens is a costly operation. Given a corpus of N
words, x1; . . . ; xi; . . . ; xN, the loss is the sum of the nega-
tive log-likelihood of the score of each word, denotated by
hðxiÞ for the word i:

loss ¼ �
XN

i¼1

logðhðxiÞÞ

where hðxiÞ is the maximum score of dividing the word xi

to tokens:

h xið Þ ¼ max
z2SðxiÞ

ðgðzÞÞ

SðxiÞ are all the possible options to split xi to tokens, and g
maps a specific set of tokens, i.e. option, t1; . . . ; tj . . . ; tM ¼ z
to a score.

g zð Þ ¼
YM

j¼1

pðtjÞ

p tjð Þ is the unigram probability of token j, i.e. the number of
occurrences of token j divided by the total number of tokens
in the corpus.

2.3 Biological datasets
We compared the performance of the above tokenizers on
eight datasets, described below, which vary in terms of their
size, the learning task required (five classifications, two
regressions, and one sequence alignment), and the type of se-
quence data (one dataset contains DNA sequences, while the
others contain protein sequences).

Dataset1. Type III effectors (we will use the term effectors
below) are proteins that are secreted by pathogenic bacteria
from the bacterial cytoplasm into the host cell. In the host
cell, they manipulate cellular processes to the benefit of the
bacteria. The computational challenge is to classify bacterial
proteins to those that are effectors and those that are not.
The secretion signal that determines whether a protein is an
effector or not was shown to reside in the 100 amino acids of
the N-terminus of a protein (Notti and Stebbins 2016,
https://doi.org/10.1128/microbiolspec.VMBF-0004-2015).
We obtained a dataset of 641 effectors and 4544 noneffec-
tor proteins (Wagner et al. 2022, https://www.frontiersin.
org/articles/10.3389/fpls.2022.1024405). From each pro-
tein, we only considered the 100 N-terminal amino acids.
The true label (whether or not the protein is an effector) is
known from experimental work. The computational task is
to correctly classify each protein into its category. These
data were divided into training, validation, and test, each
containing 497, 60; and 84 effectors and 2034, 219, and
2291 noneffectors, respectively.

Dataset2. A superfamily is a group of proteins that share
similar properties and functions. The second task is to classify
proteins to superfamilies based on their amino-acid sequen-
ces. To this end, we downloaded sequences from the Pfam
database (Mistry et al. 2021, https://doi.org/10.1093/nar/
gkaa913). We randomly picked nine different superfamilies
containing over 2000 protein sequences: (i) SSF100895
Kazal-type serine protease inhibitors; (ii) SSF110035 GDNF
receptor-like; (iii) SSF109993 VPS9 domain; (iv) SSF101152
Mob1/phocein; (v) SSF110019 ERO1-like; (vi) SSF102546
RbsD-like; (vii) SSF101912 Sema domain; (viii) SSF100939
SPOC domain-like; (ix) SSF100879 Lesion bypass DNA po-
lymerase (Y-family), little finger domain. For each superfam-
ily we downloaded the first 2000 protein sequences, which
we split into training, validation and test data, containing

Effect of tokenization on transformers for biological sequences 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae196/7645044 by guest on 05 June 2024

https://dl.acm.org/doi/10.5555/177910.177914
https://dl.acm.org/doi/10.5555/177910.177914
https://doi.org/10.1128/microbiolspec.VMBF-0004-2015
https://www.frontiersin.org/articles/10.3389/fpls.2022.1024405
https://www.frontiersin.org/articles/10.3389/fpls.2022.1024405
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1093/nar/gkaa913

1800, 100, and 100 sequences, respectively. The Pfam data-
base includes information regarding the specific fragments is-
sued with the superfamily. For each of the sequences, we
extracted these fragments and concatenated them. The task is
predicting the superfamily given the fragments.

Dataset3. Sequence alignment is one of the common tasks
in bioinformatics (Van Noorden et al. 2014, https://doi.org/
10.1038/514550a) as it provides a record of similarity be-
tween homologous sequences. One has to account for differ-
ent evolutionary events such as insertions, deletions and
substitutions to correctly infer the alignment. The third data-
set contains pairwise homologous nucleotide sequences, and
the task is to correctly align them. We have previously devel-
oped a deep-learning-based algorithm for such an alignment
task, in which we train transformers to map pairs of un-
aligned sequences, i.e. source sentences, into a valid align-
ment, i.e. target sentences (Dotan et al. 2023). The average
number of nucleotides is 429 and 434 for the source and tar-
get sentences, respectively. This dataset was simulated by
SpartaABC (Loewenthal et al. 2021, https://doi.org/10.1093/
molbev/msab266), and hence the correct alignment is known.
The data include 395 000, 2000, and 3000 training, valida-
tion, and test alignments, respectively. To simulate those
sequences, we have used the following parameters: (i) root
length between 150 and 300 nucleotides; (ii) pairwise evolu-
tionary distance between 0:05 and 0:15 substitutions per site;
(iii) an insertion rate between 0:0 and 0:05 events per substi-
tution and similarly for deletions; (iv) the “A parameter” dic-
tates the length distribution of insertion and deletion events.
The A parameter for insertions ranged between 1:01 and 2:0,
and similarly for deletions. For each simulation of a pair of
sequences, SpartaABC samples uniformly from those ranges
and generates the alignment based on the sam-
pled parameters.

Dataset4. Protein folds are characteristics of the protein
3D structure. Often, proteins evolve so that their sequence
similarity becomes low, yet, they still share substantial struc-
tural similarity. Nevertheless, the folding information is
encoded within the protein sequence. Here we analyzed
13 766 protein sequences, each of which is labeled by a spe-
cific fold (Hou et al. 2018, https://doi.org/10.1093/bioinfor
matics/btx780). There is a total of 1195 protein folds, and
the computational task it to classify each protein to its correct
fold based on its amino-acid sequence. These data were parti-
tioned to 12 312, 736, 718 training, validation, and test pairs
of sequence-fold.

