
The Tree Reconstruction Game: Phylogenetic
Reconstruction Using Reinforcement Learning
Dana Azouri ,1,2,† Oz Granit ,3,† Michael Alburquerque ,2,† Yishay Mansour ,3,*
Tal Pupko ,2,* and Itay Mayrose 1,*

1School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
2The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
3Balvatnik School of Computer Science, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
†These author contributed equally.

*Corresponding authors: E-mails: itaymay@tauex.tau.ac.il; talp@tauex.tau.ac.il; mansour@tauex.tau.ac.il.
Associate editor: Andrey Rzhetsky

Abstract
The computational search for the maximum-likelihood phylogenetic tree is an NP-hard problem. As such, current
tree search algorithms might result in a tree that is the local optima, not the global one. Here, we introduce a para-
digm shift for predicting the maximum-likelihood tree, by approximating long-term gains of likelihood rather than
maximizing likelihood gain at each step of the search. Our proposed approach harnesses the power of reinforcement
learning to learn an optimal search strategy, aiming at the global optimum of the search space. We show that when
analyzing empirical data containing dozens of sequences, the log-likelihood improvement from the starting tree
obtained by the reinforcement learning–based agent was 0.969 or higher compared to that achieved by current
state-of-the-art techniques. Notably, this performance is attained without the need to perform costly likelihood
optimizations apart from the training process, thus potentially allowing for an exponential increase in runtime.
We exemplify this for data sets containing 15 sequences of length 18,000 bp and demonstrate that the reinforcement
learning–based method is roughly three times faster than the state-of-the-art software. This study illustrates the
potential of reinforcement learning in addressing the challenges of phylogenetic tree reconstruction.

Key words: phylogenetics, reinforcement learning, machine learning, artificial intelligence, evolution, molecular
biology.

M
ethods

Received: July 02, 2023. Revised: May 17, 2024. Accepted: May 28, 2024
© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights
for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site
—for further information please contact journals.permissions@oup.com. Open Access

Introduction
A phylogenetic tree is a hypothesis regarding the evolu-
tionary relations among the studied sequences or organ-
isms. Reconstructing a phylogenetic tree for a group of
organisms has been a fundamental challenge in evolution-
ary research since Darwin’s time. Inferred phylogenies hold
a great amount of information regarding the underlying
evolutionary process, and their accurate inference is critic-
al for numerous downstream analyses spanning molecular
evolution, ecology, and genomics. Leading approaches for
phylogeny reconstruction rely on probabilistic evolution-
ary models that describe the stochastic processes of nu-
cleotide, amino acid, and codon substitutions (Yang
2007). Under the maximum-likelihood paradigm of phyl-
ogeny reconstruction, the tree topology, its associated
branch lengths, and parameters that dictate the substitu-
tion rates and the site-specific evolutionary rates are opti-
mized for a given multiple sequence alignment (MSA).
Notably, the number of possible tree topologies increases

super-exponentially with the number of sequences. When
only a few dozen of sequences are analyzed, there are al-
ready billions of alternative phylogenetic tree topologies
that could potentially describe their evolutionary relation-
ships, rendering the search for the best tree algorithmically
challenging.

The computational search for the maximum-likelihood
tree topology was previously shown to be NP-hard (Chor
and Tuller 2005). Thus, tree search methodologies rely
on a specified heuristic strategy, which must balance ac-
curacy and running time. At present, heuristics employed
by the community depend on the intuition of the algo-
rithm developers and their expert knowledge regarding
the phylogenetic search space. These are usually based
on a hill-climbing rearrangement algorithm that defines
neighboring trees (Whelan 2007). Typically, a search algo-
rithm begins from an initial tree and iteratively replaces
the current one via rearrangement to a neighbor with a
higher likelihood, until no better neighbor can be found.

Mol. Biol. Evol. 41(6):msae105 https://doi.org/10.1093/molbev/msae105 Advance Access publication June 3, 2024 1

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

https://orcid.org/0000-0003-0620-2626
https://orcid.org/0009-0000-4696-3054
https://orcid.org/0009-0007-7130-3489
https://orcid.org/0000-0001-6891-2645
https://orcid.org/0000-0001-9463-2575
https://orcid.org/0000-0002-8460-1502
mailto:itaymay@tauex.tau.ac.il
mailto:talp@tauex.tau.ac.il
mailto:mansour@tauex.tau.ac.il
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

This procedure results in a tree that is locally better than
all its neighbors, but this tree might not be the global op-
timum. In order to increase the probability of finding the
global optimum tree, several techniques have been consid-
ered, e.g. initiating the search from multiple starting
points, applying simulated annealing (that accepts sub-
optimal moves with a certain probability) (Stamatakis
2005), and employing genetic algorithms (in which differ-
ent areas of the search space are being explored through
the use of crossover, mutation, and selection operators
on a population of candidate solutions) (Lewis 1998).
Our aim here is not to devise a specific novel search strat-
egy, but rather, devise an artificial intelligence (AI) frame-
work, which automatically searches among alternative
strategies (policies hereafter) for an optimal one. This
framework views the strategy as an evolving entity, which
is continuously optimized based on experience, i.e. training
data.

Machine learning has been applied to multiple tasks in
biology, including molecular biology, evolutionary, and ecol-
ogy research (Tarca et al. 2007; Schrider and Kern 2018;
Suvorov et al. 2020; Zou et al. 2020; Azouri et al. 2021;
Haag et al. 2022; Zaharias et al. 2022). Reinforcement learn-
ing (RL) is a subfield of machine learning that is focused on
learning to optimize long-term goals. Over the years, RL has
had many successes, from playing backgammon (in the
1990s) to playing Go and Atari games (in recent years). RL
applications are usually modeled as a Markov decision pro-
cess, in which an agent (an RL learner) interacts with its en-
vironment (the representation of the problem space) in
discrete time steps. In each step, the agent chooses an action
(a move) to be taken given the current state. The transition
between the current state and the next state is influenced
by the agent’s action, which can be deterministic or stochas-
tic. Another component of RL is a numeric feedback termed
“the reward,” which depends on the current state and on
the action taken. Given a sequence of rewards, the return
function aggregates multiple rewards to one objective cri-
terion, which implicitly defines the goal of the learner (to
maximize “the return”). Popular returns include the finite
horizon (H) return, which considers only the first H returns,
for some parameter H, and the discounted return, which
weights the reward at time t by γt for some discount factor
γ < 1.

The learner’s main task is to select actions that would
maximize the return. This is done through a policy, which
is a mapping from states to actions, such that given a cur-
rent state the policy selects an action. For any given policy,
a value function can be computed, which is the expected
return from each state. Our task is to identify the optimal
policy, which induces an optimal value function. It is well
known that there always exists a deterministic optimal
policy. We will consider terminating environments in which
the interaction terminates eventually. The sequence of
states, actions, and rewards from the start state until ter-
mination is called an episode.

The RL characteristics of exploratory search and delayed
reward, together with the capability of optimizing a

sequence of actions (i.e. a policy) for the task of interest,
distinguish RL from other domains of machine learning
(Sutton and Barto 1998; Szepesvári 2010). Accordingly,
RL is beneficial in environments where the task is aimed
at reaching a winning state at the end of a procedure, ra-
ther than aimed at optimizing some myopic (or immedi-
ate) reward. When applied to the task of phylogeny
inference, RL should allow taking nongreedy steps, which
nevertheless, should allow reaching the optimal tree in
the fewest number of steps. This is equivalent, for example,
to allowing a chess player to make apparently suboptimal
moves, such as sacrificing the queen, in order to win
the game in the following several moves. Generally, a low
(immediate) reward may still lead to an optimal terminal
state. Thus, to develop and characterize a full RL algorithm
for phylogenetic tree inference, it is necessary to design the
algorithm based on a long-term plan by taking into ac-
count not only the immediate rewards but more import-
antly the future ones.

