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Abstract
The computational search for the maximum-likelihood phylogenetic tree is an NP-hard problem. As such, current 
tree search algorithms might result in a tree that is the local optima, not the global one. Here, we introduce a para-
digm shift for predicting the maximum-likelihood tree, by approximating long-term gains of likelihood rather than 
maximizing likelihood gain at each step of the search. Our proposed approach harnesses the power of reinforcement 
learning to learn an optimal search strategy, aiming at the global optimum of the search space. We show that when 
analyzing empirical data containing dozens of sequences, the log-likelihood improvement from the starting tree 
obtained by the reinforcement learning–based agent was 0.969 or higher compared to that achieved by current 
state-of-the-art techniques. Notably, this performance is attained without the need to perform costly likelihood 
optimizations apart from the training process, thus potentially allowing for an exponential increase in runtime. 
We exemplify this for data sets containing 15 sequences of length 18,000 bp and demonstrate that the reinforcement 
learning–based method is roughly three times faster than the state-of-the-art software. This study illustrates the 
potential of reinforcement learning in addressing the challenges of phylogenetic tree reconstruction.

Key words: phylogenetics, reinforcement learning, machine learning, artificial intelligence, evolution, molecular 
biology.
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Introduction
A phylogenetic tree is a hypothesis regarding the evolu-
tionary relations among the studied sequences or organ-
isms. Reconstructing a phylogenetic tree for a group of 
organisms has been a fundamental challenge in evolution-
ary research since Darwin’s time. Inferred phylogenies hold 
a great amount of information regarding the underlying 
evolutionary process, and their accurate inference is critic-
al for numerous downstream analyses spanning molecular 
evolution, ecology, and genomics. Leading approaches for 
phylogeny reconstruction rely on probabilistic evolution-
ary models that describe the stochastic processes of nu-
cleotide, amino acid, and codon substitutions (Yang 
2007). Under the maximum-likelihood paradigm of phyl-
ogeny reconstruction, the tree topology, its associated 
branch lengths, and parameters that dictate the substitu-
tion rates and the site-specific evolutionary rates are opti-
mized for a given multiple sequence alignment (MSA). 
Notably, the number of possible tree topologies increases 

super-exponentially with the number of sequences. When 
only a few dozen of sequences are analyzed, there are al-
ready billions of alternative phylogenetic tree topologies 
that could potentially describe their evolutionary relation-
ships, rendering the search for the best tree algorithmically 
challenging.

The computational search for the maximum-likelihood 
tree topology was previously shown to be NP-hard (Chor 
and Tuller 2005). Thus, tree search methodologies rely 
on a specified heuristic strategy, which must balance ac-
curacy and running time. At present, heuristics employed 
by the community depend on the intuition of the algo-
rithm developers and their expert knowledge regarding 
the phylogenetic search space. These are usually based 
on a hill-climbing rearrangement algorithm that defines 
neighboring trees (Whelan 2007). Typically, a search algo-
rithm begins from an initial tree and iteratively replaces 
the current one via rearrangement to a neighbor with a 
higher likelihood, until no better neighbor can be found. 
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This procedure results in a tree that is locally better than 
all its neighbors, but this tree might not be the global op-
timum. In order to increase the probability of finding the 
global optimum tree, several techniques have been consid-
ered, e.g. initiating the search from multiple starting 
points, applying simulated annealing (that accepts sub-
optimal moves with a certain probability) (Stamatakis 
2005), and employing genetic algorithms (in which differ-
ent areas of the search space are being explored through 
the use of crossover, mutation, and selection operators 
on a population of candidate solutions) (Lewis 1998). 
Our aim here is not to devise a specific novel search strat-
egy, but rather, devise an artificial intelligence (AI) frame-
work, which automatically searches among alternative 
strategies (policies hereafter) for an optimal one. This 
framework views the strategy as an evolving entity, which 
is continuously optimized based on experience, i.e. training 
data.

Machine learning has been applied to multiple tasks in 
biology, including molecular biology, evolutionary, and ecol-
ogy research (Tarca et al. 2007; Schrider and Kern 2018; 
Suvorov et al. 2020; Zou et al. 2020; Azouri et al. 2021; 
Haag et al. 2022; Zaharias et al. 2022). Reinforcement learn-
ing (RL) is a subfield of machine learning that is focused on 
learning to optimize long-term goals. Over the years, RL has 
had many successes, from playing backgammon (in the 
1990s) to playing Go and Atari games (in recent years). RL 
applications are usually modeled as a Markov decision pro-
cess, in which an agent (an RL learner) interacts with its en-
vironment (the representation of the problem space) in 
discrete time steps. In each step, the agent chooses an action 
(a move) to be taken given the current state. The transition 
between the current state and the next state is influenced 
by the agent’s action, which can be deterministic or stochas-
tic. Another component of RL is a numeric feedback termed 
“the reward,” which depends on the current state and on 
the action taken. Given a sequence of rewards, the return 
function aggregates multiple rewards to one objective cri-
terion, which implicitly defines the goal of the learner (to 
maximize “the return”). Popular returns include the finite 
horizon (H) return, which considers only the first H returns, 
for some parameter H, and the discounted return, which 
weights the reward at time t by γt for some discount factor 
γ < 1.

The learner’s main task is to select actions that would 
maximize the return. This is done through a policy, which 
is a mapping from states to actions, such that given a cur-
rent state the policy selects an action. For any given policy, 
a value function can be computed, which is the expected 
return from each state. Our task is to identify the optimal 
policy, which induces an optimal value function. It is well 
known that there always exists a deterministic optimal 
policy. We will consider terminating environments in which 
the interaction terminates eventually. The sequence of 
states, actions, and rewards from the start state until ter-
mination is called an episode.

The RL characteristics of exploratory search and delayed 
reward, together with the capability of optimizing a 

sequence of actions (i.e. a policy) for the task of interest, 
distinguish RL from other domains of machine learning 
(Sutton and Barto 1998; Szepesvári 2010). Accordingly, 
RL is beneficial in environments where the task is aimed 
at reaching a winning state at the end of a procedure, ra-
ther than aimed at optimizing some myopic (or immedi-
ate) reward. When applied to the task of phylogeny 
inference, RL should allow taking nongreedy steps, which 
nevertheless, should allow reaching the optimal tree in 
the fewest number of steps. This is equivalent, for example, 
to allowing a chess player to make apparently suboptimal 
moves, such as sacrificing the queen, in order to win 
the game in the following several moves. Generally, a low 
(immediate) reward may still lead to an optimal terminal 
state. Thus, to develop and characterize a full RL algorithm 
for phylogenetic tree inference, it is necessary to design the 
algorithm based on a long-term plan by taking into ac-
count not only the immediate rewards but more import-
antly the future ones.

Setting an RL representation of the phylogenetic tree 
search dynamics requires a tailored representation of 
both the tree topology with branch length estimates and 
the possible actions to be taken, as well as deriving a mean-
ingful immediate reward function. In the phylogeny 
context, the reward is based on the likelihood change re-
sulting from a local modification of the tree, i.e. the 
log-likelihood difference between the next and current 
state (termed hereafter “likelihood score”). Likewise, a va-
lue function considers the entire search path, namely the 
estimated likelihood scores of subsequent moves.

