
Insertions and Deletions: Computational Methods, 
Evolutionary Dynamics, and Biological Applications
Benjamin D. Redelings  ,1 Ian Holmes  ,2,3 Gerton Lunter  ,4 Tal Pupko  ,5

Maria Anisimova  6,7,*

1Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
2Department of Bioengineering, University of California, Berkeley, CA 94720, USA
3Calico Life Sciences LLC, South San Francisco, CA 94080, USA
4Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The 
Netherlands
5The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 
6997801, Israel
6Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
7Swiss Institute of Bioinformatics, Lausanne, Switzerland

*Corresponding author: E-mail: maria.anisimova@zhaw.ch.
Associate editor: Brandon Gaut

Abstract
Insertions and deletions constitute the second most important source of natural genomic variation. Insertions and 
deletions make up to 25% of genomic variants in humans and are involved in complex evolutionary processes includ
ing genomic rearrangements, adaptation, and speciation. Recent advances in long-read sequencing technologies al
low detailed inference of insertions and deletion variation in species and populations. Yet, despite their importance, 
evolutionary studies have traditionally ignored or mishandled insertions and deletions due to a lack of comprehen
sive methodologies and statistical models of insertions and deletion dynamics. Here, we discuss methods for describ
ing insertions and deletion variation and modeling insertions and deletions over evolutionary time. We provide 
practical advice for tackling insertions and deletions in genomic sequences and illustrate our discussion with exam
ples of insertions and deletion-induced effects in human and other natural populations and their contribution to 
evolutionary processes. We outline promising directions for future developments in statistical methodologies that 
would allow researchers to analyze insertions and deletion variation and their effects in large genomic data sets 
and to incorporate insertions and deletions in evolutionary inference.
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Review
 Introduction

After point mutations, insertions and deletions (a.k.a. indels) 
constitute the second most important source of genomic 
variation in populations and species. Indel events appear to 
dominate the early stages of species divergence (Britten 
et al. 2003), and in human populations, between 16% and 
25% of all genomic variations are indels, many of which are 
functionally important (Mills et al. 2006; Mullaney et al. 
2010). Consequently, indels could be used to infer patterns in
formative of human diseases, thus potentially discovering 
indel biomarkers (Sehn 2015). Indel diversity is often under
studied in viral sequences, due to their presumed highly dele
terious effects, as well as technical difficulties. However, 
recent reports show that indel patterns can shed light on viral 

dynamics and evolution (Elena 2023), with indels having 
important phenotypic consequences. Several studies have 
evaluated and reported natural selection on indels in a variety 
of species (Haerty and Golding 2010; Mularoni et al. 2010; 
Barton and Zeng 2019). At deeper evolutionary divergences, 
indels lead to structural variation in protein superfamilies af
fecting binding, catalysis, and protein–protein interaction 
(Copley 2010). In some cases, multiple indels seem to have lit
tle effect on the overall folded protein structure, yet they no
ticeably affect the interaction between different proteins 
(Sandhya et al. 2009; Studer et al. 2013).

The treatment of indels in key bioinformatic tasks has dir
ect influence on the quality of all downstream inferences. In 
particular, one such core task is multiple sequence alignment 
(MSA), since it is used extensively in genomics, evolutionary 
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biology, biochemistry, microbiology, and medicine. A few ex
amples for cases in which MSAs are widely used are as follows: 
(i) phylogenetic tree inference (Kapli et al. 2020); (ii) detecting 
the selection regime of specific regions within proteins, genes, 
and genomes, e.g. patterns of positive selection (Ashkenazy 
et al. 2010; Kosiol and Anisimova 2019); (iii) the inference of 
remote homology (Eddy 1998); (iv) molecular dating (dos 
Reis et al. 2016); (v) structural predictions (Jumper et al. 
2021); (vi) inference of lateral gene transfer (Dagan 2011); 
(vii) ancestral sequence reconstruction (Selberg et al. 2021); 
(viii) the detecting of coevolving sites (de Juan et al. 2013); 
(ix) genome assembly (Rice and Green 2019); and (x) whole- 
genome alignment and genome annotation (Angiuoli et al. 
2011). The inference of MSA and the study of indel dynamics 
are deeply intertwined because an MSA implicitly reflects in
ference regarding the assignment of indel events along the 
evolutionary history that led to the analyzed sequences. 
Thus, better inference of indel dynamics should, in theory, 
lead to more accurate inferred MSAs.

In MSAs, indels create gap patterns that can be highly 
informative for phylogenetic inference, providing a strong 
signal that saturates at substantially deeper divergences 
compared to point mutations, and that can help to resolve 
disputed species relationships (Rokas and Holland 2000; 
Simmons and Ochoterena 2000; Belinky et al. 2010). 
However, the use of indel information poses a challenge 
because indels are not directly observed and because incor
rectly placed indels can mislead inference (Westesson et al. 
2012). A large-scale study (Dessimoz and Gil 2010) used 
real data from eukaryotes, fungi, and bacteria to evaluate 
the effect of gap placement in MSAs on the accuracy of phyl
ogeny inference. They discovered that by excluding gap-rich 
and variable regions, valuable information from substitutions 
and gap patterns is often discarded, which can be detrimen
tal. Other studies have shown that indels provide a signifi
cant phylogenetic signal (Birth et al. 2022) and should be 
better utilized by methods for MSA and tree inference. 
Phylogenetic information from indels can be used not only 
to study deep evolutionary history (Rivera and Lake 1992; 
Rokas and Holland 2000) but also to distinguish closely re
lated species (Gaya et al. 2011). Indels may also prove useful 
for studies within species, for example for medical applica
tions in human (Mullaney et al. 2010). More generally, indel 
markers are increasingly used to study population diversity 
and structure (Yang et al. 2014; Lü et al. 2015; Zhou et al. 
2015; Vishwakarma et al. 2017; Jain et al. 2019), with a variety 
of applications, such as in germplasm management for pur
poses of conservation and crop improvement (Wang, Zhou, 
et al. 2023). In addition, indel calling is often done by map
ping short reads to a reference genome, for example in bac
teria where the inferred indel variation can shed light on 
processes such as the acquisition of antibiotic resistance 
and reveal epistatic interactions that involve both indels 
and substitutions (Godfroid et al. 2020).

There is also increased awareness of the importance of 
indels in ancestral sequence reconstruction, prompting a 
push for new methods. Inferred indel histories can be high
ly informative for studies of gene and protein evolution 

(Savino et al. 2022), providing insights into protein engin
eering strategies (Boersma and Plückthun 2011). Finally, in
dels are a major contributor to functional protein changes 
(Lin et al. 2017), incident disease and disease susceptibility 
within a population (Roos 2010; Ferlaino et al. 2017; Dai 
et al. 2020; Kundu et al. 2022).

Overall, genome research across a variety of species de
monstrates that indels provide substantial insight into evolu
tionary relationships, trait discovery, and drug resistance and 
have multifaceted applications, such as in protein bioengin
eering, forensics, and breeding. Nevertheless, dealing with in
dels is challenging, and therefore, most studies tend to focus 
on point mutations (or substitutions) and remove or heavily 
trim gap-rich regions. There is no commonly accepted gold 
standard for treating indels. The simple reason for this is 
the inherent difficulty in properly handling complex gap pat
terns that arise over time due to indels, overlapping in space 
and altering sequence length (Redelings and Suchard 2009). 
Disentangling individual indel histories based on the ob
served gap distributions in a sequence alignment requires 
stochastic models of sequence evolution that explicitly in
clude indel events over time. The first stochastic evolutionary 
models with indels were proposed over 30 years ago (Thorne 
et al. 1991, 1992), demonstrating the computational com
plexity of the problem, and subsequent development has fo
cused on further improving model accuracy while keeping 
computations tractable. In this review, we summarize recent 
and notable models and methods that enable researchers to 
properly exploit patterns generated by indels in phylogenetic 
inferences and downstream applications. We consider meth
odological assumptions and potential issues with different 
approaches and discuss practical considerations in phylogen
etic inference with indels. Finally, we outline future directions 
and call for closer collaborations between method develo
pers and experimental and evolutionary biology experts.