Dataset5. The fluorescence intensity of a protein is deter-
mined by its sequence and structure. The general mapping
form sequence space to fluorescence intensity is unknown in
general. Here, we rely on previously established data
(Sarkisyan et al. 2016, https://doi.org/10.1038/nature17995),
which were partitioned to 21 446, 5363, and 27 217 train-
ing, validation, and test pairs of sequence-log-intensity val-
ues, respectively. Of note, unlike the previous tasks, here a
regression model is needed from the sequence space to fluo-
rescence intensities.

Dataset6. In stability landscape prediction, the challenge is
to predict the concentration threshold from which the protein
unfolds, given the sequence of amino-acids (Rocklin et al.
2017, https://doi.org/10.1126/science.aan0693). For this re-
gression task, the data included 53 614, 2512, 12 851 train-
ing, validation, and test pairs of sequence-concentration,
respectively.

Dataset7. This is a dataset for a fold prediction task, simi-
lar to dataset 4. However, here the classification is only to
seven possible folds. These data were previously assembled
(Andreeva et al. 2020, https://doi.org/10.1093/nar/gkz1064)
and include 14 112, 1568, and 3921 training, validation,
and test pairs, in which each pair includes a sequence and its
associated fold. These data were taken from ProteinBERT
(Brandes et al. 2022, https://doi.org/10.1093/bioinformatics/
btac020). As these data did not contain a validation set, we
randomly sampled 10% of the training data to serve as a vali-
dation data.

Dataset8. Neuropeptides are peptides that are used for
communication between neural cells and their peripheral cells
(Burbach and Peter 2010, https://doi.org/10.1016/j.ejphar.
2009.10.015). The vast majority of neuropeptides are trans-
lated as precursor neuropeptides and undergo cleavage and
maturation events. Ofer and Linial (2014) have previously as-
sembled a database of precursor neuropeptides and nonpre-
cursor neuropeptides from various animal species and
developed a binary classification algorithm for predicting
precursor neuropeptides given a set of protein sequences. We
reanalyzed their data, which included 2727, 303, and 337
training, validation, and test pairs, in which each pair
includes a sequence and whether or not it is a neuropeptide.

Of note, datasets 4, 5, and 6 were previously analyzed by
Rao et al. (2019) and Brandes et al. (2022) and datasets 7
and 8 were previously analyzed by Brandes et al. (2022).

2.4 Tokenizer implementation
We compared five different tokenizers: BPE, WordPiece and
Unigram (Schuster and Nakajima 2012, Sennrich et al. 2016,
Kudo 2018) as well as the “words” and “pairs.” The three
first tokenizers can be trained for specific data, i.e. they are
data-driven. These were trained (on the training data) with
default parameters (e.g. parameters that control the trimming
of the Unigram program). The output of this stage is a dictio-
nary for each transformer and dataset. All datasets were next
encoded using the obtained dictionaries. This step was
achieved using the HuggingFace library (Wolf et al. 2020,
https://doi.org/10.18653/v1/2020.emnlp-demos.6). For each
tokenizer, we evaluate the following dictionary sizes: 100,
200, 400, 800, 1600, and 3200. The output of each tokenizer
and sequence is a vector of tokens (represented as integer
numbers). Different sequences are represented by a different
number of tokens. In order for all vectors to be of the same
length a maximum size was set. A fixed size is needed for ap-
plying positional embeddings (a modification step to the em-
bedding matrix used to provide information regarding the
ordering of the tokens) and for batching. Specifically, for
dataset 1 the maximum size was set to 100 tokens. Similarly,
for dataset 2, the maximum size was set to 512 tokens, for
dataset 3 to 1024 tokens and for datasets 4–8, to 512 tokens.
For all classification and regression tasks, proteins longer
than this size were trimmed and proteins shorter than this
size were padded with a special token. These encoded data
were next used to train transformers (on the training data)
for the specific computational task associated with
each dataset.

2.5 Training the transformers
Two different transformer architectures were considered for
all classification and regression tasks: BERT (Devlin et al.
2019, https://doi.org/10.18653/v1/N19-1423) and GPT

4 Dotan et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae196/7645044 by guest on 05 June 2024

https://doi.org/10.1038/514550a
https://doi.org/10.1038/514550a
https://doi.org/10.1093/molbev/msab266
https://doi.org/10.1093/molbev/msab266
https://doi.org/10.1093/bioinformatics/btx780
https://doi.org/10.1093/bioinformatics/btx780
https://doi.org/10.1038/nature17995
https://doi.org/10.1126/science.aan0693
https://doi.org/10.1093/nar/gkz1064
https://doi.org/10.1093/bioinformatics/btac020
https://doi.org/10.1093/bioinformatics/btac020
https://doi.org/10.1016/j.ejphar.2009.10.015
https://doi.org/10.1016/j.ejphar.2009.10.015
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/N19-1423

(Radford et al. 2018, https://www.mikecaptain.com/resour
ces/pdf/GPT-1.pdf). As the former resulted in higher perfor-
mance on the validation data, we only present results
obtained with BERT. In each case, the models were randomly
initialized and trained on the tokenized training data of each
dataset. Using the validation data, we optimized several
hyperparameters for each computational task: the number of
layers, the number of attention heads, and the size of the hid-
den vector. The best performing configuration was with two
hidden layers and two attention heads for all datasets. The
size of the hidden vector was 128 for all datasets, except
dataset 1, for which the optimal performance was with a vec-
tor of size 64. For each, dataset, tokenizer type, and dictio-
nary size, we trained three transformers with different
learning rates: 0.001, 0.0001, and 0.00001 and returned the
one with the best performance. We used a constant scheduler
in all analyses, i.e. the learning rate was fixed during the en-
tire learning process. Transformer training and testing were
implemented using the HuggingFace library (Wolf
et al. 2020).

For dataset 3, which is associated with a sequence-to-
sequence task, following Dotan et al. (2023), we relied on the
“vaswani_wmt_en_de_big” architecture, with 6 hidden
layers, 16 attention heads, and a hidden vector size of 1024.
The training was conducted with the Fairseq library (Ott
et al. 2019, http://arxiv.org/abs/1904.01038). The learning
rate, warmup values, and max tokens were set to: 5×10� 5,
3000, and 4096, respectively.