The RL-based algorithm introduced in this study is 
based on optimizing a policy for phylogenetic tree search, 
with the aim to identify the optimal tree for a given MSA in 
terms of its likelihood score, relying on previous AI techni-
ques to estimate the likelihood function without actually 
calculating it (Azouri et al. 2021). We modeled the phylo-
genetic tree search problem in a similar way as RL naviga-
tion to the highest point on a grid. Defining the grid 
(environment) as all possible topologies, the state of the 
agent is the current location, and the action is the move 
to a new location. The transitions in the environment 
are deterministic. An optimal policy of an agent would 
therefore be to reach the topology with the maximum- 
likelihood score, while taking the minimal number of steps. 
To account for the length of the path the agent takes till 
reaching the optimal topology, a discount factor γ is set 
(see Equation 2 in Materials and Methods). The discount 
factor in RL determines the weight the agent assigns to re-
wards in the distant future relative to those in the imme-
diate future. If γ = 0, the agent will be completely myopic 
and only optimize an immediate reward. If γ = 1, the agent 
will evaluate each of its actions equally, based on the sum 
of all its future rewards, thus aiming to reach the optimal 
configuration but disregarding the number of steps. In the 
implementation described here, a discount factor 0 < γ < 
1 was used as a hyperparameter, which provides an algo-
rithmic incentive to reach the higher likelihood topologies 
earlier in the trajectory, such that the optimal policy (given 
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a certain γ value) corresponds to finding the shortest path 
from the initial topology to the final topology. The dis-
counted cumulative reward is updated recursively accord-
ing to Bellman’s equation (Puterman 1994) and is 
estimated using a Q-network (Mnih et al. 2015).

The Q-network, and thus the proposed RL framework, 
should receive as input a vectorized representation of 
the states and actions in order to estimate the value func-
tion. The representation we designed to suit these require-
ments is based on a set of tree features that were 
previously shown to effectively characterize a state–action 
pair in the context of a likelihood-based phylogeny recon-
struction (Azouri et al. 2021). Specifically, we represented 
each state–action pair the agent came across during train-
ing and testing by calculating 27 features (supplementary 
table S1, Supplementary Material online) that are based 
on the current tree topology, its branch-length estimates, 
and a certain subtree pruning and regrafting (SPR) move 
(Wooding 2004) to a neighboring phylogenetic tree, by 
pruning a subtree from the current tree and regrafting it 
to the remaining tree (see Materials and Methods). After 
each move, i.e. an SPR modification to the current tree, 
the agent arrives to a new location in the tree space until 
reaching a predefined end of an episode (see Fig. 1 for a 
schematic flowchart of the RL framework applied in this 
study).

The goal of an RL agent is to learn a policy that would 
make optimal decisions in any given state of the environ-
ment. The optimization is performed during a training 

phase in which an agent plays numerous episodes, allowing 
it to collect relevant observations (i.e. transitions). That is, 
by exploring the dynamics of the environment the agent 
learns the optimal mapping between states and actions 
for maximizing the long-term reward signal (Sutton and 
Barto 1998). An important issue that needs to be tackled 
when developing an RL algorithm, as opposed to other 
types of learning, is how to balance the known trade-off 
between exploration and exploitation during the training 
phase. That is, in order to reach beneficial surfaces of 
high likelihood, the agent has to exploit the good transi-
tions in the tree space it had already experienced. At the 
same time, it also has to explore unseen transitions, per-
haps some that decrease the immediate likelihood gain, 
in order to make better selection of actions in the future. 
This was tackled using a known RL technique to sample an 
action based on its predicted benefit, while allowing some 
exploration.

Here, we developed an RL strategy for the task of search-
ing for the maximum-likelihood phylogeny. Our method 
introduces novel approaches for tackling the NP-hard 
problem of maximum-likelihood tree search by optimizing 
the exploration strategy itself, which inherently considers 
suboptimal steps to be taken if they are expected to be 
beneficial in the long run. Additionally, our method does 
not require the direct time-consuming calculation of the 
likelihood function in order to predict an optimal tree. 
Furthermore, the computational resources needed for 
using this approach for phylogeny prediction are hardly 

Fig. 1. Modeling phylogenetic tree search as RL framework. A schematic flowchart of the RL framework applied in this study. Given an empirical 
sequence data set, the environment represents all phylogenetic tree topologies (states), their possible single-step SPR moves (actions), and the 
scaled log-likelihood difference between phylogenetic trees (rewards). We first extracted feature vectors that represent a state with its actions. 
These were then fed into the agent’s neural network, which outputs a prediction for the best action to be taken in the agent’s state, accounting 
for both immediate and future rewards. The reward (ΔLL; the scaled log-likelihood change) obtained following the action conducted was then 
stored, as part of the transition data, in the agent’s memory buffer, to be later sampled during the agent’s training.
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influenced by the input sequence length. In the following, 
we first study the potential benefit of looking beyond a sin-
gle step when using the classic hill-climbing optimization 
strategy and demonstrate that taking suboptimal moves 
can regularly lead to better trees in a subsequent step. 
Then, a framework based on deep-Q-learning (Mnih 
et al. 2015) for predicting the optimal tree for a given 
MSA is introduced. We demonstrate the application of 
the developed method on a set of unseen data, i.e. on un-
seen RL environments defined by nucleotide MSAs of up 
to 20 sequences. Importantly, both training and testing 
rely on empirical data, which were previously shown to 
be more challenging for phylogeny reconstruction com-
pared to simulated data (Edwards 1995; Huelsenbeck 
1995; Abdo et al. 2005; Abadi et al. 2019). Our results 
show that for this search space, the likelihood scores of 
the inferred phylogenies are comparable to those obtained 
from widely used methods. We then explore the feasibility 
of applying an agent that was trained on a certain data size 
on different sizes of the search spaces.

Results
The Potential Benefit of a Nongreedy Search Strategy 
for Phylogenetic Reconstruction
The strength of RL lies in its ability to take actions that are 
suboptimal in the short term for optimizing a long-term 
reward. To assess the potential benefit of RL in the context 
of phylogeny-tree search, we examined a large number of 
two-step trajectories. We computed the percentage of 
moves in which choosing two consecutive greedy moves 
(i.e. choosing the best single-step action available at each 
move) would lead to lower likelihood score than choosing 
a nongreedy move, followed by a greedy one. To this end, 
for a set of 13,200 randomly chosen starting trees, we gen-
erated all possible 1,082,400,000 (13,200 × 13,200) two- 
step trajectories. For each starting tree, we located the 
best tree (i.e. the best two-step neighbor) in terms of the 
likelihood score. We then quantified the fraction of start-
ing trees for which the greedy approach was not optimal. 
This analysis revealed that the greedy approach was sub-
optimal in 33% and 41% of the cases for data sets of size 
7 and 12 sequences, respectively. Interestingly, some of 
the intermediate moves that led to trees with higher like-
lihood than the greedy approach were among the worst 
possible first moves (Fig. 2). Although the analysis was 
not prolonged for more than two steps ahead, this result 
implies that the strict stepwise greedy optimization is 
not necessarily the best strategy to traverse the tree top-
ology space, even when the search space is rather limited.

Performance Evaluation of the Proposed RL 
Framework
We developed a tree search framework that is entirely 
based on RL and tested its performance. For training the 
RL model, we assembled a large collection of transition 
data from a database of empirical MSAs (see Materials 

and Methods). We define transition data as all the ob-
served shifts from one state and action combination (re-
ferred to as a “state–action pair”) to a neighboring state 
and action combination, together with the corresponding 
scaled log-likelihood difference between the states. We 
first focused on relatively small data sets (MSAs), contain-
ing at most 12 sequences (i.e. a space size of up to ca. 109 

topologies). For these data sets, for each state the agent 
came across, we explored all possible immediate SPR 
moves during training and testing. For larger data sets 
that contained 15 and 20 sequences (i.e. a space size of 
up to ca. 1020 topologies), we restricted the range of pos-
sible actions from each state in order to make the training 
of agents feasible for the scope of this proof-of-concept 
study (see Materials and Methods).