Indels: Definition, Mutagenesis, and 
Representation
Mutations in genome sequences are often classified, from 
small to large, into single-nucleotide variants (SNVs), indels, 
and structural variants (SVs). Here, SNVs are substitutions 
of one nucleotide for another, while indels are typically 
defined as local indels of “short” DNA segments, and SVs in
volve longer sequence segments, or modify a genome more 
globally, e.g. through inversions or translocations. The mean
ing of “short” here is arbitrary, and sizes of up to 10 kb have 
been used (Mills et al. 2011; Sehn 2015) although a threshold 
of 50 bp is commonly accepted (Montgomery et al. 2013; 
Mahmoud et al. 2019; Ebert et al. 2021). In particular, this 
puts transposable element (TE) insertions into the class of 
SVs. First discovered by Barbara McClintock in maize 
(McClintock 1950), TEs are selfish genetic elements of 100 
to over 10 kb in size (Wells and Feschotte 2020) that consti
tute a substantial fraction of many species’ genomes 
(Schnable et al. 2009) and are important drivers of evolution 
(Kazazian 2004) as well as reliable phylogenetic markers 
(Lunter 2007; Nystedt et al. 2013; Jarvis et al. 2014). 
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However, in this review, we focus on short indels, and we will 
not discuss TEs or other SVs further.

While we have different terms for single base pair muta
tions and substitutions (single base pair mutations that 
have become fixed in a population), we do not have similar 
terms for indels, and the term indel is used to refer to both 
indel mutations and indels that became fixed in a popula
tion. We also often use the term “gap” to indicate the re
presentation of indel events in an alignment. We often 
lump indels together, since the observed alignment gaps 
can be caused by either. However, when we discuss muta
tional processes, we often distinguish indels.

Which mutation processes are known to lead to indels? A 
common source of indels is DNA slippage during replication, 
resulting from denaturation followed by mispairing of the 
nascent DNA strand (Levinson and Gutman 1987). Since 
mispairing is more likely in repetitive regions, slippage occurs 
frequently in short tandem repeats (STRs), i.e. multiple 
adjacent copies of short sequence motifs, also known as 
microsatellites. Conversely, the process of DNA replication 
slippage is thought to be responsible for the abundance of 
STRs in many genomes (Levinson and Gutman 1987). A 
similar process, termed template switching, is responsible 
for more complex mutations, including length-preserving 
micro-inversions (Chaisson et al. 2006; Cooke et al. 2021) 
and mutation clusters (Löytynoja and Goldman 2017).

A second cause of indels is DNA damage followed by im
perfect repair. Damage, such as double-stranded breaks, oc
curs naturally due to metabolic processes, transcription, and 
replication stresses requiring untangling of DNA by topo
isomerase, as well as through exogenous sources such as 

radiation and toxins (Mehta and Haber 2014). In most cases, 
the resulting lesions are repaired by one of several homolo
gous repair (HR) pathways, which use a sister chromatid as 
template (Mehta and Haber 2014), generally leading to com
plete repair. In nondividing cells, this pathway is not access
ible, and an alternative repair pathway, nonhomologous end 
joining (NHEJ) is used instead. NHEJ can handle most lesions 
and often leads to perfect repair (Bétermier et al. 2014; 
Bhargava et al. 2018), and if not results in small (few base 
pairs) indels often flanked by small (1 to 2 bp) microhomol
ogies (Bennett et al. 2020). A third mechanism, 
microhomology-mediated end joining (MMEJ) serves as a 
fallback mechanism that is more error prone and requires 
longer (1 to 16 bp) microhomologies for repair (Sfeir and 
Symington 2015). An overview of these mechanisms is 
shown in Fig. 1. A range of other mutagenic mechanisms, in
cluding nonallelic homologous recombination and template 
switching during replication (FoSTeS) typically result in large 
structural variation but also contribute indels of all sizes, in
cluding small ones (Burssed et al. 2022).

The overall result of these mutagenic and repair me
chanisms is that short indels are mostly found in repetitive 
regions (such as STRs), are most frequently very short (1 to 
2 bp), and are biased toward deletions, while insertions are 
typically copies of a nearby (often adjacent) sequence 
(Verbiest et al. 2022).

A single nucleotide variant with respect to a reference se
quence is naturally represented as a base change (e.g. T → A) 
at a certain position (e.g. hg18.chr1:10001), and this is essen
tially how SNVs are represented in the variant call format 
(VCF) (Danecek et al. 2011). However, it is less straightforward 

Fig. 1. Main mechanisms for indel formation. a) Double-stranded breaks (DSBs) can result from various mutagenic mechanisms, as well as nor
mal cell processes, and are usually resolved without mutation by HR. Complementary repair pathways include NHEJ often leading to small indels 
and MMEJ, which typically results in larger indels. b) Indels also result from errors during replication. Polymerase slippage is a major cause for 
indels in repetitive DNA.
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to represent indels as occurring at a specific base position in a 
reference genome. Is CAT → CAAT an insertion of an A next 
to the C or next to the existing A? For alignments, the equiva
lent question is whether to left- or right-align gaps. What if 
the haplotype carrying the indel also carries a C → A (or 
T → A) SNV? The VCF format has disambiguated the re
presentation in many cases, but issues remain for complex 
haplotypes, which affect for instance the benchmarking of in
del calling pipelines (Krusche et al. 2019; Cooke et al. 2021).

One way forward is to use more flexible graph-based repre
sentations, such as partial order graphs (POGs) introduced in 
the context of structure alignment (Ye and Godzik 2005). 
Instead of aligning linear sequences, graph-based methods al
low taking alternative paths to indicate homology, which can 
be helpful for divergent sequences, e.g. for constructing MSAs 
(Löytynoja et al. 2012; Szalkowski and Anisimova 2013; Hickey 
et al. 2020). A sequence alignment is a hypothesis regarding 
the homology of individual characters in a given set of hom
ologous sequences. Even if correct (that is, aligned characters 
are direct descendants of one another, i.e. “homologous”), it 
leaves much uncertainty about the actual historical mutation 
events, since many indel and substitution events can give rise 
to the same homology relationships. For substitution models 
that make the assumption that sites evolve independently of 
one another, it is possible to analytically integrate out this un
certainty, but for indels (as for substitution models that allow 
interactions between sites), things are more complicated, as 
we discuss later. However, before diving into statistical mod
els for indels, we first discuss several widely used parsimony- 
based approaches, with a focus on phylogenetic inference.

Indel-Based Phylogeny via Indel Coding
Indels harbor information for phylogenetic reconstruction 
(Dessimoz and Gil 2010; Saurabh et al. 2012). Consider, say, 
40 diverged sequences, in which only two sequences har
bor an identical inserted sequence between the exact 
same positions. If these two sequences are not placed to
gether as a clade in the phylogenetic tree, then one has 
to assume that these putative insertion events reflect a 
case of convergent evolution, in which exactly the same in
sertion occurred independently along two lineages in a 
tree, which is clearly unlikely. This logic has motivated re
searchers to search for phylogenetically informative indels 
to strengthen the phylogenetic signal inferred from substi
tution events. For example, Vogler and DeSalle (1994) ex
amined the internal transcribed spacer region 1 in 50 
clones of tiger beetles. They tested various ways to account 
for gap characters in the phylogenetic tree: treating each 
gap position of an indel as a different character, coding 
each gap length as a different character, and treating gap 
characters (“–”) as unknown characters (“N”). Their 
parsimony-based analysis showed that the tree was less re
solved when gaps were ignored (treated as unknown char
acters) compared to the two other indel-coding methods. 
This led them to conclude that accounting for gap charac
ters within phylogenetic inference increases the amount of 
phylogenetic information.

Such studies motivated the development of automated 
indel-coding methods. These methods take MSAs as input, 
and output a data matrix, in which each row is a sequence 
and each column corresponds to a specific gap. In its sim
plest form, 0 and 1 represent the absence and presence, re
spectively, of a specific DNA or protein segment. This indel 
information matrix is then added to the substitution ma
trix as input to phylogenetic tree reconstruction algo
rithms. A variety of different indel-coding methods have 
been developed, which differ in the underlying assump
tions used when coding indels (Simmons et al. 2007) com
pared several such methods in a simulation study.