2.6 Comparison with previous models
We compared the performance of the different trained mod-
els with those obtained in previous studies. Specifically, data-
sets 4, 5, and 6 were each previously analyzed by applying
three different models: ProteinBERT (Brandes et al. 2022),
the Tasks Assessing Protein Embeddings (TAPE) transformer
(Rao et al. 2019, https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7774645/), and a biological model that relied on the
LSTM architecture (Rao et al. 2019). Datasets 7 and 8 were
previously analyzed using ProteinBERT. These previous
works all used the “words” tokenizer. As we did not pre-
train our models, for a fair comparison, the performance of
these previous models was evaluated without pre-training.

2.7 Evaluating the performance on the
different tasks
For classification tasks, we report Accuracy (ACC), Area
Under the Curve (AUC), and Matthew’s Correlation
Coefficient (MCC) [Matthews 1975, https://doi.org/10.1016/
0005-2795(75)90109-9]. The latter is more suitable for un-
balanced datasets as it considers the number of samples from
each class:

MCC ¼
TN×TP � FN×FP

ffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ

p

TN is the number of true negatives, TP true positives, FN
false negatives, and FP false positives. We note that the range
of MCC is from −1 to 1 while ACC and AUC range between
0 and 1.

For regressions tasks, we report the Spearman rank corre-
lation, ranging from −1 to 1, where 1 reflects a perfect score.

Spearman Correlation ¼
covðR Xð Þ; R Yð ÞÞ

σRðxÞσRðYÞ

X and Y are the predictions and the labels, respectively. RðZÞ
is the ranking of Z, σZ is the standard deviation of Z, and
covðZ; WÞ is the covariance of Z and W.

For the alignment task, we report the performance of the
aligners with the Column Score (CS). The CS is measured by
counting the number of columns in the inferred alignment
that have a matching column in the true alignment, out of the
total number of columns in the true alignment (Penn et al.
2010, https://doi.org/10.1093/molbev/msq066). The range of
the CS is between zero and one. We also report the cover-
age score:

Coverage ¼
VA
TA

where VA is the number of valid alignments and TA is the to-
tal number of alignments tested. When using transformers to
align biological sequences, it is possible that the transformer
erroneously creates invalid alignments. For example, if the in-
put sequences are “AAG” and “AAC,” the transformer may
output a pairwise alignment in which “AA–G” is aligned to
“AAC.” This is clearly an invalid alignment as the number of
characters in all alignment rows should be identical. In addi-
tion, each alignment row should be identical to the original
corresponding (unaligned) sequence after removing all of its
gaps. In rare cases, this is not the case, and these alignments
are also considered invalid (Dotan et al. 2023). Of note, all
alignments in the training data are valid alignments. Thus,
higher coverage suggests better learning from the train-
ing data.

2.8 Hyperparameter optimization implementation
We conducted an analysis by evaluating each tokenizer across
a grid of hyperparameter combinations. We focused on four
key hyperparameters: layers (1, 2, or 4), attention heads (1,
2, or 4), hidden sizes (32, 64, or 128) and learning rate
(0.00001, 0.0001, or 0.001). For every possible set of hyper-
parameters, we trained a transformer model, varying the
tokenizer employed. Each model was trained for ten epochs.
We evaluated the results on the superfamily classification
task (dataset 2). Subsequently, we assessed the degree to
which the selected hyperparameters influenced performance
and investigated the broader implications of hyperparameter
optimization on the comparative ranking of diverse tokeniza-
tion methods. We compared the performance of a model in
which one hyperparameter is fixed to an arbitrary value while
the other hyperparameters are optimized to a model in which
all four parameters are optimized. A few alternatives of this
fixed value were evaluated.

2.9 Visualizing the signals within protein
superfamilies
For the task of classifying sequences to superfamilies, the
trained transformer allows highlighting the positions and sig-
natures (tokens) that contribute most for distinguishing one
superfamily from the others. We used the Captum library
(Kokhlikyan et al. 2020, https://doi.org/10.48550/arXiv.
2009.07896), which allows interpreting trained transformers
regarding their decision making. To this end, the integrated
gradients method (Sundararajan et al. 2017, http://arxiv.org/

Effect of tokenization on transformers for biological sequences 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae196/7645044 by guest on 05 June 2024

https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
http://arxiv.org/abs/1904.01038
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774645/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774645/
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1093/molbev/msq066
https://doi.org/10.48550/arXiv.2009.07896
https://doi.org/10.48550/arXiv.2009.07896
http://arxiv.org/abs/1703.01365

abs/1703.01365) was used to calculate the importance of
each of the input tokens (we used the default number of steps
which is 50). For example, in the context of superfamily clas-
sification, how important each token is for the correct identi-
fication of a specific superfamily. Unlike standard motifs
used in computational biology, here the algorithm can high-
light both tokens whose inclusion in the protein sequence
supports a classification to a specific superfamily and tokens
whose exclusion supports the classification. To do this, we
first identified the positions of tokens with high attribution
scores in each sequence (absolute value above 0.2). Then, we
created histograms for each family to see where these high
score tokens were located. We next searched for specific
amino-acids patterns by using a sliding-window approach.
Moving along the sequences a window of size 15 amino
acids, we searched for the presence of a specific token in at
least eight out of 100 sequences within each superfamily. If
so, we added a label for the token at that location. This infor-
mation can be used to identify the locations of signals on pro-
tein sequences. The transformer used was the best performing
one, trained on the BPE-tokenized data with 1600 vocabulary
items.

2.10 Training on the BFD dataset
The BFD dataset is currently the largest public dataset of pro-
tein sequences, comprising over 2:2 billion sequences and
400 billion amino acids (Steinegger and S€oding 2018). This
dataset includes multiple sources of sequences that were
aligned to longer sequences using MMseqs2 (Steinegger and
S€oding 2017, https://doi.org/10.1038/nbt.3988) and filtered
based on sequence identity and number of sequences per clus-
ter. After obtaining this dataset, we preprocessed the sequen-
ces by removing gap characters (“–”). This preprocessing
phase resulted in a file of approximately 400 GB, containing
pure proteins. We trained the BPE, WordPiece, and Unigram
tokenizers on this dataset. Due to the large memory required
for this task, we utilized the AMD EPYC 7H12 machines,
with 256 cores and approximately 1 TB RAM. Due to mem-
ory and run time limitation, we trained the different token-
izers on subsamples with increasing sizes, ranging from 1000
to 10 000 000 sequences.