The RL algorithm aims to optimize the entire search 
path from the starting tree to the global maximum. 
Therefore, throughout this study, we measured the agent’s 
performance at the end of an episode according to the 
improvement the agent achieved relative to the maximal 
observed improvement, i.e. the improvement obtained 
by RaxML-NG (Kozlov et al. 2019) from the same starting 
tree (see Materials and Methods; “The Performance 
Metric”). Thus, an agent that achieved the maximal ob-
served improvement received a score of 1, while an agent 
that achieved an improvement of 150 likelihood points 
relative to the starting tree, but 50 likelihood points less 
than the estimated global maximum, received a score of 
0.75. Under this definition, the performance obtained by 
RaxML is set to 1.

Typical examples of the likelihood improvement as the 
agent progresses in the search space are shown in Fig. 3. In 
these examples, we compared the trajectory of a trained 
agent to two alternative strategies: (i) a hill-climbing 
fully greedy strategy (i.e. evaluating in each move the 
log-likelihood of all possible single-step neighbors using 
RaxML-NG) and (ii) maximum-likelihood search obtained 
by running RaxML-NG (i.e. the final likelihood only); all 
three searches were initiated from the same random 
tree. Three different examples are presented: (i) the RL 
agent did not reach the best-known tree; (ii) the RL agent 
discovered the optimal tree, while taking fewer moves 
than the fully greedy procedure (five compared to six 
moves) by taking suboptimal moves; and (iii) the RL agent 
converged to a better tree than the greedy search.

Accuracy for Data Sets of Relatively Small Size
We evaluated the performance of the trained RL model on 
unseen test data. First, we examined data composed of se-
ven sequences. For this challenge of searching in a space of 
size 103, both the hill-climbing fully greedy strategy and 
our RL model converged to the optimal tree with an aver-
age accuracy of 1 and 0.99999 (95% confidence interval of 
0.999 to 1), respectively. We next evaluated the perform-
ance on a much larger search space, such as that defined 
by MSAs containing 12 sequences (i.e. search space of 
size 654,729,075 topologies). The average accuracy score 
of the fully greedy strategy and the trained model was 
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0.99999 and 0.969, respectively (95% confidence interval of 
0.9999 to 1 and 0.945 to 0.993). This indicates that the 
trained RL agent successfully learns a search strategy 
that can be well generalized for empirical data sets of vari-
ous sources.

The above results were obtained with ten data sets for 
generating the training observations and 2,000 training epi-
sodes. These values were selected by analyzing the depend-
ence between the prediction accuracy on the validation set 
and the number of MSAs used to generate the training 
data, focusing on data sets with 12 sequences. To this 
end, we increased the number of different empirical data 
sets based on which we generated the training observations 
from 1 to 10, 20, and 30 (but keeping the total number of 

episodes and transitions constant) and compared the per-
formances (supplementary fig. S1, Supplementary Material
online; see supplementary data S1, Supplementary Material
online for detailed attributes of the sampled data sets). This 
analysis indicated that using only a single data set for learn-
ing is significantly inferior to all other sizes (P < 0.03 for 
one-way ANOVA test for the means), but using more 
than ten data sets does not significantly improve the per-
formance (P > 0.64 for one-way ANOVA test for the means 
when comparing 10 to 20 and 30 data sets). Consequently, 
ten different empirical data sets were used to collect the 
training data. To further investigate the main factors affect-
ing the performance of the RL agent, we sought to investi-
gate the impact of the number of episodes in the training 

Fig. 2. The ranking percentiles of beneficial suboptimal first moves. The distribution of the percentiles of first moves that led to better trees than 
two-step greedy moves. The top panel presents the outcomes for data sets containing seven species while the bottom panel presents these for 
data sets of 12 sequences. When ranking the moves from the move that improves the likelihood score the best (rank 1) to the worst, the x axis 
denotes the ranking percentile of first moves that in the subsequent move led to better trees than two consecutive greedy moves (i.e. higher 
percentiles imply worst moves). The box inside each violin shows the quartiles of the data set with the white dot being the median, while the 
whiskers extend to show the 1.5 × interquartile range past the low and high quartiles.
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phase on the validation accuracy. The accuracy increased as 
a function of the number of episodes (P < 0.004; Pearson 
correlation coefficient for testing noncorrelation of the 
means), reaching a plateau at around 2,000 episodes. 
Although the increase in accuracy was statistically non-
significant when increasing the number of episodes in the 
range between 1,500 and 5,000 (supplementary fig. S2, 
Supplementary Material online; P > 0.37 for one-way 
ANOVA test for the means), the best accuracy was ob-
tained when 2,000 episodes were used during test. To bal-
ance runtime and accuracy, the results across the entire 
analyses are presented using 2,000 episodes and ten distinct 
empirical MSAs (data sets) to generate the training data.

RL for Large Search Space
Search spaces of data sets containing 15 and 20 sequences 
are of size 7.9 × 1012 and 2.2 × 1020 topologies, respect-
ively. For these data sets, feature extraction of all possible 
neighbors of a given tree, either at the learning stage or 
when searching for the best tree, is computationally de-
manding. Thus, we limited the number of considered 
neighbors of a given state by applying a restriction on 
the SPR moves, considering only local changes in the 
tree topology as commonly performed in various tree 
search heuristics (Stewart et al. 2001; Stamatakis et al. 
2005) (see Materials and Methods). When applying this 
procedure in both training and testing, the average per-
formance of the trained models for 15 sequences was 
0.999 (95% confidence interval of 0.998 to 1.001). This sug-
gests that narrowing the range of possible neighbors should 
be considered as a technique for training RL agents and infer-
ring the phylogenies for data sets with large phylogenetic 

search spaces. When data sets with 20 sequences were con-
sidered, the test accuracy was lower; i.e. the average test per-
formance was 0.89. We speculate that this performance could 
be improved using alternative, more exhaustive, data collec-
tion methodologies (see Discussion).

Employing Pretrained Agents across Data Sizes
Our learning so far concentrated on RL training on data sets 
of specified size. To assess the potential of using agents that 
were trained on a specific data set size to solve the phylo-
genetic search problem for varied number of sequences, 
we sought to apply zero-shot testing (Higgins et al. 2017). 
Specifically, we investigated the predictive power when test-
ing pretrained agents of up to 20 sequences on data sets 
with fewer sequences and found comparable performance 
(Table 1). For example, the performance of a zero-shot 
agent trained on data sets containing 15 sequences on un-
seen environments of data sets containing 12 sequences ob-
tained an averaged accuracy score of 0.973, which is slightly 

Fig. 3. Typical examples of the likelihood gain as the search progresses. a) The case where RL agent did not reach the best-known tree. b) The case 
where the RL agent discovered the optimal tree, while taking fewer moves than the fully greedy procedure. c) The case where the RL agent 
converged to a better tree than the greedy search. The x axis represents the SPR move number, while the y axis represents the log-likelihood 
achieved following each move of a trained agent (dashed line), a hill-climbing-fully greedy strategy (dash-dotted line), and the maximum- 
likelihood score obtained by RaxML-NG (solid line). Different panels represent different tests, on data sets containing 12 sequences a, b) and 
15 sequences c).