Setting an RL representation of the phylogenetic tree
search dynamics requires a tailored representation of
both the tree topology with branch length estimates and
the possible actions to be taken, as well as deriving a mean-
ingful immediate reward function. In the phylogeny
context, the reward is based on the likelihood change re-
sulting from a local modification of the tree, i.e. the
log-likelihood difference between the next and current
state (termed hereafter “likelihood score”). Likewise, a va-
lue function considers the entire search path, namely the
estimated likelihood scores of subsequent moves.

The RL-based algorithm introduced in this study is
based on optimizing a policy for phylogenetic tree search,
with the aim to identify the optimal tree for a given MSA in
terms of its likelihood score, relying on previous AI techni-
ques to estimate the likelihood function without actually
calculating it (Azouri et al. 2021). We modeled the phylo-
genetic tree search problem in a similar way as RL naviga-
tion to the highest point on a grid. Defining the grid
(environment) as all possible topologies, the state of the
agent is the current location, and the action is the move
to a new location. The transitions in the environment
are deterministic. An optimal policy of an agent would
therefore be to reach the topology with the maximum-
likelihood score, while taking the minimal number of steps.
To account for the length of the path the agent takes till
reaching the optimal topology, a discount factor γ is set
(see Equation 2 in Materials and Methods). The discount
factor in RL determines the weight the agent assigns to re-
wards in the distant future relative to those in the imme-
diate future. If γ = 0, the agent will be completely myopic
and only optimize an immediate reward. If γ = 1, the agent
will evaluate each of its actions equally, based on the sum
of all its future rewards, thus aiming to reach the optimal
configuration but disregarding the number of steps. In the
implementation described here, a discount factor 0 < γ <
1 was used as a hyperparameter, which provides an algo-
rithmic incentive to reach the higher likelihood topologies
earlier in the trajectory, such that the optimal policy (given

Azouri et al. · https://doi.org/10.1093/molbev/msae105 MBE

2

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

a certain γ value) corresponds to finding the shortest path
from the initial topology to the final topology. The dis-
counted cumulative reward is updated recursively accord-
ing to Bellman’s equation (Puterman 1994) and is
estimated using a Q-network (Mnih et al. 2015).

The Q-network, and thus the proposed RL framework,
should receive as input a vectorized representation of
the states and actions in order to estimate the value func-
tion. The representation we designed to suit these require-
ments is based on a set of tree features that were
previously shown to effectively characterize a state–action
pair in the context of a likelihood-based phylogeny recon-
struction (Azouri et al. 2021). Specifically, we represented
each state–action pair the agent came across during train-
ing and testing by calculating 27 features (supplementary
table S1, Supplementary Material online) that are based
on the current tree topology, its branch-length estimates,
and a certain subtree pruning and regrafting (SPR) move
(Wooding 2004) to a neighboring phylogenetic tree, by
pruning a subtree from the current tree and regrafting it
to the remaining tree (see Materials and Methods). After
each move, i.e. an SPR modification to the current tree,
the agent arrives to a new location in the tree space until
reaching a predefined end of an episode (see Fig. 1 for a
schematic flowchart of the RL framework applied in this
study).

The goal of an RL agent is to learn a policy that would
make optimal decisions in any given state of the environ-
ment. The optimization is performed during a training

phase in which an agent plays numerous episodes, allowing
it to collect relevant observations (i.e. transitions). That is,
by exploring the dynamics of the environment the agent
learns the optimal mapping between states and actions
for maximizing the long-term reward signal (Sutton and
Barto 1998). An important issue that needs to be tackled
when developing an RL algorithm, as opposed to other
types of learning, is how to balance the known trade-off
between exploration and exploitation during the training
phase. That is, in order to reach beneficial surfaces of
high likelihood, the agent has to exploit the good transi-
tions in the tree space it had already experienced. At the
same time, it also has to explore unseen transitions, per-
haps some that decrease the immediate likelihood gain,
in order to make better selection of actions in the future.
This was tackled using a known RL technique to sample an
action based on its predicted benefit, while allowing some
exploration.

Here, we developed an RL strategy for the task of search-
ing for the maximum-likelihood phylogeny. Our method
introduces novel approaches for tackling the NP-hard
problem of maximum-likelihood tree search by optimizing
the exploration strategy itself, which inherently considers
suboptimal steps to be taken if they are expected to be
beneficial in the long run. Additionally, our method does
not require the direct time-consuming calculation of the
likelihood function in order to predict an optimal tree.
Furthermore, the computational resources needed for
using this approach for phylogeny prediction are hardly

Fig. 1. Modeling phylogenetic tree search as RL framework. A schematic flowchart of the RL framework applied in this study. Given an empirical
sequence data set, the environment represents all phylogenetic tree topologies (states), their possible single-step SPR moves (actions), and the
scaled log-likelihood difference between phylogenetic trees (rewards). We first extracted feature vectors that represent a state with its actions.
These were then fed into the agent’s neural network, which outputs a prediction for the best action to be taken in the agent’s state, accounting
for both immediate and future rewards. The reward (ΔLL; the scaled log-likelihood change) obtained following the action conducted was then
stored, as part of the transition data, in the agent’s memory buffer, to be later sampled during the agent’s training.

The Tree Reconstruction Game · https://doi.org/10.1093/molbev/msae105 MBE

3

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data

influenced by the input sequence length. In the following,
we first study the potential benefit of looking beyond a sin-
gle step when using the classic hill-climbing optimization
strategy and demonstrate that taking suboptimal moves
can regularly lead to better trees in a subsequent step.
Then, a framework based on deep-Q-learning (Mnih
et al. 2015) for predicting the optimal tree for a given
MSA is introduced. We demonstrate the application of
the developed method on a set of unseen data, i.e. on un-
seen RL environments defined by nucleotide MSAs of up
to 20 sequences. Importantly, both training and testing
rely on empirical data, which were previously shown to
be more challenging for phylogeny reconstruction com-
pared to simulated data (Edwards 1995; Huelsenbeck
1995; Abdo et al. 2005; Abadi et al. 2019). Our results
show that for this search space, the likelihood scores of
the inferred phylogenies are comparable to those obtained
from widely used methods. We then explore the feasibility
of applying an agent that was trained on a certain data size
on different sizes of the search spaces.

Results
The Potential Benefit of a Nongreedy Search Strategy
for Phylogenetic Reconstruction
The strength of RL lies in its ability to take actions that are
suboptimal in the short term for optimizing a long-term
reward. To assess the potential benefit of RL in the context
of phylogeny-tree search, we examined a large number of
two-step trajectories. We computed the percentage of
moves in which choosing two consecutive greedy moves
(i.e. choosing the best single-step action available at each
move) would lead to lower likelihood score than choosing
a nongreedy move, followed by a greedy one. To this end,
for a set of 13,200 randomly chosen starting trees, we gen-
erated all possible 1,082,400,000 (13,200 × 13,200) two-
step trajectories. For each starting tree, we located the
best tree (i.e. the best two-step neighbor) in terms of the
likelihood score. We then quantified the fraction of start-
ing trees for which the greedy approach was not optimal.
This analysis revealed that the greedy approach was sub-
optimal in 33% and 41% of the cases for data sets of size
7 and 12 sequences, respectively. Interestingly, some of
the intermediate moves that led to trees with higher like-
lihood than the greedy approach were among the worst
possible first moves (Fig. 2). Although the analysis was
not prolonged for more than two steps ahead, this result
implies that the strict stepwise greedy optimization is
not necessarily the best strategy to traverse the tree top-
ology space, even when the search space is rather limited.