3 Results
3.1 Effectors and superfamilies classifications
We first evaluated the performance of the various tokeniza-
tion algorithms for the task of classifying proteins to those
that are effectors and those that are not (dataset 1). Figure 2a
shows the performance, as measured by the MCC score, for
the various tokenizers. It also shows the reduction in the
length of the encoded proteins. The optimal performance,
with an MCC score of 0:507, was obtained using the
Unigram tokenizer with a dictionary size of 100 tokens.
Compared with the default “words” tokenizer, it is both
more accurate (the MCC of the “words” tokenizer was only
0:43), and it led to a 1:3-fold reduction in sequence length
(i.e. the number of tokens). The highest fold reduction of 2:4
in length was obtained with the WordPiece tokenizer when
using 3200 tokens, albeit with a reduction of 0:14 in the
MCC score compared to the best tokenizer.

Figure 2b demonstrates the performance of applying the
different tokenizers on the multiclass classification (dataset
2). The BPE tokenizer resulted in lower sequence length

compared to Unigram. While the 3200 tokens Unigram dic-
tionary led to only a 1:79-fold reduction in sequence length,
BPE that has the same dictionary size, led to over 2:5 folds re-
duction in sequence length. The best performing transformer
used the BPE tokenizer. It was trained on a dictionary con-
taining 1600 tokens and had a very high performance, with
an MCC score of 0:995. It led to a 2:2-fold reduction in the
number tokens. Of note, the transformer trained with the
“words” tokenizer had lower performance compared to
transformers trained with alternative tokenizers. Similarly,
most transformers using data-driven tokenizers outperformed
the “pairs”-based dictionary.

3.2 Alignment
Next, we evaluated the impact of tokenizing nucleotide
sequences on alignment accuracy and coverage (see
Methods). Figure 3a shows the performance of the trans-
formers on the alignment dataset. The accuracy of all trans-
formers (measured by the CS) was very high (above 0:98),
and the differences among the different transformers were
very small (�0:007 difference in the CS between the best and
the worst transformer). These high scores suggest that all
transformers could reliably align the analyzed sequences.

Figure 3b shows the coverage of the transformers on the
alignment dataset. The coverage is calculated as the number
of valid alignments divided by the number of tested align-
ments (see Section 2). Large differences in coverage were ob-
served between the worst and best transformers: the
transformer using the “words” tokenizer obtained a coverage
of 0:59, while the “pairs” had the highest coverage of 0:941.
The best performing transformer using a data-driven token-
izer was the BPE transformer with a dictionary size of 400,
resulting in a coverage of 0:924. However, this BPE token-
izer reduced the number of tokens by more than 4-fold, while
the baseline “pairs” reduced the number of tokens by only 2-
fold. Thus, the BPE with 400 tokens had only half as many
tokens as the “pairs” baseline. As can be seen from the figure,
there is a trade-off between reduction and performance.
Careful examination of the BPE, WordPiece, and Unigram
tokenizers shows that increasing the vocabulary size increases
the coverage and reduction fold, but once the size reaches a
few hundred (400, 200, 200 for BPE, WordPiece and
Unigram, respectively), the coverage begins to decrease. Even
dictionaries of 100 or 200 tokens have large impact on the
length of the encoded sequences, slightly more than 3-fold.

3.3 Comparison of different models on additional
classification and regression tasks
Figure 4a illustrates the results gained on the remote homol-
ogy classification (dataset 4) (Hou et al. 2018, Rao et al.
2019). The results of the regression task of predicting the log-
fluorescence of proteins (dataset 5) are demonstrated in
Fig. 4b (Sarkisyan et al. 2016, Rao et al. 2019). Figure 4c
shows the results of the proteins stability regression task
(dataset 6) (Rocklin et al. 2017, Rao et al. 2019). The results
of training the transformers on the tokenized data were com-
pared to the previously published results of ProteinBERT
(Brandes et al. 2022), TAPE (Rao et al. 2019), and LSTM
(Rao et al. 2019) without their pretraining. Comparing the
TAPE transformer with one of the transformer that used a
data-driven tokenizer, specifically WordPiece with the 400
tokens, revealed that the latter was both more accurate and
used less tokens in all three computational tasks (Fig. 4). Of

6 Dotan et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae196/7645044 by guest on 05 June 2024

http://arxiv.org/abs/1703.01365
https://doi.org/10.1038/nbt.3988

note, TAPE includes seven times more free parameters than
the transformer using WordPiece. Carefully examining the
performance of ProteinBERT (Brandes et al. 2022) reveals it
has the best performance on the fluorescence (Fig. 4b) and
stability (Fig. 4c) tasks and the lowest performance on the re-
mote homology task. Of note, while the ProteinBERT, LSTM
and TAPE have 16 million (M), 38M, and 38M parameters,
respectively, the remaining transformers studied have only
5M free parameters. One of the main advantages of using the
optimized tokenizers was demonstrated in the fluorescence
task (Fig. 4b), where using dictionaries with a small number

of tokens (such as 3200 for BPE and WordPiece) was able to
significantly reduce the length of the input sequences (by up
to 20-fold) compared to the trivial character-based (“words”)
tokenizers used in ProteinBERT, LSTM, and TAPE.

We compared the various tokenization techniques on two
additional tasks, previously analyzed in the ProteinBERT
study (Brandes et al. 2022): fold prediction and neuropeptide
classification (Fig. 5). For the fold prediction task (Fig. 5a),
we observe a trade-off between the performance and the dic-
tionary size. Of note, the transformer with the Unigram
tokenizer (with 100 tokens) was both more accurate and

Figure 2. Panels (a) and (b) show the results of the trained transformers on the effector and superfamilies (SSF) classification tasks, respectively. A
different color is assigned for each different tokenizer: BPE, WordPiece (WPC), Unigram (UNI), and the baseline tokenizers: “words” and “pairs.” The
dictionary size (Dict size) is demonstrated by the size of the circle. The x-axis indicates the fold-reduction in number of tokens used (i.e. the “length”)
relative to the “words” tokenizer. The y axis indicates the improvement in MCC score relative to the “words” tokenizer. The “word” tokenizer had MCC
scores of 0.43 and 0.942 for the effector and SSF tasks, respectively. The closer the dictionary is to the right upper corner, the better it is, as it has higher
length reduction and higher performance.