Table 1 Accuracy scores of zero-shot experiments

7 12 15 20

7 0.999 … … …
12 0.999 0.969 … …
15 0.998 0.973 0.993 …
20 0.999 0.93 0.993 0.892

The table details the performance of each pretrained agent of a certain data set 
size (row) to each other smaller data set size (column), while the main diagonal 
(italic font) shows the performance values on test data of the same size. Each 
cell shows the accuracy score of the trained model, averaged over the test data 
sets.
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better than that obtained by an agent that was trained and 
tested on an environment of 12 sequences (average accur-
acy of 0.969). Overall, this analysis indicates that a transfer 
between environments of different sizes does exist and 
that this approach could potentially assist in solving varied 
phylogenetic search space environments.

Running Times
In this study, we focused on developing the conceptual as-
pects of RL phylogenetics, and as part of this, we developed 
a prototype implementation. This prototype did not 
undergo cycles of optimization; e.g. a large portion of the 
computational runtime is devoted to feature extraction, 
which in the current version is implemented inefficiently 
in Python. For 15 sequences, for example, the training of 
an RL agent took 600 CPU hours. However, once the agent 
is trained, the time required to predict the optimal tree 
takes a few seconds. Specifically, we compared the runtime 
required to reconstruct the optimal tree to that of 
RaxML-NG. For data sets with 15 sequences, running the 
trained agent took 8.7 s on average (ranged between 8.4 
and 9.3 s), of which, 7 s for extracting the features, and 
1.7 s for all other computational tasks, e.g. estimating the Q 
function. Noticeably, the running time does not depend on 
MSA length (Fig. 4). For the same data sets, the likelihood 
computation of RaxML-NG took 8.7 s on average, but these 
varied widely from less than half a second for short MSAs (up 

to 800 bp) to 18 s for very long ones (more than 16,500 bp). 
The same trend was observed when data sets with 20 se-
quences were considered (Fig. 4).

Discussion
For many biological domains, spanning diverse fields such 
as ecology, genomics, systematics, and epidemiology re-
search, an accurate inference of the underlying phylogeny 
is indispensable. As such, the development of more accur-
ate phylogeny reconstruction techniques is an ongoing ef-
fort that continuously progressed with the type and size of 
data analyzed, the computational resources available, and 
algorithmic developments. Numerous computational 
techniques were imported from the fields of statistics 
and computer science to improve phylogenetic tree recon-
struction. These include treating character evolution as a 
Markov process (Felsenstein 1981), Branch-and-Bound 
(Hendy and Penny 1982), Markov chain Monte-Carlo 
(Yang and Rannala 1997), genetic algorithms (Lewis 
1998), simulated annealing (Stamatakis 2005), and more 
recently, machine learning (Suvorov et al. 2020; Zou 
et al. 2020; Azouri et al. 2021; Zhicheng et al. 2023). 
Despite these improvements, commonly used algorithms 
still lack the ability to provide an optimal solution. In 
this study, we propose an out-of-the-box AI approach 
for phylogenetic reconstruction, namely, RL.

Fig. 4. Running time. The average inference running time in seconds (y axis) relative to the length of the sequences analyzed (x axis; 100 data 
points binned to 17 groups). In solid line and dashed line are the average running times of inferring the optimal tree for data sets with 15 se-
quences using the RL trained agent and RaxML-NG (with the same single-random-starting point), respectively. Similarly, in dash-dotted line and 
dotted line are the running times for data sets containing 20 sequences, of the RL agent and RaxML-NG, respectively.
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The idea of introducing RL algorithms to the task of 
finding the optimal phylogenetic tree is based on the con-
cept of optimizing a strategy for the tree search, rather 
than incrementally optimizing the likelihood gain within 
a series of steps. RL includes several aspects that together 
could prove particularly beneficial to phylogeny inference. 
First, similar to simulated annealing, it allows taking sub-
optimal steps as part of the search strategy. Our results 
above demonstrate that this often enables more efficient 
convergence to optimal trees. Second, and unlike any 
other existing approach, our algorithm directly optimizes 
a policy based on empirical training data, without the 
need of predetermined heuristics. This means that an 
agent can decide to be greedy or to take suboptimal moves 
according to the specific characteristics of the data and the 
specific position in the tree space. Third, our agent moves 
without optimizing the likelihood directly, potentially 
reducing running time, especially for long sequences.

When a phylogenetic tree is provided as input to 
machine learning algorithms, it must be represented as a 
vector. In a recent study, we represented a tree and its 
SPR neighbors as a vector of 19 features (shown in bold in 
supplementary table S1, Supplementary Material online), 
and showed that we could predict optimal SPR moves with-
out computing the likelihood function (Azouri et al. 2021). 
In this work, we exploited such tree representation tech-
nique for training an RL agent, which can successfully tra-
verse previously unseen phylogenetic spaces of empirical 
data sets. This study could thus serve as a benchmark for dif-
ferent representations of a phylogenetic search space, which 
reportedly until current days, was missing. We expect that 
additional improvement in representing trees and align-
ments would further improve RL-based tree search.

Two recent studies employed RL to phylogeny (Liptak 
and Kiss 2021; Zhu and Cai 2021). In these studies, RL 
was used in the context of distance-based methods, which 
are known to be faster, albeit less accurate than likelihood- 
based methods (Saitou and Nei 1987; Ogden and Rosenberg 
2006). These studies and ours showed the potential of 
using RL for the complicated tree search problem and em-
phasized the challenge of training an agent on topological 
spaces of more than 20 sequences. While our algorithm 
and representation are not theoretically limited by the 
number of sequences in the data, at present, accuracy was 
not satisfactory for data sets with more than 20 sequences. 
We believe that promising future directions toward the ap-
plication of RL to large data sets should concentrate on the 
following: 

(i) Improving the training data. This includes the size 
of the training observations, as well as its quality. 
Increasing the number of training examples necessi-
tates training the agent longer, which depends on 
the availability of computational resources. In this re-
gard, transfer learning should enable repeatedly using 
previous models trained on small data sets as the 
starting point for learning larger ones (Karimpanal 
and Bouffanais 2019). As for the data quality, it 

requires developing means to collect training obser-
vations of those cases that would maximize the learn-
ing of the agent, for example by collecting more 
observations from regions of high likelihood, which 
could provide valuable information for traversing 
these important parts of the likelihood surface.

(ii) Improving code efficiency. Although the running 
time of the proposed methodology is hardly af-
fected by the input sequences lengths and thus is 
suitable for large-scale data, a more efficient imple-
mentation with regard to feature extraction could 
enable better usage of the computing resources 
available, particularly during training.

(iii) Using an alternative, automatic, representation of 
the tree search space. For example, it has been re-
cently proposed to represent tree topologies with 
embedded node features based on graph neural 
networks (Cheng 2023). This direction of extract-
ing learnable topological features can potentially 
better capture the complexity of empirical 
phylogenetic environments, without requiring to 
handcraft additional features.