Performance Evaluation of the Proposed RL
Framework
We developed a tree search framework that is entirely
based on RL and tested its performance. For training the
RL model, we assembled a large collection of transition
data from a database of empirical MSAs (see Materials

and Methods). We define transition data as all the ob-
served shifts from one state and action combination (re-
ferred to as a “state–action pair”) to a neighboring state
and action combination, together with the corresponding
scaled log-likelihood difference between the states. We
first focused on relatively small data sets (MSAs), contain-
ing at most 12 sequences (i.e. a space size of up to ca. 109

topologies). For these data sets, for each state the agent
came across, we explored all possible immediate SPR
moves during training and testing. For larger data sets
that contained 15 and 20 sequences (i.e. a space size of
up to ca. 1020 topologies), we restricted the range of pos-
sible actions from each state in order to make the training
of agents feasible for the scope of this proof-of-concept
study (see Materials and Methods).

The RL algorithm aims to optimize the entire search
path from the starting tree to the global maximum.
Therefore, throughout this study, we measured the agent’s
performance at the end of an episode according to the
improvement the agent achieved relative to the maximal
observed improvement, i.e. the improvement obtained
by RaxML-NG (Kozlov et al. 2019) from the same starting
tree (see Materials and Methods; “The Performance
Metric”). Thus, an agent that achieved the maximal ob-
served improvement received a score of 1, while an agent
that achieved an improvement of 150 likelihood points
relative to the starting tree, but 50 likelihood points less
than the estimated global maximum, received a score of
0.75. Under this definition, the performance obtained by
RaxML is set to 1.

Typical examples of the likelihood improvement as the
agent progresses in the search space are shown in Fig. 3. In
these examples, we compared the trajectory of a trained
agent to two alternative strategies: (i) a hill-climbing
fully greedy strategy (i.e. evaluating in each move the
log-likelihood of all possible single-step neighbors using
RaxML-NG) and (ii) maximum-likelihood search obtained
by running RaxML-NG (i.e. the final likelihood only); all
three searches were initiated from the same random
tree. Three different examples are presented: (i) the RL
agent did not reach the best-known tree; (ii) the RL agent
discovered the optimal tree, while taking fewer moves
than the fully greedy procedure (five compared to six
moves) by taking suboptimal moves; and (iii) the RL agent
converged to a better tree than the greedy search.

Accuracy for Data Sets of Relatively Small Size
We evaluated the performance of the trained RL model on
unseen test data. First, we examined data composed of se-
ven sequences. For this challenge of searching in a space of
size 103, both the hill-climbing fully greedy strategy and
our RL model converged to the optimal tree with an aver-
age accuracy of 1 and 0.99999 (95% confidence interval of
0.999 to 1), respectively. We next evaluated the perform-
ance on a much larger search space, such as that defined
by MSAs containing 12 sequences (i.e. search space of
size 654,729,075 topologies). The average accuracy score
of the fully greedy strategy and the trained model was

Azouri et al. · https://doi.org/10.1093/molbev/msae105 MBE

4

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

0.99999 and 0.969, respectively (95% confidence interval of
0.9999 to 1 and 0.945 to 0.993). This indicates that the
trained RL agent successfully learns a search strategy
that can be well generalized for empirical data sets of vari-
ous sources.

The above results were obtained with ten data sets for
generating the training observations and 2,000 training epi-
sodes. These values were selected by analyzing the depend-
ence between the prediction accuracy on the validation set
and the number of MSAs used to generate the training
data, focusing on data sets with 12 sequences. To this
end, we increased the number of different empirical data
sets based on which we generated the training observations
from 1 to 10, 20, and 30 (but keeping the total number of

episodes and transitions constant) and compared the per-
formances (supplementary fig. S1, Supplementary Material
online; see supplementary data S1, Supplementary Material
online for detailed attributes of the sampled data sets). This
analysis indicated that using only a single data set for learn-
ing is significantly inferior to all other sizes (P < 0.03 for
one-way ANOVA test for the means), but using more
than ten data sets does not significantly improve the per-
formance (P > 0.64 for one-way ANOVA test for the means
when comparing 10 to 20 and 30 data sets). Consequently,
ten different empirical data sets were used to collect the
training data. To further investigate the main factors affect-
ing the performance of the RL agent, we sought to investi-
gate the impact of the number of episodes in the training

Fig. 2. The ranking percentiles of beneficial suboptimal first moves. The distribution of the percentiles of first moves that led to better trees than
two-step greedy moves. The top panel presents the outcomes for data sets containing seven species while the bottom panel presents these for
data sets of 12 sequences. When ranking the moves from the move that improves the likelihood score the best (rank 1) to the worst, the x axis
denotes the ranking percentile of first moves that in the subsequent move led to better trees than two consecutive greedy moves (i.e. higher
percentiles imply worst moves). The box inside each violin shows the quartiles of the data set with the white dot being the median, while the
whiskers extend to show the 1.5 × interquartile range past the low and high quartiles.

The Tree Reconstruction Game · https://doi.org/10.1093/molbev/msae105 MBE

5

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data

phase on the validation accuracy. The accuracy increased as
a function of the number of episodes (P < 0.004; Pearson
correlation coefficient for testing noncorrelation of the
means), reaching a plateau at around 2,000 episodes.
Although the increase in accuracy was statistically non-
significant when increasing the number of episodes in the
range between 1,500 and 5,000 (supplementary fig. S2,
Supplementary Material online; P > 0.37 for one-way
ANOVA test for the means), the best accuracy was ob-
tained when 2,000 episodes were used during test. To bal-
ance runtime and accuracy, the results across the entire
analyses are presented using 2,000 episodes and ten distinct
empirical MSAs (data sets) to generate the training data.

RL for Large Search Space
Search spaces of data sets containing 15 and 20 sequences
are of size 7.9 × 1012 and 2.2 × 1020 topologies, respect-
ively. For these data sets, feature extraction of all possible
neighbors of a given tree, either at the learning stage or
when searching for the best tree, is computationally de-
manding. Thus, we limited the number of considered
neighbors of a given state by applying a restriction on
the SPR moves, considering only local changes in the
tree topology as commonly performed in various tree
search heuristics (Stewart et al. 2001; Stamatakis et al.
2005) (see Materials and Methods). When applying this
procedure in both training and testing, the average per-
formance of the trained models for 15 sequences was
0.999 (95% confidence interval of 0.998 to 1.001). This sug-
gests that narrowing the range of possible neighbors should
be considered as a technique for training RL agents and infer-
ring the phylogenies for data sets with large phylogenetic

search spaces. When data sets with 20 sequences were con-
sidered, the test accuracy was lower; i.e. the average test per-
formance was 0.89. We speculate that this performance could
be improved using alternative, more exhaustive, data collec-
tion methodologies (see Discussion).

Employing Pretrained Agents across Data Sizes
Our learning so far concentrated on RL training on data sets
of specified size. To assess the potential of using agents that
were trained on a specific data set size to solve the phylo-
genetic search problem for varied number of sequences,
we sought to apply zero-shot testing (Higgins et al. 2017).
Specifically, we investigated the predictive power when test-
ing pretrained agents of up to 20 sequences on data sets
with fewer sequences and found comparable performance
(Table 1). For example, the performance of a zero-shot
agent trained on data sets containing 15 sequences on un-
seen environments of data sets containing 12 sequences ob-
tained an averaged accuracy score of 0.973, which is slightly

Fig. 3. Typical examples of the likelihood gain as the search progresses. a) The case where RL agent did not reach the best-known tree. b) The case
where the RL agent discovered the optimal tree, while taking fewer moves than the fully greedy procedure. c) The case where the RL agent
converged to a better tree than the greedy search. The x axis represents the SPR move number, while the y axis represents the log-likelihood
achieved following each move of a trained agent (dashed line), a hill-climbing-fully greedy strategy (dash-dotted line), and the maximum-
likelihood score obtained by RaxML-NG (solid line). Different panels represent different tests, on data sets containing 12 sequences a, b) and
15 sequences c).