While it is obvious that indel characters are highly inform
ative for phylogenetic reconstruction, the above indel- 
coding-based approaches are fraught with potential biases, 
statistical caveats, and methodological limitations. For ex
ample, indel-coding approaches generally code indels in a 
single fixed alignment estimate instead of accounting for 
alignment uncertainty. The placement of indels in this single 
alignment was shown to strongly depend on the algorithm 
used to align the sequences, and indeed methods were devel
oped to quantify the reliability of each “indel character” 
(Ashkenazy et al. 2014).

Indel-coding methods are mainly used in parsimony- 
based tree searches, and thus such analyses inherit the stat
istical limitations of parsimony (Felsenstein 2004). In 
probabilistic-based approaches, handling indels is challen
ging, as indels violate the assumption of independence 
among positions, and thus, indel positions are often ex
cluded from the data matrix before the tree inference pro
cedure or, alternatively, are treated as unknown characters. 
Ideally, the recent improvements in probabilistic modeling 
of indel dynamics as well as in integrating tree search and 
alignment algorithms should make the inclusion of indel in
formation within phylogenetic tree search a standard.

Shared indels have a stronger effect on phylogeny than 
shared substitutions, so it is essential for gaps to be placed 
without error. Most alignment software places gaps too 
inaccurately to use them for phylogenetic information 
(Ashkenazy et al. 2014). One reason for this is that most align
ment algorithms employed today use progressive alignment, 
which can be biased toward the guide tree (Lake 1991). When 
gaps are treated as phylogenetically informative, this bias is 
even stronger, since the profile alignment step of progressive 
alignment introduces joint gaps into entire subtrees of the 
guide tree. Another reason is that most alignment algorithms 
are not phylogeny aware in the sense that they do not use the 
tree to determine the number of substitutions and indels im
plied by a specific alignment. As a result, most aligners tend to 
infer alignments where characters are often independently 
deleted many times when considered on a tree; see for ex
ample fig. 1 in Löytynoja and Goldman (2008). By taking 
into account the underlying phylogeny, phylogeny-aware 
programs such as PRANK can infer more realistic alignments. 
However, these alignments depend even more strongly on 
the phylogeny used as input. Thus, when inferring the phyl
ogeny from the alignment, it is essential to score each phyl
ogeny on an alignment inferred assuming that phylogeny. It 
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is therefore important to consider possible errors and biases 
that creep in during the construction of these alignments. We 
discuss such alignment errors in the next section.

Alignment Biases, and Errors, and Their 
Consequences
Many bioinformatic inference pipelines take an MSA as in
put, e.g. for the inference of phylogenies, divergence times, 
ancestral states, and positive selection. It is important to 
remember that MSAs are estimated, not observed, and 
can therefore contain errors. MSA errors can propagate 
through the inference pipeline, undermining the final 
result.

As mentioned above, an MSA is a hypothesis about the 
homology of individual characters in a collection of homolo
gous sequences. The homology information in an MSA is usu
ally expressed by writing the sequences as a matrix so that 
each cell contains one character, each row contains one se
quence, and each column contains characters that derive 
from one character in the common ancestor. When no char
acter from a sequence is homologous to other characters in a 
column, we write a gap character (“–”). When a single column 
contains multiple letters, we can infer the presence of a sub
stitution event in the history of the characters in that column. 
Likewise, when a column contains a gap, we can infer the pres
ence of an indel event affecting the history of characters in 
that column.

Effects on Downstream Inferences
A wide range of bioinformatic inferences can be affected by 
errors in MSA inputs. For example, alignment error can 
negatively affect ancestral sequence reconstruction (Vialle 
et al. 2018; Aadland and Kolaczkowski 2020; Spence et al. 
2021), the inference of positive selection (Wong et al. 
2008; Fletcher and Yang 2010; Jordan and Goldman 2012; 
Privman et al. 2012; Redelings 2014), topology inference 
(Lake 1991; Morrison and Ellis 1997; Mugridge et al. 2000; 
Wong et al. 2008), and statistical tests to compare trees 
(Levy Karin et al. 2014). Alignment errors have a large effect 
on analyses that explicitly take indels into account. This in
cludes the inference of indel rates (Westesson et al. 2012; 
Holmes 2017a) as well as phylogeny inference when indel in
formation is used to place taxa (Ashkenazy et al. 2014).

Alignment Error
Alignment errors come from a variety of sources. First, 
many alignment inference algorithms seek to optimize a 
score function. Ideally, alignments with higher scores would 
represent a more plausible evolutionary scenario. However, 
most alignment inference software uses heuristics that do 
not reflect the evolutionary process very well, leading to a 
flawed optimality criterion.

We currently lack sophisticated stochastic models for 
indel dynamics. Ideally, we would like to evaluate an align
ment using models that account for both substitutions 
and indels, allow for spatially varying indel rates, change 

in the insertion/deletion rate over time, context depend
ent indel rates, etc. We currently lack such models. 
Furthermore, the more accurate models that we do have 
tend to be too computationally expensive for practical 
use. Even getting a biologically realistic penalty for indel 
length can dramatically slow down computations 
(Cartwright 2007).

Additionally, the score for an MSA depends on the tree. 
Thus, to infer an MSA, we need to account for the phyl
ogeny underlying the evolutionary relationship among 
the sequences at hand. The mutual dependence of the 
alignment and the phylogeny creates a “chicken-and-egg” 
problem. In order to account for the lack of knowledge of 
the tree, most alignment inference software packages use 
some ad hoc scores instead, such as the sum-of-pairs score, 
which is the sum of pairwise alignment scores over all pairs 
in an MSA.

Second, most MSA inference software programs fail to 
fully optimize the score function. The number of align
ments grows much faster than exponentially in the se
quence length and in the number of taxa, so that it is 
impossible to examine the entire set of MSAs and report 
the one with the highest score. Instead, heuristics are used 
to search a small fraction of the set of alternative align
ments. For example, the progressive heuristic reduces 
the MSA problem to a sequence of pairwise alignment 
problems moving along the “guide tree” from the tips 
to the root. Despite various attempts to introduce “re
finement” of MSAs following progressive alignment, the 
inability to thoroughly search the MSA space is a serious 
problem.

Alignment Uncertainty
MSA estimates can be incorrect when we attempt to 
choose a single MSA in the presence of alignment ambigu
ity. Alignment ambiguity occurs when multiple alternative 
MSAs represent plausible evolutionary scenarios (Redelings 
and Suchard 2009). Even with a perfect score function and 
the ability to search all possible alignments, it is impossible 
to eliminate alignment ambiguity.

There are at least two sources of alignment ambiguity. 
First, the optimality criterion may be sensitive to a 
large collection of parameters, such as the guide tree, 
gap-opening penalties, gap-extension penalties, mismatch 
penalties, and so on. For example, Lake (1991) showed that 
inferring a phylogeny from an MSA tends to recover 
whichever tree was used as the guide tree. Uncertainty 
about these parameter values then leads to uncertainty 
about which alignment is correct. Interestingly, most of 
these tunable parameters serve to describe the evolution
ary process under which the sequences have evolved. Thus, 
the guide tree is a proxy for the unknown phylogeny, 
gap-opening penalties are a proxy for the unknown indel 
rate, and gap-extension penalties are a proxy for the un
known indel length distribution. Since these are often 
the parameters that we seek to estimate from the align
ment, it is difficult to know what values to use when infer
ring the alignment.
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Most bioinformatic workflows output a single MSA that 
they submit as input to downstream inference steps, thus 
the myriad of alignments that are near-optimal or equally 
optimal. Near-optimal alignments are also plausible evolu
tionary scenarios but place gaps differently. Ignoring 
near-optimal alignments makes downstream inferences 
sensitive to unreliably placed gaps even when the scoring 
parameters are reliable.

Mitigating Alignment Uncertainty
Because of the importance of MSA error on downstream 
analyses, biologists initially attempted to identify unreli
able alignment regions “by eye.” However, visual inspection 
and manual editing were subjective and nonrepeatable, 
leading different researchers to exclude different regions 
(Gatesy et al. 1993). Researchers therefore attempted to 
design objective and repeatable algorithms for identifying 
error-prone regions (Castresana 2000). Evaluation of these 
algorithms initially focused on chronicling the sensitivity of 
downstream analyses to ambiguous alignment regions. 
However, after the development of metrics that evaluated 
the algorithms based on curated alignment databases and 
alignment simulation tools, researchers attempted to 
(i) more accurately identify error-prone alignment regions 
and (ii) mitigate the effects of alignment error by removing 
error-prone regions. These tasks have both proven more 
difficult than expected.