Another possible direction for improving the effectiveness 
of RL for phylogenetics could be considering alternative im-
mediate reward functions, e.g. directly calculating the likeli-
hood function as the reward during inference instead of 
estimating the likelihood change. Additionally, while, in 
this work, we considered SPR actions only, the combination 
of complementary neighborhood definitions for local search 
phylogenetic reconstruction algorithms, such as nearest- 
neighbor interchange (Robinson 1971) and tree bisection 
and regrafting (Allen and Steel 2001), could be considered 
when modeling the tree search dynamics. Expanding the 
range of possible actions could thus help the agent fine-tune 
the search strategy when it is in low or high likelihood re-
gions. An additional variation to the current implementa-
tion could be extracting additional features that are not 
topology specific. For instance, the nucleotide frequencies, 
the entropy score of the alignment, the number of gap 
blocks in it, and the average gap block length. Yet, when con-
sidering large data sets, this kind of modification could come 
at the cost of runtime, which will become dependent on the 
alignment size. Lastly, there are a large number of variants of 
RL algorithms. As part of the development of the current im-
plementation, we have examined the applicability of alterna-
tive RL-based schemes, e.g. policy-based algorithms. This 
procedure demands more computation resources and was 
attempted for relatively small data sizes of up to 12 se-
quences. However, other existing RL frameworks could prove 
beneficial for the task of phylogenetic reconstruction.

The main conceptual novelty of our approach is to view 
phylogenetic tree reconstruction as a dynamic game, in 
which the rules are specified, but the winning strategy is 
unknown and difficult to optimize. In such a case, better 
inference is obtained following numerous games gener-
ated in silico. We expect that, with time, RL will be intro-
duced for additional evolutionary genomics optimization 
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problems, including MSA, synteny inference, and elucidat-
ing complex patterns of population dynamics.

Materials and Methods
A RL Algorithm for Predicting the 
Maximum-Likelihood Phylogeny
The Environment
We defined the environment using (S, A, R), where S is 
the state space, i.e. all possible trees given a set of aligned 
sequences, and A is the set of possible actions, i.e. all pos-
sible SPR moves given a tree topology. R is the immediate 
reward function following a transition from state s to s′. In 
our setting, (s, a) deterministically determines the next 
state s′. R(s, s′) is defined as the log-likelihood difference, 
scaled by LLNJ (the log-likelihood of the reconstructed 
BioNJ [Gascuel 1997] tree as implemented in PhyML 3.0 
[Guindon et al. 2010]) so that the reward function would 
have the same magnitude across different data sets:

R(s, s′) =
LLs′ − LLs

LLNJ
. (1) 

The Features. Each state–action pair (s, a) is represented 
by a set of 27 phylogenetically informative features from 
an input tree (supplementary table S1, Supplementary 
Material online). The feature vector, ϕ(s, a), captures prop-
erties of the current state (the topology and its branch 
lengths) and the action (one possible SPR move). Of these, 
19 (bolded in supplementary table S1, Supplementary 
Material online) were previously developed in the context 
of predicting the optimal neighbor as part of a tree search 
(Azouri et al. 2021) and capturing, for example, features re-
lated to the topological differences between the starting 
and resulting trees and properties related to their branch 

lengths. Eight additional features were implemented in 
this work and are based on nonparametric bootstrap com-
putations. While features 20 to 23 were extracted based on 
the UPGMA algorithm (Michener and Sokal 1957), fea-
tures 24 to 27 were based on the bioNJ algorithm.

The Algorithm
The developed RL algorithm is based on a Deep 
Q-network (DQN) (Mnih et al. 2015), a model-free and 
off-policy RL algorithm. In the DQN setting, the agent 
learns a value function, named the quality function 
Q(s, a), which represents the estimated benefit of a spe-
cified action in gaining some future reward, given a cer-
tain state. More specifically, we implemented a neural 
network Qθ (with weight parameters θ), which repre-
sents the agent, that predicts the quality function of a 
state–action pair, given the feature vector ϕ(s, a). This 
predicted value is termed Q(ϕ(s, a)) and is explained in 
more details below. Starting from state s, we estimated 
Q(ϕ(s, a)) for all possible SPR actions and chose the action 
with maximal Q(ϕ(s, a)), which defines the next state 
(Algorithm 1). In more detail, for each state s, the feature 
function ϕ extracts a feature vector for the tree (state s) 
and SPR move (action a). The feature vector ϕ(s, a) is the in-
put for the neural network. The returned scalar is the agent’s 
evaluation of the tree and SPR move, written as follows:

Qθ(ϕ(s, a)). (2) 

The action that received the maximal evaluation by the agent 
is then selected, marked here as a′:

a′ = argmaxaQθ(ϕ(s, a)). (3) 

Finally, the final tree (after a predefined number or SPR 
moves) is returned. The number of unique state–action 

Algorithm 1 Inference
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pairs to be computed when conducting a move is 
2(n − 3)(2n − 7), which is O(n2), where n is the number 
of sequences in the input MSA (Allen and Steel 2001). 
The starting state for each episode, s0, was randomly 
sampled (using RaxML-NG [Kozlov et al. 2019] random 
tree generator), such that the agent could start the trajec-
tory from anywhere in the tree space.

The Model
The main strength of Q-learning lies in its ability to con-
struct a policy that maximizes the cumulative reward 
(Sutton and Barto 1998). In deep Q-learning, neural 
networks are trained to estimate the value of the Q 
function for unseen states and thus it combines 
Q-learning with a deep artificial neural network (ANN). 
The recursive form of the optimal return function, known 
as the Bellman equation (Puterman 1994), is:

Q∗(ϕ(st, at)) = rt + γ max
a

Q∗(ϕ(st+1, a)), (4) 

where Q∗ is the optimal state–action value function and rt is 
the immediate reward obtained at time step t. The γ hyper-
parameter is the discount rate, a constant 0 ≤ γ ≤ 1, which 
weights rewards from the uncertain far future less than the 
ones in the fairly confident near future. That is, a reward re-
ceived k time steps in the future is worth only γk−1 times 
what it would be worth if it were received immediately. Of 
note, there exists a γ = 1 − ϵ, ϵ > 0, for which the optimal 
policy corresponds to the shortest path from the starting 
topology to the topology with the highest likelihood (up to 
H SPR moves away).

We would like the agent to learn a policy that does not 
involve taking an unlimited number of actions; i.e. we 
would like to balance the runtime with the improvement 
in likelihood. This balance is controlled by the horizon hy-
perparameter, denoted as H, which specifies the number of 
actions taken from the starting tree (Algorithm 2). Of note, 
each search stops after a predefined number of H steps. 
This is termed an episode. Importantly, the specific γ value 
inspires a different optimal policy (see supplementary note 
S1, Supplementary Material online).

Algorithm 2 Training
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Choosing an appropriate value for the discount rate is 
crucial for balancing short-term and long-term rewards. 
Setting the discount rate to 0 or 1 leads to extreme cases: γ = 
0 would prioritize only the immediate rewards, while γ = 1 
would treat all future rewards as equally important. The 
length of the horizon should be considered when choosing 
a discount rate. In short-term planning problems, a lower 
discount rate might suffice, while for long-term planning 
problems, a higher discount rate could be more suitable. 
In more detail, we attempt to choose γ such that the optimal 
policy it inspires is the same policy that leads to the highest 
likelihood tree up to H SPR moves away from the starting 
tree. Notice, in our setting the agent does not know about 
the H moves limitation, nor does it have any indication of 
how many moves are left in the episode. To tackle this issue, 
we chose a rather low γ, to incentivize collecting rewards 
(reaching better topologies) sooner rather than later.

Our usual setting was γ = 0.9, H = 20. In that setting, 
the agent values the reward H + 1 moves away at ∼11% 
of its original value. Compared to a standard γ = 0.99, 
which is considered standard in many RL applications, 
the agent values the reward H + 1 moves away at ∼81% 
of its original value. Since for our problem set, there are 
no rewards after move H, we kept the estimation of moves 
after H low, while still considering long-term rewards.