Table 1 Accuracy scores of zero-shot experiments

7 12 15 20

7 0.999 … … …
12 0.999 0.969 … …
15 0.998 0.973 0.993 …
20 0.999 0.93 0.993 0.892

The table details the performance of each pretrained agent of a certain data set
size (row) to each other smaller data set size (column), while the main diagonal
(italic font) shows the performance values on test data of the same size. Each
cell shows the accuracy score of the trained model, averaged over the test data
sets.

Azouri et al. · https://doi.org/10.1093/molbev/msae105 MBE

6

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data

better than that obtained by an agent that was trained and
tested on an environment of 12 sequences (average accur-
acy of 0.969). Overall, this analysis indicates that a transfer
between environments of different sizes does exist and
that this approach could potentially assist in solving varied
phylogenetic search space environments.

Running Times
In this study, we focused on developing the conceptual as-
pects of RL phylogenetics, and as part of this, we developed
a prototype implementation. This prototype did not
undergo cycles of optimization; e.g. a large portion of the
computational runtime is devoted to feature extraction,
which in the current version is implemented inefficiently
in Python. For 15 sequences, for example, the training of
an RL agent took 600 CPU hours. However, once the agent
is trained, the time required to predict the optimal tree
takes a few seconds. Specifically, we compared the runtime
required to reconstruct the optimal tree to that of
RaxML-NG. For data sets with 15 sequences, running the
trained agent took 8.7 s on average (ranged between 8.4
and 9.3 s), of which, 7 s for extracting the features, and
1.7 s for all other computational tasks, e.g. estimating the Q
function. Noticeably, the running time does not depend on
MSA length (Fig. 4). For the same data sets, the likelihood
computation of RaxML-NG took 8.7 s on average, but these
varied widely from less than half a second for short MSAs (up

to 800 bp) to 18 s for very long ones (more than 16,500 bp).
The same trend was observed when data sets with 20 se-
quences were considered (Fig. 4).

Discussion
For many biological domains, spanning diverse fields such
as ecology, genomics, systematics, and epidemiology re-
search, an accurate inference of the underlying phylogeny
is indispensable. As such, the development of more accur-
ate phylogeny reconstruction techniques is an ongoing ef-
fort that continuously progressed with the type and size of
data analyzed, the computational resources available, and
algorithmic developments. Numerous computational
techniques were imported from the fields of statistics
and computer science to improve phylogenetic tree recon-
struction. These include treating character evolution as a
Markov process (Felsenstein 1981), Branch-and-Bound
(Hendy and Penny 1982), Markov chain Monte-Carlo
(Yang and Rannala 1997), genetic algorithms (Lewis
1998), simulated annealing (Stamatakis 2005), and more
recently, machine learning (Suvorov et al. 2020; Zou
et al. 2020; Azouri et al. 2021; Zhicheng et al. 2023).
Despite these improvements, commonly used algorithms
still lack the ability to provide an optimal solution. In
this study, we propose an out-of-the-box AI approach
for phylogenetic reconstruction, namely, RL.

Fig. 4. Running time. The average inference running time in seconds (y axis) relative to the length of the sequences analyzed (x axis; 100 data
points binned to 17 groups). In solid line and dashed line are the average running times of inferring the optimal tree for data sets with 15 se-
quences using the RL trained agent and RaxML-NG (with the same single-random-starting point), respectively. Similarly, in dash-dotted line and
dotted line are the running times for data sets containing 20 sequences, of the RL agent and RaxML-NG, respectively.

The Tree Reconstruction Game · https://doi.org/10.1093/molbev/msae105 MBE

7

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

The idea of introducing RL algorithms to the task of
finding the optimal phylogenetic tree is based on the con-
cept of optimizing a strategy for the tree search, rather
than incrementally optimizing the likelihood gain within
a series of steps. RL includes several aspects that together
could prove particularly beneficial to phylogeny inference.
First, similar to simulated annealing, it allows taking sub-
optimal steps as part of the search strategy. Our results
above demonstrate that this often enables more efficient
convergence to optimal trees. Second, and unlike any
other existing approach, our algorithm directly optimizes
a policy based on empirical training data, without the
need of predetermined heuristics. This means that an
agent can decide to be greedy or to take suboptimal moves
according to the specific characteristics of the data and the
specific position in the tree space. Third, our agent moves
without optimizing the likelihood directly, potentially
reducing running time, especially for long sequences.

When a phylogenetic tree is provided as input to
machine learning algorithms, it must be represented as a
vector. In a recent study, we represented a tree and its
SPR neighbors as a vector of 19 features (shown in bold in
supplementary table S1, Supplementary Material online),
and showed that we could predict optimal SPR moves with-
out computing the likelihood function (Azouri et al. 2021).
In this work, we exploited such tree representation tech-
nique for training an RL agent, which can successfully tra-
verse previously unseen phylogenetic spaces of empirical
data sets. This study could thus serve as a benchmark for dif-
ferent representations of a phylogenetic search space, which
reportedly until current days, was missing. We expect that
additional improvement in representing trees and align-
ments would further improve RL-based tree search.

Two recent studies employed RL to phylogeny (Liptak
and Kiss 2021; Zhu and Cai 2021). In these studies, RL
was used in the context of distance-based methods, which
are known to be faster, albeit less accurate than likelihood-
based methods (Saitou and Nei 1987; Ogden and Rosenberg
2006). These studies and ours showed the potential of
using RL for the complicated tree search problem and em-
phasized the challenge of training an agent on topological
spaces of more than 20 sequences. While our algorithm
and representation are not theoretically limited by the
number of sequences in the data, at present, accuracy was
not satisfactory for data sets with more than 20 sequences.
We believe that promising future directions toward the ap-
plication of RL to large data sets should concentrate on the
following:

(i) Improving the training data. This includes the size
of the training observations, as well as its quality.
Increasing the number of training examples necessi-
tates training the agent longer, which depends on
the availability of computational resources. In this re-
gard, transfer learning should enable repeatedly using
previous models trained on small data sets as the
starting point for learning larger ones (Karimpanal
and Bouffanais 2019). As for the data quality, it

requires developing means to collect training obser-
vations of those cases that would maximize the learn-
ing of the agent, for example by collecting more
observations from regions of high likelihood, which
could provide valuable information for traversing
these important parts of the likelihood surface.

(ii) Improving code efficiency. Although the running
time of the proposed methodology is hardly af-
fected by the input sequences lengths and thus is
suitable for large-scale data, a more efficient imple-
mentation with regard to feature extraction could
enable better usage of the computing resources
available, particularly during training.

(iii) Using an alternative, automatic, representation of
the tree search space. For example, it has been re-
cently proposed to represent tree topologies with
embedded node features based on graph neural
networks (Cheng 2023). This direction of extract-
ing learnable topological features can potentially
better capture the complexity of empirical
phylogenetic environments, without requiring to
handcraft additional features.