Programs such as GBLOCKS attempt to identify and re
move ambiguously aligned regions by identifying columns 
with multiple residues or regions with gaps, to some degree 
of success (Talavera and Castresana 2007). More sophisti
cated methods identify badly aligned regions either based 
on sensitivity to parameters (Talavera and Castresana 
2007; Penn et al. 2010), based on the effect of incorporating 
alternative near-optimal pairwise alignments during MSA in
ference (Landan and Graur 2007), or based on a combination 
of both parameter sensitivity and near-optimal alignment 
uncertainty (Sela et al. 2015). When identifying ambiguously 
aligned regions, it is important to take into account all 
sources of alignment error and alignment ambiguity.

Researchers have also attempted to improve down
stream estimates of phylogenies and positive selection by 
automatically identifying and “filtering” alignment columns 
or residues suspected of being incorrectly aligned (Jordan 
and Goldman 2012; Privman et al. 2012). Unfortunately, fil
tering does not seem to substantially improve accuracy of 
phylogeny estimation or power to detect positive selection 
when high-quality alignment estimation programs are used 
(Spielman et al. 2014; Tan et al. 2015). Indeed, filtering may 
even decrease inference quality by removing regions with 
many phylogenetically informative characters. Thus, it 
does not appear that filtering approaches are succeeding 
at screening out error while still preserving high power to 
detect biological phenomena.

The failure of filtering/masking has led to an interest in al
ternative remedies. One idea is that instead of removing un
certain regions, the uncertainty should be accounted for by 

considering a sample of alternative alignments (Wheeler 
et al. 1995). This approach has been embraced by MUSCLE 
version 5, which enables users to create alignment “ensem
bles” that contain several alternative MSAs for the same se
quences (Edgar 2022). This is close in spirit to a Bayesian 
approach, but here, ad hoc methodologies are used to gener
ate the alternative MSAs. It has the benefit that information 
in ambiguous regions is not completely discarded. However, 
the features of the alignment that vary between alternative 
MSAs are still downweighed. Averaging alignments using 
GUIDANCE2 was shown to yield more accurate trees com
pared to using a single best MSA (Ashkenazy et al. 2019).

Statistical approaches to sequence alignment address 
many of these problems. Statistical approaches are based 
on the probability of the alignment and of the data. Here, 
the log of the probability corresponds to traditional score 
functions that add up penalties for observed sequence 
changes. Statistical approaches allow estimating the rela
tive rates of substitutions and indels from the data instead 
of specifying arbitrary penalties a priori. Statistical ap
proaches also improve the accuracy of the score function 
by taking the phylogeny into account when scoring indels 
and substitutions. They are able to take advantage of infor
mation in shared indels to group taxa on the phylogeny 
without explicit indel coding and to infer parameters 
such as the phylogeny and indel rates from the data.

Bayesian statistical alignment involves jointly estimating 
the alignment and phylogeny via Markov chain Monte 
Carlo (MCMC). Joint inference solves the “chicken-and-egg” 
problem by coestimating the alignment and tree. MCMC al
lows a more thorough exploration of alternative alignments 
than progressive alignment with refinement. Bayesian ap
proaches naturally account for near-optimal alignments by 
integrating over alternative alignments (weighted by their 
posterior probability) when inferring the tree and evolution
ary parameters. They also naturally incorporate uncertainty 
in indel and substitution model parameters, uncertainty in 
the phylogeny, and the stochasticity of the evolutionary 
process.

Bayesian statistical alignment is able to accomplish what 
filtering-based methods cannot, including a low false positive 
rate and a high true positive rates in estimating positive se
lection (Redelings 2014). Ancestral sequences based on 
MSAs from BAli-Phy are nearly indistinguishable from infer
ences based on the true simulated alignment (Aadland and 
Kolaczkowski 2020). However, these benefits come at the 
cost of increasing computation time.

Alignment and Underparameterized Substitution 
Models
One issue that has not been explored is the effect of under
parameterized substitution models on alignment infer
ence. Huelsenbeck and Rannala (2004) and Lemmon and 
Moriarty (2004) have examined the effect of underpara
meterized substitution models on phylogeny inference. 
These papers found that ignoring biological phenomena 
such as across-site rate variation (ASRV) can lead both 
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to increased bias and to increased confidence in the biased 
answer. In contrast, including parameters for phenomena 
that are not present has a much smaller effect.

However, the effect of underparameterized substitution 
models on MSA inference has yet to be explored. Until re
cently, MSA inference programs did not use statistical 
models of substitution to score alignment columns. The 
advent of programs using such models means that it is 
now possible to perform sequence alignment under 
ASRV models. Such models allow more substitutions to 
occur in certain columns that appear to be less conserved.

ASRV substitution models have the limitation that each 
column has a single rate. Thus, the sequences would still 
fail to fit this model in cases where an amino acid residue dif
fers in its degree of conservation across the tree. Susko et al. 
(2002) attempted to remove model violations by inferring 
site rates for different segments of the data set and removing 
columns where the inferred rate differs between subsets. We 
suggest that, when the alignment is inferred assuming rate 
variation, the alignment may split such columns automatic
ally to create subcolumns that have a single rate. While this 
may produce a less accurate MSA, it could produce a more 
accurate tree. Such problems with the alignment could then 
be addressed by adding extra parameters to describe the rate 
of rate switching across the tree.

Evolutionary Models of Indels
The TKF91 Model
As discussed above, many phylogenetic reconstruction ap
proaches optimize a score function, a heuristic measure of 
the plausibility of the alignment and phylogeny as an evolu
tionary explanation of the observed sequence data. Ideally, 
however, phylogenetic inferences should rely on explicit evo
lutionary models of indels on par with Markov substitution 
models. However, compared to substitutions, indels are 
much more challenging to model, as multiple-character in
dels violate the site independence assumption, which is 
used to factorize substitution likelihoods. Over time, indels 
may merge and overlap, making it impossible to reconstruct 
indel history fully without considering the entire sequence 
itself as an evolving state in a Markov process.

With statistical models of point substitution in DNA, 
RNA, amino acid, and codon sequences (Jukes and Cantor 
1969; Kimura 1980; Felsenstein 1981; Goldman and Yang 
1994) successfully deployed in phylogenetics, it was natural 
to attempt to generalize these models beyond point substi
tutions. A key topic of consideration here is the conditional 
distribution P(S(t)|S(0), Θ) where {S(t)}t≥0 is a sequence- 
valued random process and Θ is the model parameters. 
The special case where the sequence S(t) contains exactly 
one character represents the family of point substitution 
models, which can be analyzed by the standard continu
ous-time Markov chain techniques including finite matrix 
exponentiation (Moler and Van Loan 2006; Pupko and 
Mayrose 2020). When the sequence is allowed to grow 
and shrink by indel events, then the analysis becomes 
more complicated, since the state space is no longer finite. 

In addition, the likelihood function cannot be expressed 
as a product of terms for independently evolving sites (ex
cept in special cases), making the likelihood computation 
much more challenging compared to point substitution 
models.

Ideally, we would like a statistical treatment that 
yields posterior distributions for model parameters 
P(Θ|S(0), S(t)), a prior distribution for S(0), a posterior distri
bution overalignments between S(0) and S(t), and a way of 
extending all these calculations to multiple sequences related 
by a phylogenetic tree. Bishop and Thompson (1986) used dy
namic programming (DP) to compute the likelihood and pos
terior probability distribution overalignments for two 
sequences separated by a fixed evolutionary time interval. 
Their approach can be considered to be related to inference 
under a type of hidden Markov model (HMM) that emits two 
paired sequences, known as a pair HMM (Durbin 1998). 
However, neither the general pair HMM nor this specific 
model of Bishop and Thompson includes a time parameter, 
so their model is not a continuous time stochastic process.

The first treatment of this kind to include a time param
eter was the TKF91 model (Thorne et al. 1991). In this mod
el, the indel rates are assumed independent of sequence 
context, and indel events only involve single residues. 
Under such restrictive assumptions, the fate of each ances
tral residue in S(0) can be handled as an independently 
evolving zone (or “link”). The number of offspring n(t) of 
each link at time t is a linear birth-and-death process whose 
finite-time transition probability P(n(t) = k | n(0) = 1) is a 
geometric distribution, with a parameter that is a rational 
function of exponentials of the indel rates (Metzler 2003).