As stated above, the total number of episodes during 
learning is also a hyperparameter. Following each episode, 
the network weights are updated. Specifically, as in standard 
DQNs, we used the experience replay method to hold the 
agent’s training trajectories, i.e. a buffer of a predetermined 
size containing transition observations (state–action pairs 
together with their rewards and next state–actions). At 
the end of each episode, H new memories are added to 
the buffer (and the H oldest memories are discarded), 
and the ANN is trained based on a batch of trajectories 
sampled (with replacement) from the memory buffer 
“time-to-learn” times (Algorithm 2). The sizes of the memory 
buffer and the batch, as well as the “time-to-learn,” are 
hyperparameters of the algorithm.

Additional hyperparameters are related to the deep 
network architecture and the learning dynamics. These in-
clude the number of fully connected hidden layers, the 
number of neurons in each layer, the activation function, 
the loss function, the optimization algorithm, and the 
learning rate (supplementary table S1, Supplementary 
Material online).

To control the exploration–exploitation trade-off during 
training, we allowed the agent to take suboptimal moves 
with respect to the Q function. This is commonly known 
as an exploration policy. We used the SoftMax exploration 
policy that selects an action a ∈ A, where A is the set of all 
possible next moves, based on the following probability:

P(a | s) =
eQ(s,a)/T


x∈A eQ(s,x)/T . (5) 

This allows greater value actions to be selected with 
greater chance, yet permitting some randomness. T is a 

hyperparameter that controls the level of exploration. 
Running a SoftMax function to determine the next move 
might cause some divergence from the optimum 
Q-function. These inaccuracies in the estimation of the Q 
function could result in the collection of more transitions 
in low regions of the search space during the initial training 
phase (when the phylogenies are quite far from the 
maximum-likelihood solution), as well as more transitions 
where the phylogenetic tree state is better at the later 
phases of training.

RL Agent Architecture
We implemented the ANN in Python using PyTorch 
(Paszke et al. 2019). The above hyperparameters were op-
timized via Optuna framework (Akiba et al. 2019), which is 
an automatic hyperparameter optimization package, par-
ticularly designed for machine learning (summary of the 
model hyperparameter values and further details are de-
scribed in Table 2). The models were trained using an 
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz, with 40 
CPUs, 10 GB of DDR2 RAM and an X86_64 instruction set.

The Performance Metric
To measure the performance at the end of an episode, 
we computed the following metric: let LLgain be the 
log-likelihood difference between the final tree and the 
starting tree. Let LLrax be the log-likelihood difference be-
tween the maximum-likelihood tree and the starting 
tree, as obtained by executing RAxML-NG from the same 
starting tree. Both resulting topologies were subject to 
branch-length optimization. The ratio between these two 
terms (LLgain

LLrax
) is a number that reflects the improvement 

in likelihood score achieved by an agent and can be used 
to compare the performance between different data sets.

Empirical Data Preparation
We selected all empirical data sets with 7, 12, 15, and 20 
sequences from the training data collected in Azouri 
et al. (2021). These represent nucleotide coding alignments 
(Moretti et al. 2014), user-submitted phylogenies from 
TreeBase (Vos et al. 2012), plant phylogenies reconstructed 
using the OneTwoTree pipeline (Drori et al. 2018), and 
genomic sequences that were aligned according to the ter-
tiary structure of its encoded proteins (Carroll et al. 2007). 
For each data set size (i.e. the number of sequences in the 
alignment), 30 MSAs were randomly fixed as validation 
data, ten MSAs were randomly fixed as test data, and 
from the rest, ten data sets (unless otherwise specified) 
were randomly sampled to generate the training samples 
(see supplementary data S1, Supplementary Material on-
line for detailed attributes of the sampled data sets).

Transition Data Collection
To apply the memory buffer method, the transition 
observations (state–action pairs together with their corre-
sponding scaled log-likelihood differences and the corre-
sponding next state–action pair) need to be collected 
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through many training episodes. To this end, each episode 
was initiated from a random tree, which was generated 
using RaxML-NG “complete random starting tree” gener-
ator, and the obtained reward was calculated (using 
RaxML-NG) and stored for each transition taken. 
Precisely, a model that is trained for 2,500 episodes of 20 
SPR moves each is essentially trained over 25, 000 × 20 = 
50, 000 training observations. The substitution rate para-
meters of a GTR + I + G model (Abadi et al. 2019) were 
optimized once for each data set, based on a reconstructed 
BioNJ tree as implemented in PhyML 3.0 (Guindon et al. 
2010), and were then fixed for the following likelihood cal-
culations of the respective data set.

When data sets of size 15 and 20 sequences were con-
sidered, the computational resource required to compute 
the features for all neighbors was beyond the scope of the 
study conducted here. Therefore, we limited the space of 
possible neighbors by applying a restriction on the range 
of SPR moves, allowing each pruned subtree to be re-
grafted up to a predefined radius. This radius defines the 
number of branches in the path between the pruned 
and regrafted branches, not including these branches 
(supplementary fig. S3, Supplementary Material online). 
Setting a radius of 4 narrowed the neighborhood space 
to a feasible task. Additionally, when data sets with 20 se-
quences were considered, we applied an alternative ap-
proach to collect experiences, which proved superior to 
the one used for smaller data sizes (see supplementary 
note S2, Supplementary Material online).

Data Collection for the Two-Step Preanalysis
We collected from the training data all MSAs containing 7 
and 12 sequences (i.e. 51 and 81 data sets, respectively). 
Next, 100 random starting trees were reconstructed for 
each data set using RAxML-NG. We then obtained all their 
respective 32,640,000 and 1,049,760,000 possible two-step 

trajectories. Precisely, we (i) obtained all single-step SPR 
neighbors for each starting tree and recorded all likelihoods 
and (ii) recorded all likelihood scores of the single-step SPR 
neighbors of each of the latter trees. This allowed us to iden-
tify the best two-step neighbor of each starting tree, as well 
as the best neighbor reached by applying the single-greedy 
step twice sequentially. The likelihoods throughout this 
analysis were computed using RAxML-NG, allowing for 
branch-length optimization. The substitution rate para-
meters were optimized once for each data set, based on a 
reconstructed tree as implemented in PhyML 3.0 
(Guindon et al. 2010) and were then fixed for the following 
likelihood calculations of the respective data set, assuming 
the GTR + I + G model (Abadi et al. 2019).

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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Table 2 Details of the RL configuration and the hyperparameter values

Parameter name Value in the trained model Additional details

NN architecture Five fully connected hidden layers, in addition to 
the input layer (containing 27 neurons) and 
the output layer (containing a single node)

Number of neurons within each layer: {1: 4,096; 2: 
4,096; 3: 2,048; 4: 128; 5: 32}

Input layer 27 neurons
Output layer 1 neuron For regression output
Loss function Mean square error (MSE)
Activation function Leaky ReLU
Optimizer Adam
Discount factor (γ) 0.9
Replay buffer size 10,000 The maximal size of transitions collected during 

training
Times-to-learn 50 The number of times we sampled a batch to train 

the ANN
Horizon H 20 (for data of 7, 12, and 15 sequences), 30 (for 20 

sequences)
The number of SPR moves in each episode. This 

hyperparameter was reoptimized when we 
considered different number of sequences in 
the analysis

Batch size 128
Learning rate 10−5

Exploratory policy SoftMax With T parameter = 1
Episodes 2,000 Number of episodes in training

Azouri et al. · https://doi.org/10.1093/molbev/msae105 MBE

12

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data


Israel Science Foundation grant 2818/21. I.M. was supported 
by an Israel Science Foundation grant 1843/21. We would 
like to express our gratitude to Dr. Shiran Abadi for providing 
insightful feedback on the draft and to Professor Jeffrey 
L. Thorne for the meaningful remarks during the review 
process.