Another possible direction for improving the effectiveness
of RL for phylogenetics could be considering alternative im-
mediate reward functions, e.g. directly calculating the likeli-
hood function as the reward during inference instead of
estimating the likelihood change. Additionally, while, in
this work, we considered SPR actions only, the combination
of complementary neighborhood definitions for local search
phylogenetic reconstruction algorithms, such as nearest-
neighbor interchange (Robinson 1971) and tree bisection
and regrafting (Allen and Steel 2001), could be considered
when modeling the tree search dynamics. Expanding the
range of possible actions could thus help the agent fine-tune
the search strategy when it is in low or high likelihood re-
gions. An additional variation to the current implementa-
tion could be extracting additional features that are not
topology specific. For instance, the nucleotide frequencies,
the entropy score of the alignment, the number of gap
blocks in it, and the average gap block length. Yet, when con-
sidering large data sets, this kind of modification could come
at the cost of runtime, which will become dependent on the
alignment size. Lastly, there are a large number of variants of
RL algorithms. As part of the development of the current im-
plementation, we have examined the applicability of alterna-
tive RL-based schemes, e.g. policy-based algorithms. This
procedure demands more computation resources and was
attempted for relatively small data sizes of up to 12 se-
quences. However, other existing RL frameworks could prove
beneficial for the task of phylogenetic reconstruction.

The main conceptual novelty of our approach is to view
phylogenetic tree reconstruction as a dynamic game, in
which the rules are specified, but the winning strategy is
unknown and difficult to optimize. In such a case, better
inference is obtained following numerous games gener-
ated in silico. We expect that, with time, RL will be intro-
duced for additional evolutionary genomics optimization

Azouri et al. · https://doi.org/10.1093/molbev/msae105 MBE

8

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data

problems, including MSA, synteny inference, and elucidat-
ing complex patterns of population dynamics.

Materials and Methods
A RL Algorithm for Predicting the
Maximum-Likelihood Phylogeny
The Environment
We defined the environment using (S, A, R), where S is
the state space, i.e. all possible trees given a set of aligned
sequences, and A is the set of possible actions, i.e. all pos-
sible SPR moves given a tree topology. R is the immediate
reward function following a transition from state s to s′. In
our setting, (s, a) deterministically determines the next
state s′. R(s, s′) is defined as the log-likelihood difference,
scaled by LLNJ (the log-likelihood of the reconstructed
BioNJ [Gascuel 1997] tree as implemented in PhyML 3.0
[Guindon et al. 2010]) so that the reward function would
have the same magnitude across different data sets:

R(s, s′) =
LLs′ − LLs

LLNJ
. (1)

The Features. Each state–action pair (s, a) is represented
by a set of 27 phylogenetically informative features from
an input tree (supplementary table S1, Supplementary
Material online). The feature vector, ϕ(s, a), captures prop-
erties of the current state (the topology and its branch
lengths) and the action (one possible SPR move). Of these,
19 (bolded in supplementary table S1, Supplementary
Material online) were previously developed in the context
of predicting the optimal neighbor as part of a tree search
(Azouri et al. 2021) and capturing, for example, features re-
lated to the topological differences between the starting
and resulting trees and properties related to their branch

lengths. Eight additional features were implemented in
this work and are based on nonparametric bootstrap com-
putations. While features 20 to 23 were extracted based on
the UPGMA algorithm (Michener and Sokal 1957), fea-
tures 24 to 27 were based on the bioNJ algorithm.

The Algorithm
The developed RL algorithm is based on a Deep
Q-network (DQN) (Mnih et al. 2015), a model-free and
off-policy RL algorithm. In the DQN setting, the agent
learns a value function, named the quality function
Q(s, a), which represents the estimated benefit of a spe-
cified action in gaining some future reward, given a cer-
tain state. More specifically, we implemented a neural
network Qθ (with weight parameters θ), which repre-
sents the agent, that predicts the quality function of a
state–action pair, given the feature vector ϕ(s, a). This
predicted value is termed Q(ϕ(s, a)) and is explained in
more details below. Starting from state s, we estimated
Q(ϕ(s, a)) for all possible SPR actions and chose the action
with maximal Q(ϕ(s, a)), which defines the next state
(Algorithm 1). In more detail, for each state s, the feature
function ϕ extracts a feature vector for the tree (state s)
and SPR move (action a). The feature vector ϕ(s, a) is the in-
put for the neural network. The returned scalar is the agent’s
evaluation of the tree and SPR move, written as follows:

Qθ(ϕ(s, a)). (2)

The action that received the maximal evaluation by the agent
is then selected, marked here as a′:

a′ = argmaxaQθ(ϕ(s, a)). (3)

Finally, the final tree (after a predefined number or SPR
moves) is returned. The number of unique state–action

Algorithm 1 Inference

The Tree Reconstruction Game · https://doi.org/10.1093/molbev/msae105 MBE

9

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data

pairs to be computed when conducting a move is
2(n − 3)(2n − 7), which is O(n2), where n is the number
of sequences in the input MSA (Allen and Steel 2001).
The starting state for each episode, s0, was randomly
sampled (using RaxML-NG [Kozlov et al. 2019] random
tree generator), such that the agent could start the trajec-
tory from anywhere in the tree space.

The Model
The main strength of Q-learning lies in its ability to con-
struct a policy that maximizes the cumulative reward
(Sutton and Barto 1998). In deep Q-learning, neural
networks are trained to estimate the value of the Q
function for unseen states and thus it combines
Q-learning with a deep artificial neural network (ANN).
The recursive form of the optimal return function, known
as the Bellman equation (Puterman 1994), is:

Q∗(ϕ(st, at)) = rt + γ max
a

Q∗(ϕ(st+1, a)), (4)

where Q∗ is the optimal state–action value function and rt is
the immediate reward obtained at time step t. The γ hyper-
parameter is the discount rate, a constant 0 ≤ γ ≤ 1, which
weights rewards from the uncertain far future less than the
ones in the fairly confident near future. That is, a reward re-
ceived k time steps in the future is worth only γk−1 times
what it would be worth if it were received immediately. Of
note, there exists a γ = 1 − ϵ, ϵ > 0, for which the optimal
policy corresponds to the shortest path from the starting
topology to the topology with the highest likelihood (up to
H SPR moves away).

We would like the agent to learn a policy that does not
involve taking an unlimited number of actions; i.e. we
would like to balance the runtime with the improvement
in likelihood. This balance is controlled by the horizon hy-
perparameter, denoted as H, which specifies the number of
actions taken from the starting tree (Algorithm 2). Of note,
each search stops after a predefined number of H steps.
This is termed an episode. Importantly, the specific γ value
inspires a different optimal policy (see supplementary note
S1, Supplementary Material online).

Algorithm 2 Training

Azouri et al. · https://doi.org/10.1093/molbev/msae105 MBE

10

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data

Choosing an appropriate value for the discount rate is
crucial for balancing short-term and long-term rewards.
Setting the discount rate to 0 or 1 leads to extreme cases: γ =
0 would prioritize only the immediate rewards, while γ = 1
would treat all future rewards as equally important. The
length of the horizon should be considered when choosing
a discount rate. In short-term planning problems, a lower
discount rate might suffice, while for long-term planning
problems, a higher discount rate could be more suitable.
In more detail, we attempt to choose γ such that the optimal
policy it inspires is the same policy that leads to the highest
likelihood tree up to H SPR moves away from the starting
tree. Notice, in our setting the agent does not know about
the H moves limitation, nor does it have any indication of
how many moves are left in the episode. To tackle this issue,
we chose a rather low γ, to incentivize collecting rewards
(reaching better topologies) sooner rather than later.

Our usual setting was γ = 0.9, H = 20. In that setting,
the agent values the reward H + 1 moves away at ∼11%
of its original value. Compared to a standard γ = 0.99,
which is considered standard in many RL applications,
the agent values the reward H + 1 moves away at ∼81%
of its original value. Since for our problem set, there are
no rewards after move H, we kept the estimation of moves
after H low, while still considering long-term rewards.