The emergence of the geometric distribution in the TKF91 
model means that the joint distribution P(S(t)|S(0)) can be 
modeled by a pair HMM. The TKF91 paper motivated at
tempts to develop a statistical phylogenetic basis to sequence 
alignment, dubbed “statistical alignment” (Hein et al. 2000). 
TKF91 was extended to align multiple sequences on a star- 
shaped phylogeny (Steel and Hein 2001) and a binary tree 
(Hein 2001). Although the time and memory complexity of 
these algorithms (including TKF91) is O(LN) for N sequences 
of length L , which is prohibitively expensive, subsequent 
works by various authors succeeded in developing computa
tionally cheaper inference processes, by developing tools to 
factorize, marginalize, and otherwise manipulate the phylo
genetic likelihood. Specifically, Holmes and colleagues 
(Holmes and Bruno 2001; Holmes 2003; Westesson et al. 
2012) showed the equivalence of TKF91 to a pair HMM and 
introduced the first practical MCMC samplers for statistical 
MSA, constructing phylogenetic likelihoods via combinations 
of pair HMMs (or more precisely input-conditioned pair 
HMMs, also called “transducers”); Redelings and Suchard 
(Redelings and Suchard 2005, 2007; Suchard and Redelings 
2006) showed how to use these pair HMM combinatorics 
to perform MCMC sampling over tree topologies in time 
O(L2N), and Lunter et al. (2003) showed how to calculate 
the likelihood of a given MSA under TKF91 in time O(LN).

Statistical alignment methods can be applied not only to 
MSA inference (Fleissner et al. 2005; Lunter et al. 2005; Novák 
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et al. 2008) but also to perform robust statistical inferences 
of selection (Lunter et al. 2006; de Groot et al. 2008; Satija 
et al. 2008) and mutation rates (Metzler et al. 2001; 
Redelings 2014; Seo et al. 2022) in the presence of MSA un
certainty. While these methods—particularly those involving 
MCMC—are computationally expensive, they offer the most 
principled and apparently the most accurate way to deal 
with the chicken-and-egg problem that is the statistical en
tanglement of alignments, trees, and evolutionary para
meters, as has been demonstrated (Nute et al. 2019; Gupta 
et al. 2021). Indeed, even without rigorous Bayesian inference 
via MCMC, various greedy heuristic MSA algorithms that are 
“tree-aware”—that is, algorithms whose scoring scheme is 
structured according to a phylogenetic tree—seem to out
perform “tree-unaware” MSA algorithms when it comes to 
problems such as the reconstruction of ancestral histories 
and the estimation of insertion and deletion rates 
(Löytynoja and Goldman 2005).

Beyond the TKF91 Model: the GGI Model
While studies of statistical alignment drew much inspiration 
from Thorne et al.’s (1991) work, very few of them used the 
TKF91 model directly without modification. This is because 
TKF91 tends to produce poor alignments (Holmes and 
Bruno 2001), since it allows only independent single- 
character indels, but not instantaneous multiple-character 
indels. TKF91’s log-likelihood, when used as an objective 
function for MSA optimization, implies a linear gap penalty, 
whereas better alignments can be inferred using an affine 
gap penalty (Vingron and Waterman 1994), since this avoids 
overpenalization of long gaps through distinguishing gap 
opening and extension penalties.

While an affine gap penalty is consistent with a geomet
ric distribution for lengths of indel events, this too is an ap
proximation: empirical indel length distributions (Benner 
et al. 1993; Qian and Goldstein 2001) tend to have fatter 
tails than simple geometric distributions and may be bet
ter described by the power law. Recent work has shown 
that some data sets are better described by a power law, 
while others are better described by a geometric distribu
tion; i.e. no single length distribution fits all empirical data 
sets (Wygoda et al. 2024). A more sophisticated model 
should also take into account variation in sequence diver
gence, along with asymmetries between the insertion and 
deletion rates, sizes, dependence on sequence context, and 
potentially structural information. Certainly, empirical 
data exist to inform such models; however, tractability of 
statistical analysis becomes an issue.

To make the TKF91 model more realistic, as a first step 
toward more sophisticated empirical models, a natural 
starting place is to allow the lengths of instantaneous indel 
events to be geometrically distributed (instead of just being 
single characters). The geometric distribution is moderately 
tractable and well motivated: it is the maximum entropy 
distribution over integers with a given mean. In fact, since 
the assumption that indel sites are uniformly distributed 
in the sequence is also a maximum entropy assumption, a 

generalization of TKF91 that allows geometrically distribu
ted indel lengths may be regarded as the maximum entropy 
indel model with given indel rate parameters (λ, μ) and 
mean indel lengths (X̅, Y̅). The resulting general geometric 
indel (GGI) model (Miklós et al. 2004; Holmes 2020; De 
Maio 2021) with parameters θ = {λ, μ, X̅, Y̅} is time revers
ible if, and only if, λ(X̅ − 1) = μ(Y̅ − 1). The TKF91 model is 
a special (reversible) case of this model when X̅ = Y̅ = 1, in 
which case the probability of extending a gap is 0.

An exact solution to the GGI model has proven elusive, 
despite ongoing study (Rivas 2005). The underlying math
ematical problem is that when deletions are allowed to re
move more than one consecutive residue in a single event, 
the fates of adjacent residues can no longer be considered 
independent. Furthermore, even though the length distri
bution of instantaneous indels is geometric, the finite-time 
probability distribution over gap lengths no longer has a 
simple geometric form, so that no finite-state pair HMM 
can fit the finite-time gap length distributions exactly 
(Rivas 2005; Rivas and Eddy 2008, 2015). This is because 
an alignment gap potentially represents the accumulation 
of multiple overlapping indels, so the size of such a gap is a 
convolution over some number of instantaneous indel 
lengths (and this convolution no longer yields a geometric 
distribution).

Some approximations have been introduced to deal 
with this intractability. As an immediate follow-up of 
TKF91, the TKF92 model approximated multiple-character 
indels by imagining that the sequence consists of a number 
of indivisible multiple-character fragments (Thorne et al. 
1992). Others attempted to guess forms for a pair HMM 
inspired by TKF91 or TKF92 (Knudsen and Miyamoto 
2003; Löytynoja and Goldman 2005, 2008; Redelings and 
Suchard 2005, 2007; Suchard and Redelings 2006; Holmes 
2017b). Most recently, De Maio (2021) used a moment- 
matching approach to derive differential equations for a 
best-fit pair HMM. As noted, a finite-state pair HMM 
with geometric waiting times cannot fit the gap length dis
tributions exactly, but the earlier work of Miklós et al 
(2004) had shown that the alignment likelihood is still fac
torizable using a “generalized” pair HMM (i.e. one with 
nongeometrically distributed waiting times). Holmes 
(2020) further used De Maio’s technique to develop re
fined ordinary differential equations and a pair HMM 
which, as current evidence suggests (Holmes 2020), is 
the best approximation to the GGI model so far.

It is clear that GGI is still a considerable simplification of 
true biological sequence evolution. To begin with, analyses 
of homologous sequences suggest that in some empirical 
data sets, indel lengths follow a power law distribution 
(Benner et al. 1993; Gu and Li 1995; Chang and Benner 
2004). Furthermore, as discussed above, many inserted 
DNA sequences are local duplications (e.g. Messer and 
Arndt 2007; Vaughn and Bennetzen 2014), and microsatel
lite expansions/contractions account for a lot of genomic 
indels. This suggests that—in a realistic model—flanking 
context should influence indel rates and inserted sequence 
content. Finally, when modeling evolution at the protein 
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level, it is crucial to consider the effect of flanking sequence 
context and indeed of all intramolecular and intermolecu
lar contacts in suppressing indel mutations by selection.

Several algorithms have been developed that integrate 
probabilistic models of local duplication and sequence align
ment, including some based on stochastic grammars (Hickey 
and Blanchette 2011) or other probabilistic models (Nánási 
et al. 2014), and others based on sequence-to-sequence 
neural networks (Lim and Blanchette 2020). An obvious 
but ambitious goal is to integrate such approaches with ad
vances in understanding epistatic interactions in proteins, 
such as Potts models (Levy et al. 2017). High-quality data 
sets of aligned and phylogenetically resolved protein homo
logs, such as TreeFam (Schreiber et al. 2014) or OPTIC (Heger 
and Ponting 2008), could be useful to inform such efforts. An 
alternative to modeling the full GGI process was introduced 
in the Poisson Indel Process, dubbed the PIP model 
(Bouchard-Côté and Jordan 2013), which sacrifices locality 
(the indel rate per site varies inversely with sequence length) 
in favor of computational tractability.