Author Contributions
D.A., O.G., and M.A. jointly designed and conducted the 
work including programming the algorithm, performing 
the analyses, and drafting the manuscript. Y.M., T.P., and 
I.M. supervised this work and revised the manuscript.

Conflict of Interest
The authors declare no competing interests.

Data Availability
The data sets contained within the empirical set have been 
deposited in GitHub with the identifier https://github.com/ 
michaelalb/ThePhylogeneticGame. The code that supports 
the findings of this study was written in Python version 
3.9.7 has been deposited in GitHub with the identifier 
https://github.com/michaelalb/ThePhylogeneticGame. 
Computation of likelihoods was executed using the follow-
ing application versions: PhyML 3.0 (Guindon et al. 2010) 
and RAxML-NG 0.9.0 (Kozlov et al. 2019). The ANN was 
implemented in PyTorch (Paszke et al. 2019) version 1.13.1.

References
Abadi S, Azouri D, Pupko T, Mayrose I. Model selection may not be a 

mandatory step for phylogeny reconstruction. Nat Commun. 
2019:10(1):934. https://doi.org/10.1038/s41467-019-08822-w.

Abdo Z, Minin VN, Joyce P, Sullivan J. Accounting for uncertainty in the 
tree topology has little effect on the decision-theoretic approach to 
model selection in phylogeny estimation. Mol Biol Evol. 2005:22(3): 
691–703. https://doi.org/10.1093/molbev/msi050.

Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next- 
generation hyperparameter optimization framework. Proc 25th 
ACM SIGKDD Int Conf Knowl Discov Data Min. 2019:2623–2631.

Allen BL, Steel M. Subtree transfer operations and their induced me-
trics on evolutionary trees. Ann Comb. 2001:5(1):1–15. https:// 
doi.org/10.1007/s00026-001-8006-8.

Azouri D, Abadi S, Mansour Y, Mayrose I, Pupko T. Harnessing ma-
chine learning to guide phylogenetic-tree search algorithms. Nat 
Commun. 2021:12(1):1983. https://doi.org/10.1038/s41467-021- 
22073-8.

Carroll H, Beckstead W, O’Connor T, Ebbert M, Clement M, Snell Q, 
Mcclellan D. DNA reference alignment benchmarks based on ter-
tiary structure of encoded proteins. Bioinformatics 2007:23(19): 
2648–2649. https://doi.org/10.1093/bioinformatics/btm389.

Cheng Z. 2023. Learnable topological features for phylogenetic infer-
ence via graph neural networks, arXiv 2302.08840, preprint: not 
peer reviewed.

Chor B, Tuller T. Maximum likelihood of evolutionary trees: hardness 
and approximation. Bioinformatics 2005:21(Suppl 1):i97–106. 
https://doi.org/10.1093/bioinformatics/bti1027.

Drori M, Rice A, Einhorn M, Chay O, Glick L, Mayrose I. OneTwoTree: an 
online tool for phylogeny reconstruction. Mol Ecol Resour. 2018: 
18(6):1492–1499. https://doi.org/10.1111/1755-0998.12927.

Edwards AWF. Assessing molecular phylogenies. Science 1995: 
267(5195):253–253. https://doi.org/10.1126/science.7809633.

Felsenstein J. Evolutionary trees from gene frequencies and quantita-
tive characters: finding Maximum likelihood estimates. Evolution 
1981:35(6):1229. https://doi.org/10.2307/2408134.

Gascuel O. BIONJ: an improved version of the NJ algorithm based on a 
simple model of sequence data. Mol Biol Evol. 1997:14(7):685–695. 
https://doi.org/10.1093/oxfordjournals.molbev.a025808.

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, 
Gascuel O. New algorithms and methods to estimate 
maximum-likelihood phylogenies: assessing the performance 
of PhyML 3.0. Syst Biol. 2010:59(3):307–321. https://doi.org/ 
10.1093/sysbio/syq010.

Haag J, Höhler D, Bettisworth B, Stamatakis A. From easy to 
hopeless-predicting the difficulty of phylogenetic analyses. Mol 
Biol Evol. 2022:39(12):msac254. https://doi.org/10.1093/molbev/ 
msac254.

Hendy MD, Penny D. Branch and bound algorithms to determine 
minimal evolutionary trees. Math Biosci. 1982:59(2):277–290. 
https://doi.org/10.1016/0025-5564(82)90027-X.

Higgins I, Pal A, Rusu A, Matthey L, Burgess C, Pritzel A, Botvinick M, 
Blundell C, Lerchner L. 2017. DARLA: improving zero-shot trans-
fer in reinforcement learning. In: 34th International Conference 
on Machine Learning (ICML). 3:2335–2350.

Huelsenbeck JP. Performance of phylogenetic methods in simula-
tion. Syst Biol. 1995:44(1):17–48. https://doi.org/10.2307/ 
2413481.

Karimpanal TG, Bouffanais R.. Self-organizing maps for storage and 
transfer of knowledge in reinforcement learning. Adapt Behav. 
2019:27(2):111–126. https://doi.org/10.1177/105971231881.

Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a 
fast, scalable and user-friendly tool for maximum likelihood 
phylogenetic inference. Bioinformatics 2019:35(21):4453–4455. 
https://doi.org/10.1093/bioinformatics/btz305.

Lewis PO. A genetic algorithm for maximum-likelihood phylogeny 
inference using nucleotide sequence data. Mol Biol Evol. 
1998:3(3):277–283. https://doi.org/10.1093/oxfordjournals.molb 
ev.a025924.

Liptak P, Kiss A. Constructing unrooted phylogenetic trees with re-
inforcement learning. Stud Univ Babeș-Bolyai Inform. 2021:66(1): 
37. https://doi.org/10.24193/subbi.2021.1.03.

Michener CD, Sokal RR. A quantitative approach to a problem of clas-
sification. Evolution 1957:11(2):490–499. https://doi.org/10.2307/ 
2406046.

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, 
Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, et al. 
Human-level control through deep reinforcement learning. Nature 
2015:518(7540):529–533. https://doi.org/10.1038/nature14236.

Moretti S, Laurenczy B, Gharib WH, Castella B, Kuzniar A, Schabauer 
H, Studer RA, Valle M, Salamin N, Stockinger H, et al. Selectome 
update: quality control and computational improvements to a 
database of positive selection. Nucleic Acids Res. 2014:42(D1): 
D917–D921. https://doi.org/10.1093/nar/gkt1065.

Ogden TH, Rosenberg MS. Multiple sequence alignment accuracy 
and phylogenetic inference. Syst Biol. 2006:55(2):314–328. 
https://doi.org/10.1080/10635150500541730.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, 
Lin Z, Gimelshein N, Antiga L, et al. Proceedings of the 33rd inter-
national conference on neural information processing systems. 
Red Hook (NY): Curran Associates Inc.; 2019. Article 721. 
p. 8026–8037.

Puterman ML. Markov decision processes: discrete stochastic dynamic 
programming. Wiley; 1994.

Robinson DF. Comparison of labeled trees with valency three. J Comb 
Theory, Ser B. 1971:11(2):105–119. https://doi.org/10.1016/0095- 
8956(71)90020-7.