Figure 3. Results of the transformers trained on the alignment dataset preprocessed by different tokenizers: BPE, WordPiece (WPC), Unigram (UNI), and
the baseline approaches: “words” and “pairs.” Panels (a) and (b) report the performance as measured by the CS and the coverage, respectively. The
“word” tokenizer had a CS of 0.99 (a), and a coverage of 0.59 (b). Of note, the CS is only computed on valid alignments.

Effect of tokenization on transformers for biological sequences 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae196/7645044 by guest on 05 June 2024

used less tokens than both “words” and ProteinBERT. For
the neuropeptide prediction task, the ProteinBERT trans-
former performed worse (Fig. 5b) than all other transformers.
A single transformer (the WordPiece with 3200 tokens) had
the second-best performance and the highest length reduction
compared to all other methods.

Our results suggest that for some datasets a tradeoff be-
tween accuracy and fold reduction exists, while for some
tasks, using data-driven tokenizers can be beneficial in both
aspects (accuracy and length reduction). In addition, our
results suggest that the ProteinBERT architecture may be
more suited for regression tasks, than to other tasks such as
classification.

3.4 Hyperparameter optimization
We optimized four hyperparameters: the number of layers,
the number of attention heads, the hidden vector size, and the
learning rate. The importance of each hyperparameter and its

influence on performance was tested on the superfamily
classification task (dataset 2). Our results suggest that not
optimizing a hyperparameter only marginally affects perfor-
mance and the order of performance between the various
tokenizers (Fig. 6). The “words” tokenizer consistently
yielded the lowest accuracy in eleven out of twelve tests, and
in the remaining case [Panel (a), layers¼2], it ranked second
lowest. Conversely, three transformers consistently outper-
formed the others across all twelve tests. Specifically, trans-
formers trained with BPE tokenizers with dictionary sizes of
1600 and 3200, along with the WPC tokenizer with a dictio-
nary size of 3200, consistently secured top-three positions in
nine tests.

3.5 Quantifying the difference in performance of
tokenizers compared to the default
We quantified performance differences between the different
tokenizers compared to the default, i.e. the “words”

Figure 4. Evaluating the performance of the different tokenizers and comparing them to the previously tested models: ProteinBERT, LSTM, and TAPE.
The x-axis is the length reduction, and the y-axis is the performance of the transformer trained on the same dataset. Panels (a), (b), and (c) display the
results of datasets 4, 5, and 6, respectively. The “words” tokenizer had an accuracy (ACC) score of 0.101, spearman correlation scores of 0.23 and 0.274
for the remote homology task, fluorescence task and the stability task, respectively.

8 Dotan et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae196/7645044 by guest on 05 June 2024

Figure 5. We evaluated the tokenization on two datasets proposed in ProteinBERT: (a) fold structure classification and (b) neuropeptide identification.
The x-axis and the y-axis refer to the length reduction and the performance, respectively. The “words” tokenizer had an ACC score of 0.59, and an AUC
score of 0.96 for the fold task, neuropeptide task, respectively.

Figure 6. Evaluating the effect of hyperparameters optimization on the different tokenizer approaches. Panels (a), (b), (c), and (d) correspond to not
optimizing one hyperparameter: the number of layers, the number of attention heads, the hidden vector size, and the learning rate, respectively. Within
each panel, each subgraph depicts the effects of fixing the hyperparameter to a different value, while optimizing the other three. The color-coded bars in
the panels represent distinct tokenizer methodologies, the y-axis is the delta MCC from the lowest-performing transformer, which achieved a score of
0.775, and the x-axis is the dictionary size.

Effect of tokenization on transformers for biological sequences 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae196/7645044 by guest on 05 June 2024

tokenizer. Consider for example the UNI tokenizer. For data-
set 1, we have performance with different dictionary sizes.
We selected the dictionary size that resulted in the best per-
formance. We repeated this procedure for all other datasets.
Thus, we have nine performance values for UNI (eight differ-
ent datasets, but for dataset 3, we have two performance val-
ues, one for coverage and one for alignment accuracy). We
next compared the 9-tuple performance vector of UNI
against the 9-tuple performance vector of “words” using the
Wilcoxon test (Wilcoxon 1945, https://doi.org/10.2307/
3001968). The results suggest that UNI significantly outper-
forms “words” (P¼ .011). Similar significant results were
obtained for BPE and WPC (P ¼ :035, :004, respectively).
The “pairs” tokenizer was not significantly better than
“words” (P¼ .2). These results highlight the benefit of using
data-driven tokenizers.

3.6 Identification of contributing signals and their
visualization
One of the key disadvantages of using transformers is that
they are highly nonlinear and difficult to interpret. Biological
sequences contain signals in specific locations that are impor-
tant for determining their structure and function. Identifying
these signals remains a challenge. Better understanding of
these signals should result in a better mapping between a pro-
tein sequence and its structure and function, thus contribut-
ing to protein function prediction, classification, and design
of novel proteins. By training a transformer to predict specific
classes, we could apply interpretation tools to identify those
signals. Figure 7 displays the resulting interpretation of each
superfamily, specifically enrichment and depletion of specific
tokens as a function of the protein length. For example, a
“PKK” at the N terminus of a protein suggests it belongs to
the superfamily SSF101152. One of the key differences from
the signatures that appear in Pfam (Mistry et al. 2021) is that
here we do not rely on a multiple sequence alignment, thus
accounting for variability in the position of specific tokens
along the length of the protein. In addition, dependencies
among tokens are accounted for. Finally, depleted tokens can
be identified, e.g. the presence of the token “ER” at the N ter-
minus of proteins suggests it is not SSF100879.