At the time of writing, tools available for statistical 
alignment (listed in Table 1) have not yet caught up to 
the advances in approximating the GGI model and instead 
use lower-quality approximations to the GGI such as RS07 
(Redelings and Suchard 2007).

Generalizing Felsenstein’s Pruning 
Algorithm from Single Sites to Entire 
Sequences
The Felsenstein (1981) pruning algorithm for computing the 
likelihood of biological sequences operates on a single site. 

The ancestral state at each node of the tree may take on a 
small, finite number of states such as A, C, G, or T for 
DNA. The pruning algorithm then constructs a conditional 
likelihood vector Fn

i = Pr(Data|X = i) for the state i at an in
ternal node n in terms of a likelihood profile for the left and 
right child.

But what happens if we consider the internal node state 
to represent a complete DNA sequence of unknown length? 
First, the number of states becomes infinite, because the 
length of sequences is unbounded. Second, state changes 
on the branch to the left or right child now include not 
just substitutions such as A → G but also length changes 
such as GV → GIV. Third, we must consider the alignment 
of the sequence at a node to the sequences at its left and 
right child.

Westesson et al. (2012) show that for many statistical 
models, we can generalize Felsenstein’s algorithm from 
single sites to entire sequences. The fundamental insight 
is that we can generalize conditional likelihood vectors to 
conditional likelihood HMMs. Such HMMs differ from 
traditional HMMs in that they do not emit an observed 
character with a certain probability but absorb an input 
character with a certain likelihood. In this paradigm, 
the transition probability matrix exp(Rtb)ij along branch 
b in the pruning algorithm is generalized to a pair 
HMM. The pair HMM specifies the probability that a se
quence i will evolve to a different sequence j along branch 
b by emitting two aligned sequences instead of just a sin
gle sequence (Thorne et al 1991; Holmes and Bruno 
2001).

The conditional likelihood HMM Fn for a leaf node n has a 
relatively simple structure: for an observed sequence s of 
length L, it will have L HMM states in linear order, where 

Table 1 Statistical phylogenetic software for analyzing indel evolution

Inference goals Software Indel model/representation Approach Special features

MSA PRANK (+F) HMM Progressive MSA 
Tree-aware

Defaults to ancestral residues being absent when the 
presence/absence is ambiguous (with +F).

MSA Gap 
penalties

ProGRAPH 
(+TR)

HMM, POG Progressive MSA 
Tree-aware

Similar to PRANK; Handles tandem repeats, 
alternative splicing

MSA, EP ProPIP PIP ML 
Progressive 
MSA 
Tree-aware

Estimates indel rates, allows Gamma rate 
heterogeneity

MSA, Tree, ASR StatAlign TKF92 Bayesian MCMC GUI; allows to incorporate structural information
MSA, Tree, 

ASR, EP
BAli-Phy RS07 Bayesian MCMC Multiple partitions; can specify priors on all 

parameters
MSA, Tree, 

ASR, EP
Historian RS07 Progressive MSA 

followed by 
MCMC

Fast initial ASR, mixture models for substitutions

ASR ARPIP PIP ML Provides uncertainty profiles for inferred sequences
EP, simulations SPARTA-ABC Continuous time Markov 

process of indel evolution
ABC Allows simulations with indel dynamics inferred from 

empirical data sets
ASR FastML Indel coding, 2-state models ML Web server, allows reinsertion of deleted characters
ASR GRASP POG ML Allows reinsertion of deleted characters
Pairwise 

alignment
SimBa-SAl GGI ML …

Disclaimer: inferring ancestral states is not ML because ancestral states are random variables, not parameters. 
Disclaimer: inferring a tree by integrating over internal node states is not ML unless you integrate out the alignment of leaf sequences. 
ABC, approximate Bayesian computation; EP, evolutionary parameters; GGI, general geometric indel; ML, maximum likelihood; MP, maximum parsimony; POG, partial order 
graph.
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the ith state has a nonzero likelihood only for the ith ob
served letter (Fig. 2a). We denote such an HMM as Us to in
dicate that it assigns a likelihood of 1 to the sequence s and 0 
to all other sequences. The conditional likelihood HMM for 
an internal node combines the HMMs for the left and right 
child nodes by taking the Cartesian product of their state 
spaces. If the left and right children are tip nodes with states 
Xi and Yj, respectively, then the product HMM will contain 
states of the form (Xi, Yj, H), where H represents an evolu
tionary history. Thus, we end up with a 2D DP matrix 
(Fig. 2b). The final likelihood profile Fn at the root node of 
a tree with N leaves will have O(LN) states. Felsenstein’s 
(1981) algorithm thus generalizes to the construction of 
an HMM with an N-dimensional hypercube structure, which 
turns out to be very closely related to Sankoff’s DP matrix 
(Westesson et al 2012). The connection between these 

algorithms is illustrated visually for the two- and three- 
sequence cases in Fig. 2.

Much of the subsequent MSA literature can be viewed as a 
cumulative effort to find good approximate solutions in 
sub-O(LN) time to the general NP-complete problem of find
ing the highest-scoring path through an N-dimensional 
hypercube of the same general structure as in Sankoff 
(1975). Notably, some of the employed heuristics include 
greedy optimization along a postorder tree traversal, often 
called “progressive alignment” (Thompson et al. 1994), fur
ther rounds of iterative refinement (Edgar 2004), approxi
mate posterior decoding (Do et al. 2005), Gibbs sampling 
and other MCMC kernels (Holmes and Bruno 2001; 
Redelings and Suchard 2005), and transformations of the 
data including Fourier transforms (Katoh et al. 2002; Maiolo 
et al. 2020).

(a)

(b)

(c)

Fig. 2. Likelihood calculations on sequence characters. a) The likelihood profile HMM for a single observed sequence. b) The likelihood profile 
HMM for the ancestor A of two homologous sequences GL and GIV has the structure of a 2D DP matrix. A path through the HMM specifies the 
alignment of sequence A to the child sequences, as well as the likelihood of letters at each position of sequence A. Different states at the same 
matrix coordinates specify whether a character that is deleted in one child is present or absent in the ancestor. c) Aligning three sequences GL, 
GIV, and GIL yields two ancestors a) and b) This requires a 3D DP matrix. Here, multiple states at the same coordinates have been collapsed into 
single nodes to reduce clutter. The algebraic equations represent Felsenstein’s algorithm interpreted through the lens of likelihood profile 
HMMs. Fn traditionally represents a conditional probability vector for a single letter; here, it is an input–output machine (transducer) that ac
cepts the sequence at node n as an input. U traditionally represents a unit vector corresponding to the single observed letter; here, it is a de
terministic state machine that accepts only the observed sequence at that leaf node. The exponentials in Felsenstein’s recursion are finite matrix 
exponentials; here, they are HMMs (or more precisely, stochastic finite-state transducers) whose transition weights may be derived exactly (as in 
Thorne et al. 1991) or approximated systematically (as in Holmes 2020).
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Simulating Sequence Using Indel Models
While inferring the alignment under an evolutionary model is 
very hard, simulating related sequences even under very com
plex models is much more tractable (Table 2). Simulations are 
used for various reasons, including, for example evaluating the 
accuracy of alignment algorithms (e.g. Maiolo et al. 2018; 
Gupta et al. 2021), comparing tree reconstruction algorithms 
(e.g. Takahashi and Nei 2000; Huelsenbeck and Rannala 2004; 
Azouri et al. 2021), evaluating the performance of algorithms 
aimed at ancestral sequence reconstruction (e.g. Moshe and 
Pupko 2019; Foley et al. 2022; Jowkar et al. 2023) and inference 
of selective forces (e.g. Anisimova et al. 2001; Spielman et al. 
2016), testing evolutionary hypotheses (e.g. Goldman 1993), 
testing the effect of model misspecification (Lemmon and 
Moriarty 2004; Magee et al. 2021), and for the inference of 
model parameters (e.g. Arenas 2015; Levy Karin et al. 2015), 
to name a few. The very first sequence simulators totally ig
nored indels (Rambaut and Grassly 1997; Yang 1997). 
Other early sequence simulators such as MySPP (Rambaut 
and Grassly 1997; Rosenberg 2007) did not explicitly describe 
the details of the assumed indel dynamics process. Yet, other 
programs, such as Rose (Stoye et al. 1998) and EvolveAGene3 
(Hall 2008), did not implement a continuous time Markov 
process for indel dynamics but rather introduced ad hoc 
and often unrealistic assumptions regarding the indel process. 
For example, in ROSE, insertion dynamics is controlled by a 
parameter that dictates the probability that a sequence will 
experience an insertion event. This probability is assumed 
to be fixed for the entire course of evolution. However, it is 
clear that the probability of insertion should depend on the 
sequence length, which varies along the tree. This is ignored 
in ROSE. Similarly, in each branch, a single insertion (and a 
single deletion) event is allowed, but in fact, a continuous 
Markov process should allow multiple events to occur along 