As stated above, the total number of episodes during
learning is also a hyperparameter. Following each episode,
the network weights are updated. Specifically, as in standard
DQNs, we used the experience replay method to hold the
agent’s training trajectories, i.e. a buffer of a predetermined
size containing transition observations (state–action pairs
together with their rewards and next state–actions). At
the end of each episode, H new memories are added to
the buffer (and the H oldest memories are discarded),
and the ANN is trained based on a batch of trajectories
sampled (with replacement) from the memory buffer
“time-to-learn” times (Algorithm 2). The sizes of the memory
buffer and the batch, as well as the “time-to-learn,” are
hyperparameters of the algorithm.

Additional hyperparameters are related to the deep
network architecture and the learning dynamics. These in-
clude the number of fully connected hidden layers, the
number of neurons in each layer, the activation function,
the loss function, the optimization algorithm, and the
learning rate (supplementary table S1, Supplementary
Material online).

To control the exploration–exploitation trade-off during
training, we allowed the agent to take suboptimal moves
with respect to the Q function. This is commonly known
as an exploration policy. We used the SoftMax exploration
policy that selects an action a ∈ A, where A is the set of all
possible next moves, based on the following probability:

P(a | s) =
eQ(s,a)/T

􏽐
x∈A eQ(s,x)/T . (5)

This allows greater value actions to be selected with
greater chance, yet permitting some randomness. T is a

hyperparameter that controls the level of exploration.
Running a SoftMax function to determine the next move
might cause some divergence from the optimum
Q-function. These inaccuracies in the estimation of the Q
function could result in the collection of more transitions
in low regions of the search space during the initial training
phase (when the phylogenies are quite far from the
maximum-likelihood solution), as well as more transitions
where the phylogenetic tree state is better at the later
phases of training.

RL Agent Architecture
We implemented the ANN in Python using PyTorch
(Paszke et al. 2019). The above hyperparameters were op-
timized via Optuna framework (Akiba et al. 2019), which is
an automatic hyperparameter optimization package, par-
ticularly designed for machine learning (summary of the
model hyperparameter values and further details are de-
scribed in Table 2). The models were trained using an
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz, with 40
CPUs, 10 GB of DDR2 RAM and an X86_64 instruction set.

The Performance Metric
To measure the performance at the end of an episode,
we computed the following metric: let LLgain be the
log-likelihood difference between the final tree and the
starting tree. Let LLrax be the log-likelihood difference be-
tween the maximum-likelihood tree and the starting
tree, as obtained by executing RAxML-NG from the same
starting tree. Both resulting topologies were subject to
branch-length optimization. The ratio between these two
terms (LLgain

LLrax
) is a number that reflects the improvement

in likelihood score achieved by an agent and can be used
to compare the performance between different data sets.

Empirical Data Preparation
We selected all empirical data sets with 7, 12, 15, and 20
sequences from the training data collected in Azouri
et al. (2021). These represent nucleotide coding alignments
(Moretti et al. 2014), user-submitted phylogenies from
TreeBase (Vos et al. 2012), plant phylogenies reconstructed
using the OneTwoTree pipeline (Drori et al. 2018), and
genomic sequences that were aligned according to the ter-
tiary structure of its encoded proteins (Carroll et al. 2007).
For each data set size (i.e. the number of sequences in the
alignment), 30 MSAs were randomly fixed as validation
data, ten MSAs were randomly fixed as test data, and
from the rest, ten data sets (unless otherwise specified)
were randomly sampled to generate the training samples
(see supplementary data S1, Supplementary Material on-
line for detailed attributes of the sampled data sets).

Transition Data Collection
To apply the memory buffer method, the transition
observations (state–action pairs together with their corre-
sponding scaled log-likelihood differences and the corre-
sponding next state–action pair) need to be collected

The Tree Reconstruction Game · https://doi.org/10.1093/molbev/msae105 MBE

11

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data

through many training episodes. To this end, each episode
was initiated from a random tree, which was generated
using RaxML-NG “complete random starting tree” gener-
ator, and the obtained reward was calculated (using
RaxML-NG) and stored for each transition taken.
Precisely, a model that is trained for 2,500 episodes of 20
SPR moves each is essentially trained over 25, 000 × 20 =
50, 000 training observations. The substitution rate para-
meters of a GTR + I + G model (Abadi et al. 2019) were
optimized once for each data set, based on a reconstructed
BioNJ tree as implemented in PhyML 3.0 (Guindon et al.
2010), and were then fixed for the following likelihood cal-
culations of the respective data set.

When data sets of size 15 and 20 sequences were con-
sidered, the computational resource required to compute
the features for all neighbors was beyond the scope of the
study conducted here. Therefore, we limited the space of
possible neighbors by applying a restriction on the range
of SPR moves, allowing each pruned subtree to be re-
grafted up to a predefined radius. This radius defines the
number of branches in the path between the pruned
and regrafted branches, not including these branches
(supplementary fig. S3, Supplementary Material online).
Setting a radius of 4 narrowed the neighborhood space
to a feasible task. Additionally, when data sets with 20 se-
quences were considered, we applied an alternative ap-
proach to collect experiences, which proved superior to
the one used for smaller data sizes (see supplementary
note S2, Supplementary Material online).

Data Collection for the Two-Step Preanalysis
We collected from the training data all MSAs containing 7
and 12 sequences (i.e. 51 and 81 data sets, respectively).
Next, 100 random starting trees were reconstructed for
each data set using RAxML-NG. We then obtained all their
respective 32,640,000 and 1,049,760,000 possible two-step

trajectories. Precisely, we (i) obtained all single-step SPR
neighbors for each starting tree and recorded all likelihoods
and (ii) recorded all likelihood scores of the single-step SPR
neighbors of each of the latter trees. This allowed us to iden-
tify the best two-step neighbor of each starting tree, as well
as the best neighbor reached by applying the single-greedy
step twice sequentially. The likelihoods throughout this
analysis were computed using RAxML-NG, allowing for
branch-length optimization. The substitution rate para-
meters were optimized once for each data set, based on a
reconstructed tree as implemented in PhyML 3.0
(Guindon et al. 2010) and were then fixed for the following
likelihood calculations of the respective data set, assuming
the GTR + I + G model (Abadi et al. 2019).

Supplementary Material
Supplementary material is available at Molecular Biology
and Evolution online.

Acknowledgements
We acknowledge the Data Science & AI Center at TAU for
supporting this study. D.A. was supported by The Council
for Higher Education program for excellent PhD students in
Data Sciences and by a fellowship from the Fast and Direct
PhD Program at Tel Aviv University. M.A. was supported
by a fellowship from the Edmond J. Safra Center
for Bioinformatics at Tel Aviv University. O.G. and Y.M. were
supported by a grant from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No. 882396), by
the Israel Science Foundation (grant number 993/17), the
Yandex Initiative for Machine Learning at Tel Aviv
University, and a grant from the Tel Aviv University Center
for AI and Data Science (TAD). T.P. was supported by an

Table 2 Details of the RL configuration and the hyperparameter values

Parameter name Value in the trained model Additional details

NN architecture Five fully connected hidden layers, in addition to
the input layer (containing 27 neurons) and
the output layer (containing a single node)

Number of neurons within each layer: {1: 4,096; 2:
4,096; 3: 2,048; 4: 128; 5: 32}

Input layer 27 neurons
Output layer 1 neuron For regression output
Loss function Mean square error (MSE)
Activation function Leaky ReLU
Optimizer Adam
Discount factor (γ) 0.9
Replay buffer size 10,000 The maximal size of transitions collected during

training
Times-to-learn 50 The number of times we sampled a batch to train

the ANN
Horizon H 20 (for data of 7, 12, and 15 sequences), 30 (for 20

sequences)
The number of SPR moves in each episode. This

hyperparameter was reoptimized when we
considered different number of sequences in
the analysis

Batch size 128
Learning rate 10−5

Exploratory policy SoftMax With T parameter = 1
Episodes 2,000 Number of episodes in training

Azouri et al. · https://doi.org/10.1093/molbev/msae105 MBE

12

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae105#supplementary-data

Israel Science Foundation grant 2818/21. I.M. was supported
by an Israel Science Foundation grant 1843/21. We would
like to express our gratitude to Dr. Shiran Abadi for providing
insightful feedback on the draft and to Professor Jeffrey
L. Thorne for the meaningful remarks during the review
process.