3.7 Tokenizing the BFD dataset
In our previous experiments, we showed the effect of tokeniz-
ing the input on specific tasks, i.e. for each task we trained
data-specific tokenizers. Here, we aimed to train tokenizers
on a very large dataset, which may be important in cases
where there are not enough sequences for a specific task, or
as input for the next generation of biological pre-trained
models. To this end, we trained BPE, WordPiece, and
Unigram tokenizers on samples of proteins from the 2:2 bil-
lion protein sequences of the BFD dataset (Steinegger and
S€oding 2018). We evaluate the average sequences length as a
function of the vocabulary size and number of sequences in
the training data (Fig. 8). Increasing the size of the vocabu-
lary resulted in a sharp decrease in the average numbers of
tokens per protein, thus enabling processing longer biological
sequences with the similar memory requirement. In addition,
the increase of the training data resulted in smaller values of
tokens per protein. The average number of tokens per protein
converged after training on 1 000 000 samples. When using
the largest dictionaries (51 200 tokens), the BPE, WordPiece,
and Unigram reduced the average length by 15:6%, 16:8%,

and 14:9%, respectively. Among all tokenizers, Unigram was
most influenced by the training and vocabulary sizes: it has
the highest number of tokens per proteins (182.4) when using
small training size (1000 sequences) and 100 tokens in the
vocabulary. Yet, when the training data was 107 sequences
and the dictionary size higher than 50 000 tokens, it
obtained the best average length (53:1 tokens for protein).

3.8 Comparing specific versus general data-
driven tokenizers
Above we trained two types of data-driven tokenizers. The
first type, which we term “specific,” was trained on small
datasets (e.g. effectors), while the second type, which we term
“general” was trained on very large number of protein sequen-
ces, not related to a specific computational task. We next
aimed to determine whether it is beneficial, for specific tasks,
to use general versus specific data-driven tokenizers. To this
end, we compared the performance between the specific and
the general versions of the trained transformers BPE, Unigram,
and WordPiece on seven computational tasks (the alignment
task is based on nucleotide rather than protein sequences and
was hence not included here). For all tasks, the specific type
outperformed the general type, and the results were statisti-
cally significant for six out of the seven tasks (Fig. 9). For
some tasks such as the remote homology task, using the gen-
eral tokenizers resulted in very poor performance compared to
the specific tokenizers. We hypothesize that tasks involving
proteins with similar domains would be more affected by using
task-specific tokenizers, while tasks encompassing proteins
across the tree of life would likely show similar results to those
using the BFD-trained tokenizers.

4 Discussion
Our results clearly indicate that data-driven tokenization of
biological datasets can improve performance. This was dem-
onstrated for all tested datasets and for all types of analyses
(classification, regression, and sequence-to-sequence).
However, no single tokenization method was optimal for all
datasets, emphasizing the need to evaluate different token-
izers for each data and learning task.

K-mers were extensively used in bioinformatics and related
machine-learning applications (Alam and Chowdhury 2020,
https://doi.org/10.1371/journal.pone.0239381, ValizadehAslani
et al. 2020, https://doi.org/10.3390/biology9110365, Orozco-
Arias et al. 2021, https://doi.org/10.7717/peerj.11456). A bio-
logical sequence can be represented as a vector, in which each
entry counts the number of occurrences of a specific K-mer (and
the size of that vector corresponds to the total number of possi-
ble K-mers). Such a vector can be considered as a set of features
that embeds the sequence. As the size of the vector may be large,
when K is high, feature selection is usually applied to maintain
only informative K-mers, e.g. Orozco-Arias et al. (2021).
Representing a sequence as a vector of K-mer frequencies is in-
herently different from the process of embedding as used in cur-
rent NLP research. In NLP-based embedding, additional
information regarding both the position and the context of the
different tokens is stored (Dufter et al. 2022, https://doi.org/10.
1162/coli_a_00445). As shown in our work, NLP-based embed-
ding can be accomplished using different tokenization methods,
and one method to tokenize biological sequence is to use a dic-
tionary comprising all K-mers of a fixed size (the “words” and
“pairs” tokenization methods). It is thus important to

10 Dotan et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae196/7645044 by guest on 05 June 2024

https://doi.org/10.2307/3001968
https://doi.org/10.2307/3001968
https://doi.org/10.1371/journal.pone.0239381
https://doi.org/10.3390/biology9110365
https://doi.org/10.7717/peerj.11456
https://doi.org/10.1162/coli_a_00445
https://doi.org/10.1162/coli_a_00445

distinguish K-mer based feature representation of a biological
sequence from K-mer based NLP-style embedding. Of note, our
results show that using a fixed size K-mer for NLP-style embed-
dings is inferior to using data-driven tokenizers.

Transformers often cannot analyze sequences above a spe-
cific threshold length. It is common to segment longer

sequences to subsequences shorter than this threshold, thus
bypassing this restriction. However, this fragmentation pro-
hibits the model from analyzing the entire input data, and
can thus potentially decrease performance. Our results show
that fragmentation can sometimes be avoided by tokenizing
the data, i.e. tokenization allows architectures to expend their

Figure 7. Visualizing the important features of each of the superfamilies. Each of the nine graphs correspond to a different family. In each graph, the x-
axis is the amino-acid position, and the y-axis the number of sequences that had an important feature in this position. In addition, we applied distinct
colors to the x-axis corresponding to the ascending values. We added labels with specific tokens if they are repeated in several different sequences. The
graphs were created by 100 test protein sequences for each superfamily.

Effect of tokenization on transformers for biological sequences 11

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae196/7645044 by guest on 05 June 2024

Figure 8. Effect of vocabulary size and number of training samples on the three tokenizers: BPE, WordPiece, and Unigram. The darker the color the
higher the average number of tokens per protein. Increasing the vocabulary and the training size reduces the number of tokens per protein for all of the
tested tokenizers.

12 Dotan et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae196/7645044 by guest on 05 June 2024

capacity to substantially longer proteins and DNA sequences,
as was recently shown in DNABERT-2 (Zhou et al. 2023,
https://doi.org/10.48550/arXiv.2306.15006).