each branch. Assumptions regarding the indel length 
distribution also failed to reflect reality. For example, in 
EvolveAGene3, it is assumed that deletions of length between 
2 and 23 bases have equal probabilities, which contradicts 
empirical observations that shorter indels are substantially 
more common than longer ones (Pascarella and Argos 
1992; Benner et al. 1993; Loewenthal et al. 2021).

More recent simulators assume a continuous time Markov 
process of indel dynamics (Fletcher and Yang 2009; Dalquen 
et al. 2012; Ly-Trong et al. 2022). In general, such simulators 
allow generating data with parameter-rich indel models, in 
which each branch or clade of the tree and each data partition 
are associated with their own set of indel model parameters. 
Although not yet implemented in available sequence simula
tors, simulations can also introduce context-dependent indel 
models, in which the probability of indels depends on the spe
cific flanking characters. Moreover, structural-aware simula
tors are plausible, in which the probability of indels in 
protein sequences depends on whether, for example, they 
reside in exposed versus buried regions of the proteins. 
Thus, there is a gap between our ability to simulate sequence 
data along a phylogenetic tree using various indel models and 
to account for such rich models within bioinformatic tasks 
such as tree reconstruction, alignment, and the inference of 
selective forces.

Simulated sequences depend critically on the para
meters that are used to simulate them. Data sets simulated 
under different parameter values can have substantially dif
ferent properties. In some cases, it is important to simulate 
sequences that have the same parameters as a particular 
biological data set. This requires first inferring the para
meters from the biological data set so that they can later 
be used during simulation. As always, when conditioning 
on a particular alignment, errors in the alignment estimate 

Table 2 Sequence simulators with evolutionary indel models

Simulator tool Indel model Special features Citation; availability

Indelible multiple-character insertions 
and deletions with separate 
rates

… (Fletcher and Yang 2009) http:// 
abacus.gene.ucl.ac.uk/software/ 
indelible/

AliSim Similar to Indelible Lower RAM requirement, different indel rates and 
length distributions

(Ly-Trong et al. 2022) http://www. 
iqtree.org/doc/AliSim

ALF Similar to Indelible Whole-genome simulator with heterogeneous 
rates and composition biases

(Dalquen et al. 2012) http://alfsim. 
org/#index

PhastSIM Similar to Indelible Fast for very large data sets (>10,000 tips) of low 
divergences, typical in epidemiology

https://github.com/NicolaDM/ 
phastSim

JavaPIP PIP Only single-residue insertions (Bouchard-Côté and Jordan 2013); 
Available from the authors on 
request

EvoLSTM Recurrent neural networks Context-dependent 1- to 2-bp indels (Lim and Blanchette 2020) https:// 
github.com/DongjoonLim/ 
EvoLSTM

SpartaABC Continuous time Markov 
model

Allows inference of model parameters from 
empirical data sets and simulations using these 
parameters

(Ashkenazy et al. 2017) https:// 
github.com/gilloe/SpartaABC

SLiM User-defined through a script Support for complex demographic models and 
selection

(Haller and Messer 2023) https:// 
messerlab.org/slim/

Part of 
SimBa_SAl_sim

No explicit model Uses simulations to shorten running times for 
pairwise statistical alignment

(Levy Karin et al. 2019) https:// 
github.com/elileka
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can affect the inference of parameters (Westesson et al. 
2012; Holmes 2017b).

Traditionally, model parameters have been estimated 
via inference methods such as MCMC or maximum likeli
hood (ML) that explicitly compute the probability of the 
data. For example, ProPIP infers indel rate parameters un
der the PIP (Bouchard-Côté and Jordan 2013), while 
Historian and BAli-Phy infer rates and indel lengths under 
the RS07 model (Redelings and Suchard 2007). Recently in
ference methods that are themselves based on simulation 
have been introduced, such as approximate Bayesian 
computation (ABC) methods (Ashkenazy et al. 2017; 
Loewenthal et al. 2021). Such methods allow parameter in
ference under models where it is very difficult to compute 
the likelihood or prior probability. However, the downside 
of such methods is that they condition on summary statis
tics of the data instead of the full data, and these summary 
statistics may not capture all of the relevant information in 
the data.

Indels and Bioinformatic Inference Pipelines
Alignment inference methods are an essential part of the 
modern bioinformatic toolkit. Most bioinformatic infer
ence pipelines follow a sequential estimation approach 
where an MSA is first constructed without knowledge of 
the phylogeny, and this single estimate is fed into down
stream analyses and treated as certain. Often, the second 
state of the pipeline is to infer a phylogeny from the single 
MSA estimate, after which an estimate of the phylogeny 
may be fed into further inference stages. Yet, the align
ment and the tree are interconnected and should be con
sidered jointly. Moreover, most phylogenetic software only 
model single-letter substitutions and do not account for 
indels. The failure to model indels and to jointly infer 
the tree and the alignment causes a number of problems.

First, the failure to model indels means that information 
in shared indels cannot be used to group taxa on the tree. 
Indels show up as gap characters in the alignment matrix, 
but such gaps are treated as letters that are present but 
known. This is unfortunate, as shared indels yield stronger 
evidence to group taxa on the tree than shared substitu
tions because of their lower rate. Shared indels can be es
pecially useful in grouping highly divergent sequences 
(Rokas and Holland 2000; Simmons and Ochoterena 
2000; Belinky et al. 2010). Second, this approach fails to ac
count for alignment uncertainty. While there may be myr
iads of near-optimal alignments, only one of these is given 
as input to the next stage of the pipeline. The homology 
information expressed by the MSA is itself estimated, 
and it is important to take this uncertainty into account. 
Third, with the exception of a few programs such as 
PRANK (Löytynoja and Goldman 2008), alignment infer
ence programs do not place indel events on branches of 
the tree and instead simply place gap characters in a ma
trix. This leads to alignment matrices that imply an exces
sive number of indel events. As mentioned above (see 
Section “Indel-Based Phylogeny via Indel Coding”), the 

effect of low-quality alignment estimates is magnified 
when shared gaps are used to group taxa through indel 
coding.

The first joint estimation approaches used parsimony 
(Wheeler 2005a, 2005b). This was soon followed up via 
Bayesian MCMC sampling (Lunter et al. 2005; Suchard 
and Redelings 2006). A statistical approach to alignment 
requires a phylogenetic model of the unaligned se
quences:

Pr(Seqs | Tree, Θ).

If we do not have a rate matrix on the (infinite) space of 
sequences, then such a model will include an alignment:

Pr(Seqs, Align | Tree, Θ) = Pr(Seqs | Tree, Align, Θ) ∗

Pr(Align | Tree, Θ).

Here, the term Pr(Seqs | Tree, Align, Θ) indicates the 
traditional likelihood function that only accounts for 
substitutions and usually assumes that substitutions at 
different sites are independent. The term Pr(Align | 
Tree, Θ) models indel events on a tree; it is the probabil
istic analog to traditional gap penalties. This leads to a 
more accurate score function than the ad hoc score 
functions usually optimized by traditional alignment 
software. It can therefore be used both for alignment 
and for tree inference.

Bayesian Approaches for Coestimating Alignment 
and Phylogeny
Bayesian approaches can perform inference under prob
abilistic models of indel evolution using MCMC. Bayesian 
approaches naturally account for alignment uncertainty. 
Uncertainty over parameters such as the tree, indel rates, 
and substitution rates is also automatically accounted for.