Author Contributions
D.A., O.G., and M.A. jointly designed and conducted the
work including programming the algorithm, performing
the analyses, and drafting the manuscript. Y.M., T.P., and
I.M. supervised this work and revised the manuscript.

Conflict of Interest
The authors declare no competing interests.

Data Availability
The data sets contained within the empirical set have been
deposited in GitHub with the identifier https://github.com/
michaelalb/ThePhylogeneticGame. The code that supports
the findings of this study was written in Python version
3.9.7 has been deposited in GitHub with the identifier
https://github.com/michaelalb/ThePhylogeneticGame.
Computation of likelihoods was executed using the follow-
ing application versions: PhyML 3.0 (Guindon et al. 2010)
and RAxML-NG 0.9.0 (Kozlov et al. 2019). The ANN was
implemented in PyTorch (Paszke et al. 2019) version 1.13.1.

References
Abadi S, Azouri D, Pupko T, Mayrose I. Model selection may not be a

mandatory step for phylogeny reconstruction. Nat Commun.
2019:10(1):934. https://doi.org/10.1038/s41467-019-08822-w.

Abdo Z, Minin VN, Joyce P, Sullivan J. Accounting for uncertainty in the
tree topology has little effect on the decision-theoretic approach to
model selection in phylogeny estimation. Mol Biol Evol. 2005:22(3):
691–703. https://doi.org/10.1093/molbev/msi050.

Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next-
generation hyperparameter optimization framework. Proc 25th
ACM SIGKDD Int Conf Knowl Discov Data Min. 2019:2623–2631.

Allen BL, Steel M. Subtree transfer operations and their induced me-
trics on evolutionary trees. Ann Comb. 2001:5(1):1–15. https://
doi.org/10.1007/s00026-001-8006-8.

Azouri D, Abadi S, Mansour Y, Mayrose I, Pupko T. Harnessing ma-
chine learning to guide phylogenetic-tree search algorithms. Nat
Commun. 2021:12(1):1983. https://doi.org/10.1038/s41467-021-
22073-8.

Carroll H, Beckstead W, O’Connor T, Ebbert M, Clement M, Snell Q,
Mcclellan D. DNA reference alignment benchmarks based on ter-
tiary structure of encoded proteins. Bioinformatics 2007:23(19):
2648–2649. https://doi.org/10.1093/bioinformatics/btm389.

Cheng Z. 2023. Learnable topological features for phylogenetic infer-
ence via graph neural networks, arXiv 2302.08840, preprint: not
peer reviewed.

Chor B, Tuller T. Maximum likelihood of evolutionary trees: hardness
and approximation. Bioinformatics 2005:21(Suppl 1):i97–106.
https://doi.org/10.1093/bioinformatics/bti1027.

Drori M, Rice A, Einhorn M, Chay O, Glick L, Mayrose I. OneTwoTree: an
online tool for phylogeny reconstruction. Mol Ecol Resour. 2018:
18(6):1492–1499. https://doi.org/10.1111/1755-0998.12927.

Edwards AWF. Assessing molecular phylogenies. Science 1995:
267(5195):253–253. https://doi.org/10.1126/science.7809633.

Felsenstein J. Evolutionary trees from gene frequencies and quantita-
tive characters: finding Maximum likelihood estimates. Evolution
1981:35(6):1229. https://doi.org/10.2307/2408134.

Gascuel O. BIONJ: an improved version of the NJ algorithm based on a
simple model of sequence data. Mol Biol Evol. 1997:14(7):685–695.
https://doi.org/10.1093/oxfordjournals.molbev.a025808.

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W,
Gascuel O. New algorithms and methods to estimate
maximum-likelihood phylogenies: assessing the performance
of PhyML 3.0. Syst Biol. 2010:59(3):307–321. https://doi.org/
10.1093/sysbio/syq010.

Haag J, Höhler D, Bettisworth B, Stamatakis A. From easy to
hopeless-predicting the difficulty of phylogenetic analyses. Mol
Biol Evol. 2022:39(12):msac254. https://doi.org/10.1093/molbev/
msac254.

Hendy MD, Penny D. Branch and bound algorithms to determine
minimal evolutionary trees. Math Biosci. 1982:59(2):277–290.
https://doi.org/10.1016/0025-5564(82)90027-X.

Higgins I, Pal A, Rusu A, Matthey L, Burgess C, Pritzel A, Botvinick M,
Blundell C, Lerchner L. 2017. DARLA: improving zero-shot trans-
fer in reinforcement learning. In: 34th International Conference
on Machine Learning (ICML). 3:2335–2350.

Huelsenbeck JP. Performance of phylogenetic methods in simula-
tion. Syst Biol. 1995:44(1):17–48. https://doi.org/10.2307/
2413481.

Karimpanal TG, Bouffanais R.. Self-organizing maps for storage and
transfer of knowledge in reinforcement learning. Adapt Behav.
2019:27(2):111–126. https://doi.org/10.1177/105971231881.

Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a
fast, scalable and user-friendly tool for maximum likelihood
phylogenetic inference. Bioinformatics 2019:35(21):4453–4455.
https://doi.org/10.1093/bioinformatics/btz305.

Lewis PO. A genetic algorithm for maximum-likelihood phylogeny
inference using nucleotide sequence data. Mol Biol Evol.
1998:3(3):277–283. https://doi.org/10.1093/oxfordjournals.molb
ev.a025924.

Liptak P, Kiss A. Constructing unrooted phylogenetic trees with re-
inforcement learning. Stud Univ Babeș-Bolyai Inform. 2021:66(1):
37. https://doi.org/10.24193/subbi.2021.1.03.

Michener CD, Sokal RR. A quantitative approach to a problem of clas-
sification. Evolution 1957:11(2):490–499. https://doi.org/10.2307/
2406046.

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG,
Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, et al.
Human-level control through deep reinforcement learning. Nature
2015:518(7540):529–533. https://doi.org/10.1038/nature14236.

Moretti S, Laurenczy B, Gharib WH, Castella B, Kuzniar A, Schabauer
H, Studer RA, Valle M, Salamin N, Stockinger H, et al. Selectome
update: quality control and computational improvements to a
database of positive selection. Nucleic Acids Res. 2014:42(D1):
D917–D921. https://doi.org/10.1093/nar/gkt1065.

Ogden TH, Rosenberg MS. Multiple sequence alignment accuracy
and phylogenetic inference. Syst Biol. 2006:55(2):314–328.
https://doi.org/10.1080/10635150500541730.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T,
Lin Z, Gimelshein N, Antiga L, et al. Proceedings of the 33rd inter-
national conference on neural information processing systems.
Red Hook (NY): Curran Associates Inc.; 2019. Article 721.
p. 8026–8037.

Puterman ML. Markov decision processes: discrete stochastic dynamic
programming. Wiley; 1994.

Robinson DF. Comparison of labeled trees with valency three. J Comb
Theory, Ser B. 1971:11(2):105–119. https://doi.org/10.1016/0095-
8956(71)90020-7.