In this study, we also demonstrated that important biologi-
cal information can be extracted for post-analysis of trained
models applied to specific learning tasks. For example, we

Figure 9. Comparing the performance of transformer trained on data encoded by specific trained tokenizers (“Specific”) and tokenizers trained on the
BFD dataset (“General”). The evaluation was conducted on seven datasets, utilizing three tokenizer types: BPE, Unigram, and WordPiece. For each
tokenizer, multiple vocabulary sizes were tested: 100, 200, 400, 800, 1600, and 3200. Each task is individually colored to facilitate comparison. To
quantify the differences between the general and specific tokenizers, we performed paired t-tests and obtained the following P-values: 8:23×10� 11,
0:001, 5:07×10� 18, 0:0016, 0:356, 0:0004, 0:025, for datasets 1, 2, 4, 5, 6, 7, and 8, respectively. Of note, in this comparison, we only tested a single
configuration of learning rate, with a value of 0.0001.

Effect of tokenization on transformers for biological sequences 13

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae196/7645044 by guest on 05 June 2024

https://doi.org/10.48550/arXiv.2306.15006

could detect specific signatures for protein superfamily classi-
fication. One of the benefits of the proposed approach com-
pared to motifs in the form of profile hidden Markov models
is that it does not rely on a multiple sequence alignment,
which may be unreliable, especially when highly diverged
sequences are analyzed.

In this study, we examined the impact of tokenization at
the molecular level. We hypothesize that tokenization has the
potential to be applied to various forms of discrete biological
data, such as genes (Miller et al. 2022). In addition, the incor-
poration of character compression into classical algorithms
used in biology, such as Blast [Altschul et al. 1990, https://
doi.org/10.1016/S0022-2836(05)80360-2] and Kraken-2
(Wood et al. 2019, https://doi.org/10.1186/s13059-019-
1891-0), should be considered in order to decrease run-
ning times.

This work represents the initial phase of studying how
tokenization impacts biological language models. Our study
demonstrates that data-driven tokenizers should be consid-
ered, both for accuracy and for length reduction. Our work
also shows that there is no single data-driven tokenizer that
outperformed all the others. We demonstrate that the effect
of tokenizing the sequence depends on the specific task, the
data type and size, and the tokenization algorithm applied. In
future work, it would be interesting to compare Large
Biological Models (LBMs) performance which were pre-
trained with various tokenization algorithms, i.e. we specu-
late that in the future there will be several alternative LBMs,
each pretrained with a different tokenization algorithm, and
users can test which LBM is best suited to their computa-
tional task. Our study further suggests that future studies
comparing the performance of new emerging transformer
architectures on biological data, should include different
tokenizers as a critical component in their evaluation.

Conflict of interest
None declared.

Funding
This work was supported by an Azrieli Foundation Early
Career Faculty Fellowship to Y.B. This work was supported
in part by a fellowship from the Edmond J. Safra Center for
Bioinformatics at Tel Aviv University to E.D. This work was
also supported by the Israel Science Foundation [2818/21 to
T.P., 448/20 to Y.B.].

Data availability
Code, data, and trained tokenizers are available on https://
github.com/technion-cs-nlp/BiologicalTokenizers.

References
Alam MNU, Chowdhury UF. Short K-Mer abundance profiles yield ro-

bust machine learning features and accurate classifiers for RNA vi-
ruses. PLoS One 2020;15:e0239381.

Alharbi WS, Rashid M. A review of deep learning applications in hu-
man genomics using next-generation sequencing data. Hum
Genomics 2022;16:26.

Altschul SF, Gish W, Miller W et al. Basic local alignment search tool. J
Mol Biol 1990;215:403–10.

Andreeva A, Kulesha E, Gough J et al. The SCOP database in 2020: ex-
panded classification of representative family and superfamily
domains of known protein structures. Nucleic Acids Res 2020;
48:D376–82.

Brandes N, Ofer D, Peleg Y et al. ProteinBERT: a universal deep-
learning model of protein sequence and function. Bioinformatics
2022;38:2102–10.

Burbach J, Peter H. Neuropeptides from concept to online database
www.neuropeptides.nl. Eur J Pharmacol 2010;626:27–48.

Devlin J, Chang M-W, Lee K et al. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: Proceedings of
the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
MN: Association for Computational Linguistics, 2019, 4171–86.

Dotan E, Belinkov Y, Avram O et al. Multiple sequence alignment as a
sequence-to-sequence learning problem. In: The Eleventh
International Conference on Learning Representations (ICLR),
Kigali, Rwanda. 2023.

Dufter P, Schmitt M, Sch€utze H. Position information in transformers:
an overview. Comput Linguist 2022;48:733–63.

Eraslan G, Avsec �Z, Gagneur J et al. Deep learning: new computational
modelling techniques for genomics. Nat Rev Genet 2019;
20:389–403.

Gage P. A New Algorithm for Data Compression. C Users J 1994;12
(2):23–38.

Hou J, Adhikari B, Cheng J. DeepSF: deep convolutional neural net-
work for mapping protein sequences to folds. Bioinformatics 2018;
34:1295–303.

Ji Y, Zhou Z, Liu H et al. DNABERT: pre-trained bidirectional encoder
representations from transformers model for DNA-language in ge-
nome. Bioinformatics 2021;37:2112–20.

Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure pre-
diction with AlphaFold. Nature 2021;596:583–9.

Kokhlikyan N, Miglani V, Martin M et al. Captum: a unified and ge-
neric model interpretability library for PyTorch. arXiv,
arXiv:2009.07896v1, 2020, preprint: not peer reviewed.

Koumakis L. Deep learning models in genomics; are we there yet?
Comput Struct Biotechnol J 2020;18:1466–73.

Kudo T. Subword regularization: improving neural network translation
models with multiple subword candidates. In: Proceedings of the
56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Melbourne, Australia.
Association for Computational Linguistics, 66–75. 2018.

Kulmanov M, Khan MA, Hoehndorf R et al. DeepGO: predicting pro-
tein functions from sequence and interactions using a deep
ontology-aware classifier. Bioinformatics 2018;34:660–8.

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;
521:436–44.

Lin T, Wang Y, Liu X et al. A survey of transformers. AI Open 2022;
3:111–132.