The Tree Reconstruction Game · https://doi.org/10.1093/molbev/msae105 MBE

13

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

https://github.com/michaelalb/ThePhylogeneticGame
https://github.com/michaelalb/ThePhylogeneticGame
https://github.com/michaelalb/ThePhylogeneticGame
https://doi.org/10.1038/s41467-019-08822-w
https://doi.org/10.1093/molbev/msi050
https://doi.org/10.1007/s00026-001-8006-8
https://doi.org/10.1007/s00026-001-8006-8
https://doi.org/10.1038/s41467-021-22073-8
https://doi.org/10.1038/s41467-021-22073-8
https://doi.org/10.1093/bioinformatics/btm389
https://doi.org/10.1093/bioinformatics/bti1027
https://doi.org/10.1111/1755-0998.12927
https://doi.org/10.1126/science.7809633
https://doi.org/10.2307/2408134
https://doi.org/10.1093/oxfordjournals.molbev.a025808
https://doi.org/10.1093/sysbio/syq010
https://doi.org/10.1093/sysbio/syq010
https://doi.org/10.1093/molbev/msac254
https://doi.org/10.1093/molbev/msac254
https://doi.org/10.1016/0025-5564(82)90027-X
https://doi.org/10.2307/2413481
https://doi.org/10.2307/2413481
https://doi.org/10.1177/105971231881
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1093/oxfordjournals.molbev.a025924
https://doi.org/10.1093/oxfordjournals.molbev.a025924
https://doi.org/10.24193/subbi.2021.1.03
https://doi.org/10.2307/2406046
https://doi.org/10.2307/2406046
https://doi.org/10.1038/nature14236
https://doi.org/10.1093/nar/gkt1065
https://doi.org/10.1080/10635150500541730
https://doi.org/10.1016/0095-8956(71)90020-7
https://doi.org/10.1016/0095-8956(71)90020-7


Saitou N, Nei M. The neighbor-joining method: a new method for re-
constructing phylogenetic trees. Mol Biol Evol. 1987:4(4):406–425. 
https://doi.org/10.1093/oxfordjournals.molbev.a040454.

Schrider DR, Kern AD. Supervised machine learning for population 
genetics: a new paradigm. Trends Genet. 2018:34(4):301–312. 
https://doi.org/10.1016/j.tig.2017.12.005.

Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for max-
imum likelihood-based inference of large phylogenetic trees. 
Bioinformatics 2005:21(4):456–463. https://doi.org/10.1093/ 
bioinformatics/bti191.

Stamatakis A. 2005. An efficient program for phylogenetic inference 
using simulated annealing. In: Proceedings - 19th IEEE 
International Parallel and Distributed Processing Symposium.

Stewart CA, Hart D, Berry DK, Olsen GJ, Wernert EA, Fischer W. 2001. 
Parallel implementation and performance of fastDNAml. 
Proceedings of the ACM/IEEE conference on supercomputing.

Sutton RS, Barto AG. Reinforcement learning: an introduction. MA: 
MIT Press; 1998.

Suvorov A, Hochuli J, Schrider DR. Accurate inference of tree topolo-
gies from multiple sequence alignments using deep learning. Syst 
Biol. 2020:69(2):221–233. https://doi.org/10.1093/sysbio/syz060.

Szepesvári C. Algorithms for reinforcement learning. Synth Lect Artif 
Intell Mach Learn. 2010:4:1–103.

Tarca AL, Carey VJ, Chen X, Romero R, Drăghici S. Machine learning 
and its applications to biology. PLoS Comput Biol. 2007:3(6):e116. 
https://doi.org/10.1371/journal.pcbi.0030116.

Vos RA, Balhoff JP, Caravas JA, Holder MT, Lapp H, Maddison WP, 
Midford PE, Priyam A, Sukumaran J, Xia X, et al. NeXML: rich, exten-
sible, and verifiable representation of comparative data and 

metadata. Syst Biol. 2012:61(4):675–689. https://doi.org/10.1093/ 
sysbio/sys025.

Whelan S. New approaches to phylogenetic tree search and their ap-
plication to large numbers of protein alignments. Syst Biol. 
2007:5(5):727–740. https://doi.org/10.1080/10635150701611134.

Wooding S. Inferring phylogenies. Am J Hum Genet. 2004:74(5):1074. 
https://doi.org/10.1086/383584.

Yang Z, Rannala B. Bayesian phylogenetic inference using DNA se-
quences: a Markov chain Monte Carlo method. Mol Biol Evol. 
1997:14(7):717–724. https://doi.org/10.1093/oxfordjournals.mol 
bev.a025811.

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. 
Mol Biol Evol. 2007:24(8):1586–1591. https://doi.org/10. 
1093/molbev/msm088.

Zaharias P, Grosshauser M, Warnow T. Re-evaluating deep neural 
networks for phylogeny estimation: the issue of taxon sampling. 
J Comput Biol. 2022:29(1):74–89. https://doi.org/10.1089/cmb. 
2021.0383.

Zhicheng W, Sun J, Yuan G, Yongwei X, Zha Y, Kuan L, Wei Z, Chi Z, 
Jian Z, Li Z. Fusang: a framework for phylogenetic tree inference 
via deep learning. Nucleic Acids Res. 2023:51(20):10909–10923. 
https://doi.org/10.1093/nar/gkad805.

Zhu T, Cai Y. 2021. Applying neural network to reconstruction of 
phylogenetic tree. In: 13th International Conference on 
Machine Learning and Computing. 146–152.

Zou Z, Zhang H, Guan Y, Zhang J, Liu L. Deep residual neural 
networks resolve quartet molecular phylogenies. Mol Biol 
Evol. 2020:37(5):1495–1507. https://doi.org/10.1093/molbev/ 
msz307.

Azouri et al. · https://doi.org/10.1093/molbev/msae105 MBE
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/41/6/m

sae105/7686977 by The D
avid J. Light Law

 Library, Tel Aviv U
niversity user on 01 July 2024

https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1016/j.tig.2017.12.005
https://doi.org/10.1093/bioinformatics/bti191
https://doi.org/10.1093/bioinformatics/bti191
https://doi.org/10.1093/sysbio/syz060
https://doi.org/10.1371/journal.pcbi.0030116
https://doi.org/10.1093/sysbio/sys025
https://doi.org/10.1093/sysbio/sys025
https://doi.org/10.1080/10635150701611134
https://doi.org/10.1086/383584
https://doi.org/10.1093/oxfordjournals.molbev.a025811
https://doi.org/10.1093/oxfordjournals.molbev.a025811
https://doi.org/10.1093/molbev/msm088
https://doi.org/10.1093/molbev/msm088
https://doi.org/10.1089/cmb.2021.0383
https://doi.org/10.1089/cmb.2021.0383
https://doi.org/10.1093/nar/gkad805
https://doi.org/10.1093/molbev/msz307
https://doi.org/10.1093/molbev/msz307

	The Tree Reconstruction Game: Phylogenetic Reconstruction Using Reinforcement Learning
	Introduction
	Results
	The Potential Benefit of a Nongreedy Search Strategy for Phylogenetic Reconstruction
	Performance Evaluation of the Proposed RL Framework
	Accuracy for Data Sets of Relatively Small Size
	RL for Large Search Space
	Employing Pretrained Agents across Data Sizes
	Running Times


	Discussion
	Materials and Methods
	A RL Algorithm for Predicting the Maximum-Likelihood Phylogeny
	The Environment
	The Features

	The Algorithm
	The Model
	RL Agent Architecture
	The Performance Metric

	Empirical Data Preparation
	Transition Data Collection
	Data Collection for the Two-Step Preanalysis


	Supplementary Material
	Acknowledgements
	Author Contributions
	Conflict of Interest
	Data Availability
	References