The Tree Reconstruction Game · https://doi.org/10.1093/molbev/msae105 MBE

13

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae105/7686977 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 01 July 2024

https://github.com/michaelalb/ThePhylogeneticGame
https://github.com/michaelalb/ThePhylogeneticGame
https://github.com/michaelalb/ThePhylogeneticGame
https://doi.org/10.1038/s41467-019-08822-w
https://doi.org/10.1093/molbev/msi050
https://doi.org/10.1007/s00026-001-8006-8
https://doi.org/10.1007/s00026-001-8006-8
https://doi.org/10.1038/s41467-021-22073-8
https://doi.org/10.1038/s41467-021-22073-8
https://doi.org/10.1093/bioinformatics/btm389
https://doi.org/10.1093/bioinformatics/bti1027
https://doi.org/10.1111/1755-0998.12927
https://doi.org/10.1126/science.7809633
https://doi.org/10.2307/2408134
https://doi.org/10.1093/oxfordjournals.molbev.a025808
https://doi.org/10.1093/sysbio/syq010
https://doi.org/10.1093/sysbio/syq010
https://doi.org/10.1093/molbev/msac254
https://doi.org/10.1093/molbev/msac254
https://doi.org/10.1016/0025-5564(82)90027-X
https://doi.org/10.2307/2413481
https://doi.org/10.2307/2413481
https://doi.org/10.1177/105971231881
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1093/oxfordjournals.molbev.a025924
https://doi.org/10.1093/oxfordjournals.molbev.a025924
https://doi.org/10.24193/subbi.2021.1.03
https://doi.org/10.2307/2406046
https://doi.org/10.2307/2406046
https://doi.org/10.1038/nature14236
https://doi.org/10.1093/nar/gkt1065
https://doi.org/10.1080/10635150500541730
https://doi.org/10.1016/0095-8956(71)90020-7
https://doi.org/10.1016/0095-8956(71)90020-7

Saitou N, Nei M. The neighbor-joining method: a new method for re-
constructing phylogenetic trees. Mol Biol Evol. 1987:4(4):406–425.
https://doi.org/10.1093/oxfordjournals.molbev.a040454.

Schrider DR, Kern AD. Supervised machine learning for population
genetics: a new paradigm. Trends Genet. 2018:34(4):301–312.
https://doi.org/10.1016/j.tig.2017.12.005.

Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for max-
imum likelihood-based inference of large phylogenetic trees.
Bioinformatics 2005:21(4):456–463. https://doi.org/10.1093/
bioinformatics/bti191.

Stamatakis A. 2005. An efficient program for phylogenetic inference
using simulated annealing. In: Proceedings - 19th IEEE
International Parallel and Distributed Processing Symposium.

Stewart CA, Hart D, Berry DK, Olsen GJ, Wernert EA, Fischer W. 2001.
Parallel implementation and performance of fastDNAml.
Proceedings of the ACM/IEEE conference on supercomputing.

Sutton RS, Barto AG. Reinforcement learning: an introduction. MA:
MIT Press; 1998.

Suvorov A, Hochuli J, Schrider DR. Accurate inference of tree topolo-
gies from multiple sequence alignments using deep learning. Syst
Biol. 2020:69(2):221–233. https://doi.org/10.1093/sysbio/syz060.

Szepesvári C. Algorithms for reinforcement learning. Synth Lect Artif
Intell Mach Learn. 2010:4:1–103.

Tarca AL, Carey VJ, Chen X, Romero R, Drăghici S. Machine learning
and its applications to biology. PLoS Comput Biol. 2007:3(6):e116.
https://doi.org/10.1371/journal.pcbi.0030116.

Vos RA, Balhoff JP, Caravas JA, Holder MT, Lapp H, Maddison WP,
Midford PE, Priyam A, Sukumaran J, Xia X, et al. NeXML: rich, exten-
sible, and verifiable representation of comparative data and

metadata. Syst Biol. 2012:61(4):675–689. https://doi.org/10.1093/
sysbio/sys025.

Whelan S. New approaches to phylogenetic tree search and their ap-
plication to large numbers of protein alignments. Syst Biol.
2007:5(5):727–740. https://doi.org/10.1080/10635150701611134.

Wooding S. Inferring phylogenies. Am J Hum Genet. 2004:74(5):1074.
https://doi.org/10.1086/383584.

Yang Z, Rannala B. Bayesian phylogenetic inference using DNA se-
quences: a Markov chain Monte Carlo method. Mol Biol Evol.
1997:14(7):717–724. https://doi.org/10.1093/oxfordjournals.mol
bev.a025811.

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood.
Mol Biol Evol. 2007:24(8):1586–1591. https://doi.org/10.
1093/molbev/msm088.

Zaharias P, Grosshauser M, Warnow T. Re-evaluating deep neural
networks for phylogeny estimation: the issue of taxon sampling.
J Comput Biol. 2022:29(1):74–89. https://doi.org/10.1089/cmb.
2021.0383.

Zhicheng W, Sun J, Yuan G, Yongwei X, Zha Y, Kuan L, Wei Z, Chi Z,
Jian Z, Li Z. Fusang: a framework for phylogenetic tree inference
via deep learning. Nucleic Acids Res. 2023:51(20):10909–10923.
https://doi.org/10.1093/nar/gkad805.

Zhu T, Cai Y. 2021. Applying neural network to reconstruction of
phylogenetic tree. In: 13th International Conference on
Machine Learning and Computing. 146–152.

Zou Z, Zhang H, Guan Y, Zhang J, Liu L. Deep residual neural
networks resolve quartet molecular phylogenies. Mol Biol
Evol. 2020:37(5):1495–1507. https://doi.org/10.1093/molbev/
msz307.

Azouri et al. · https://doi.org/10.1093/molbev/msae105 MBE
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/41/6/m

sae105/7686977 by The D
avid J. Light Law

 Library, Tel Aviv U
niversity user on 01 July 2024

https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1016/j.tig.2017.12.005
https://doi.org/10.1093/bioinformatics/bti191
https://doi.org/10.1093/bioinformatics/bti191
https://doi.org/10.1093/sysbio/syz060
https://doi.org/10.1371/journal.pcbi.0030116
https://doi.org/10.1093/sysbio/sys025
https://doi.org/10.1093/sysbio/sys025
https://doi.org/10.1080/10635150701611134
https://doi.org/10.1086/383584
https://doi.org/10.1093/oxfordjournals.molbev.a025811
https://doi.org/10.1093/oxfordjournals.molbev.a025811
https://doi.org/10.1093/molbev/msm088
https://doi.org/10.1093/molbev/msm088
https://doi.org/10.1089/cmb.2021.0383
https://doi.org/10.1089/cmb.2021.0383
https://doi.org/10.1093/nar/gkad805
https://doi.org/10.1093/molbev/msz307
https://doi.org/10.1093/molbev/msz307

	The Tree Reconstruction Game: Phylogenetic Reconstruction Using Reinforcement Learning
	Introduction
	Results
	The Potential Benefit of a Nongreedy Search Strategy for Phylogenetic Reconstruction
	Performance Evaluation of the Proposed RL Framework
	Accuracy for Data Sets of Relatively Small Size
	RL for Large Search Space
	Employing Pretrained Agents across Data Sizes
	Running Times

	Discussion
	Materials and Methods
	A RL Algorithm for Predicting the Maximum-Likelihood Phylogeny
	The Environment
	The Features

	The Algorithm
	The Model
	RL Agent Architecture
	The Performance Metric

	Empirical Data Preparation
	Transition Data Collection
	Data Collection for the Two-Step Preanalysis

	Supplementary Material
	Acknowledgements
	Author Contributions
	Conflict of Interest
	Data Availability
	References