List J-M, Sylvestre Pathmanathan J, Lopez P et al. Unity and disunity in
evolutionary sciences: process-based analogies open common re-
search avenues for biology and linguistics. Biol Direct 2016;11:39.

Loewenthal G, Rapoport D, Avram O et al. A probabilistic model for
indel evolution: differentiating insertions from deletions. Mol Biol
Evol 2021;38:5769–81.

Markowitz VM, Chen I-MA, Palaniappan K et al. IMG: the integrated
microbial genomes database and comparative analysis system.
Nucleic Acids Res 2012;40:D115–22.

Matthews BW. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochim Biophys Acta 1975;
405:442–51.

Miller D, Stern A, Burstein D. Deciphering microbial gene function us-
ing natural language processing. Nat Commun 2022;13:5731.

Mistry J, Chuguransky S, Williams L et al. Pfam: the protein families
database in 2021. Nucleic Acids Res 2021;49:D412–9.

Notti RQ, Stebbins CE. The structure and function of type III secretion
systems. Microbiol Spectr 2016;4.

14 Dotan et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae196/7645044 by guest on 05 June 2024

https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-019-1891-0
https://github.com/technion-cs-nlp/BiologicalTokenizers
https://github.com/technion-cs-nlp/BiologicalTokenizers

Nurk S, Koren S, Rhie A et al. The complete sequence of a human ge-
nome. Science 2022;376:44–53.

Ofer D, Linial M. NeuroP ID: a predictor for identifying neuropeptide
precursors from metazoan proteomes. Bioinformatics 2014;
30:931–940.

Orozco-Arias S, Candamil-Cort�es MS, Jaimes PA et al. K-Mer-based
machine learning method to classify LTR-retrotransposons in plant
genomes. PeerJ 2021;9:e11456.

Ott M, Edunov S, Baevski A et al. fairseq: A Fast, Extensible Toolkit for
Sequence Modeling. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics (Demonstrations), Minneapolis, Minnesota,
2019, 48–53.

Penn O, Privman E, Landan G et al. An alignment confidence score cap-
turing robustness to guide tree uncertainty. Mol Biol Evol 2010;
27:1759–67.

Radford A, Narasimhan K, Salimans T et al. Improving language un-
derstanding by generative pre-training. OpenAI Research
Papers. 2018.

Rao R, Bhattacharya N, Thomas N et al. Evaluating protein transfer learn-
ing with TAPE. Adv Neural Inf Process Syst 2019;32:9689–701.

Rao RM, Liu J, Verkuil R et al. MSA transformer. In: Proceedings of
the 38th International Conference on Machine Learning, virtual
event. PMLR. 2021, 8844–56.

Richard G-F, Kerrest A, Dujon B. Comparative genomics and molecular
dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev
2008;72:686–727.

Rocklin GJ, Chidyausiku TM, Goreshnik I et al. Global analysis of pro-
tein folding using massively parallel design, synthesis, and testing.
Science 2017;357:168–75.

Rudas A, Chiang JN, Corradetti G et al. Automated large-scale predic-
tion of exudative AMD progression using Machine-Read OCT bio-
markers. PLOS Digit Health 2023;2:e0000106.

Sarkisyan KS, Bolotin DA, Meer MV et al. Local fitness landscape of
the green fluorescent protein. Nature 2016;533:397–401.

Schuster M, Nakajima K. Japanese and Korean voice search. In: 2012
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Kyoto, Japan. 2012, 5149–52.

Sennrich R, Haddow B, Birch A. Neural machine translation of rare
words with subword units. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), Berlin, Germany: Association for Computational
Linguistics. 2016, 1715–25.

Steinegger M, S€oding J. MMseqs2 enables sensitive protein sequence
searching for the analysis of massive data sets. Nat Biotechnol
2017;35:1026–8.

Steinegger M, S€oding J. Clustering huge protein sequence sets in linear
time. Nat Commun 2018;9:2542.

Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep net-
works. In: Proceedings of the 34th International Conference on
Machine Learning (ICML), Sydney, Australia. 2017, 3319–28.

Talukder A, Barham C, Li X et al. Interpretation of deep learning in ge-
nomics and epigenomics. Brief Bioinform 2021;22:bbaa177.

ValizadehAslani T, Zhao Z, Sokhansanj BA et al. Amino acid K-Mer
feature extraction for quantitative antimicrobial resistance (AMR)
prediction by machine learning and model interpretation for biolog-
ical insights. Biology (Basel) 2020;9:365.

Van Noorden R, Maher B, Nuzzo R. The top 100 papers. Nature 2014;
514:550–3.

Vaswani A, Shazeer N, Parmar N et al. Attention is all you need. In:
31st Conference on Neural Information Processing Systems (NIPS),
Long Beach, California, USA. 2017.

Voulodimos A, Doulamis N, Doulamis A et al. Deep learning for com-
puter vision: a brief review. Comput Intell Neurosci 2018;
2018:7068349.

Wagner N, Alburquerque M, Ecker N et al. Natural language process-
ing approach to model the secretion signal of type III effectors.
Front Plant Sci 2022;13:1024405.

Wilcoxon F. Individual comparisons by ranking methods. Biometrics
Bull 1945;1:80–3.

Wolf T, Debut L, Sanh V et al. Transformers: state-of-the-art natural
language processing. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System
Demonstrations. Online: Association for Computational
Linguistics. 2020, 38–45.

Wood DE, Lu J, Langmead B. Improved metagenomic analysis with
kraken 2. Genome Biol 2019;20:257.

Yu L, Kumar Tanwar D, Penha EDS et al. Grammar of protein domain
architectures. Proc Natl Acad Sci USA 2019;116:3636–45.

Zhou Z, Ji Y, Li W et al. DNABERT-2: efficient foundation model and
benchmark for multi-species genome. In: The Twelfth International
Conference on Learning Representations (ICLR), Vienna
Austria. 2023.

The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–15
https://doi.org/10.1093/bioinformatics/btae196
Original Paper

Effect of tokenization on transformers for biological sequences 15

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae196/7645044 by guest on 05 June 2024

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Conflict of interest
	Funding
	Data availability
	References