However, MCMC accounting for alignment uncertainty is 
slower than traditional fixed-alignment MCMC for a variety 
of reasons: (i) It requires MCMC proposals for new align
ments as well as trees and parameters. (ii) MCMC proposals 
for the tree must now integrate out the alignment on the 
part of the tree that changes. It is too hard to integrate 
out the alignment on the whole tree unless all indels are as
sumed to be only one character. (iii) Moves that make sub
stantial changes to the indel rates or branch lengths will have 
lower acceptance rates if they do not propose new align
ments as well, but this is tricky and slow (Redelings and 
Suchard 2009).

Bayesian approaches typically augment the MCMC state 
space with homology information for internal node se
quences, following Holmes and Bruno (2001). With this ap
proach, we have a pairwise alignment along each branch of 
the tree. This allows proposing new pairwise alignments 
along each branch relatively easily. However, proposing 
new tree topologies becomes more difficult, as we must in
tegrate out pairwise alignments on the part of the tree that 
changes. Since we cannot integrate out the entire alignment, 
proposed topologies are sometimes rejected because they 
do not fit well with the alignment from the source topology.
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Computational Alternatives to Bayesian Approaches
Maximim Likelihood Inference
A joint maximum likelihood tree and MSA search could 
provide a faster method since it avoids MCMC sampling. 
Further, in Bayesian MCMC methods, more effort is 
needed to monitor the convergence of multiple para
meters including structural parameters such as MSAs 
and trees, compared to ML which is nevertheless also af
fected by multiple optima. For a joint ML approach to be 
computationally feasible, one needs to use an indel and 
substitution model with a reasonable time complexity 
for summing out both substitution and indel events for 
a fixed alignment. It is possible to compute such an ap
proximate marginal likelihood in linear time under the 
TKF91 model (Lunter et al. 2005) as well as the PIP 
(Bouchard-Côté and Jordan 2013). By using progressive 
alignment to construct an MSA for a given tree, this prop
erty has been successfully exploited for inferring MSAs 
(Maiolo et al. 2018; Maiolo et al. 2020, 2021), phylogeny 
(Zhai and Alexandre 2017), ancestral sequence recon
struction (Jowkar et al. 2023), and joint MSA-tree infer
ence (Pečerska et al. 2021) using an ML approach. For 
example, the PIP-based tree-aware progressive aligner 
ProPIP uses an ML optimization function. This method 
appears to produce alignments with gap patterns consist
ent with the underlying phylogeny and does not suffer 
from overalignment, producing MSAs of similar lengths 
to the tree-aware aligner PRANK. Assuming a single- 
residue indel model means that ProPIP tends to infer 
on average shorter gaps as well as fewer substitutions. 
However, since the method operates in the ML frame
work, indel rates can be estimated from data. In contrast, 
most other aligners including PRANK rely on fixed default 
gap penalties, ignoring data set-specific indel features. 
This means that the user remains uninformed about indel 
rates or gap penalties specific to their data, reducing the 
possibilities of utilizing evolutionary information from in
del patterns.

Simulation-Based Inference
A parallel line of research attempts to bypass the need to 
compute likelihood functions (Cranmer et al. 2020) so that 
we can examine models where the likelihood functions are 
unknown or slow to compute. Assume a continuous-time 
Markov process of substitution and indels. To fully de
scribe the evolutionary dynamics along a given phylogen
etic tree, such a model must specify the length of the 
sequence at the root, parameters describing substitution 
events, and parameters describing indel events. Indel para
meters include the insertion and deletion rates at each 
position in the sequence, as well as separate distributions 
for the number of characters to be inserted or deleted. 
Two distributions are commonly assumed: a geometric 
or a Zipf (power law). Each of these distributions is gov
erned by a single parameter. Thus, assuming for example 
a Zipf distribution, the indel model parameters include a 
parameter dictating the shape of Zipf distribution for in
sertions and similarly for deletions.

Levy Karin et al. (2015) first used such an approach to in
fer indel parameters assuming a Zipf distribution, in which it 
was assumed that the insertion rate equals the deletion rate 
and that the exact same distribution dictates the insertion 
and deletion sizes. Next, Levy Karin et al. (2017) implemen
ted an ABC approach, which also relies on repeated simula
tions, for inferring indel model parameters. The advantages 
of the ABC approach are that it is a robust inference meth
odology and it provides an estimate of the posterior distribu
tion of the model parameters. This ABC approach was 
generalized (Loewenthal et al. 2021) by allowing different in
del dynamics for insertions and for deletions. It was shown 
that, as previously reported using ad hoc methodologies, 
for a large number of empirical data sets, the deletion rate 
is higher than the insertion rate. Finally, Wygoda et al. 
(2024) applied an ABC model-selection approach to deter
mine which indel length distribution best fits empirical 
data sets. It was shown that for most, but not all, the Zipf 
distribution provides better fit than the geometric distribu
tion. Unfortunately, currently, there are no efficient align
ment programs that assume a Zipf distribution of indel 
lengths. A web server implementing these algorithms, called 
SpartaABC, allows users to upload their empirical data set 
and obtain estimates of the underlying indel model para
meters (Ashkenazy et al. 2017).

Graph-Based Methods
Representing MSAs through partial order graphs offers an
other promising direction for phylogenetic methods. Edges 
connecting nonadjacent residues in such a POG correspond 
to indels or rather to “gaps” resulting from potentially mul
tiple overlapping indel events. Pangenome representation 
projects are now steering toward graph representations 
that facilitate the handling of indels and alterations of repeat 
numbers (Hickey et al. 2020). The idea of representing align
ments as graphs dates to as early as over three decades ago 
(Hein 1989), and the theme was picked up again in the 2000s 
(Lee et al. 2002; Grasso and Lee 2004). Combining POG re
presentation with a phylogeny-aware algorithm appears to 
be particularly successful. For example, the PAGAN method 
relies on a POG representation of sequences to extend exist
ing MSAs with short fragmented or noisy NGS sequences, 
guided by a phylogeny (Löytynoja et al. 2012). Another 
phylogeny-aware graph-based aligner PrographMSA 
(Szalkowski and Anisimova 2013) naturally accommodates 
alternative splicing and repeat unit gain–loss events, even 
when unit boundaries are distorted. This allows adapting in
del penalties related to different mechanisms and does not 
require modeling of the indel process over time.

wMost recently, the method GRASP has capitalized on 
the advantages of a POG-based representation to infer an
cestral sequences with indels (Foley et al. 2022). Given an in
put MSA, GRASP reconstructs ancestral characters in a 
probabilistic framework, independently for each site. Indel 
events in GRASP are not modeled explicitly. Rather, the 
gaps are represented via the POGs, which allows inferring in
del histories from the extant and ancestral POGs. In turn, the 
ancestral POGs can be inferred either by parsimony or ML 
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using a so-called bidirectional edge encoding, similar to 
position-specific encoding in FastML (Ashkenazy et al. 
2012), but using POGs over the branches of the tree. For 
each site, GRASP determines the optimal neighbors, desig
nating gap states as absent or present in the ancestor se
quence. Speed is therefore an important advantage of this 
approach. Nevertheless, this method cannot handle individ
ual indel events and therefore cannot accommodate nested 
indels nor individual or short overlapping indels.

The Historian method (Holmes 2017a) uses a graph data 
structure to retain multiple alternative possible alignments 
for subtrees in a progressive alignment approach. Alternative 
paths do not represent a subset of sequences to align to, 
but alternative alignments of all sequences in the subtree, 
weighted by their probabilities. This allows Historian to de
lay committing to a specific alignment for sequences in a 
subtree before data outside the subtree is accounted for.

Parsimony
As the need for fast scalable methods increases, we also see 
a surprising revival of novel methods based on the parsi
mony principle. For example, the IndelMaP method 
(Iglhaut et al. 2024) for MSA and ancestral sequence recon
struction implements a scoring criterion with multiresidue 
indels as separate events, using the Dollo principle; i.e. once 
a character is deleted, it cannot reappear. IndelMap disen
tangles the overlapping indel events by inferring their loca
tion on the tree using the affine gap penalties. On large 
densely sampled data sets, this method outperforms its 
competitors, including FastML, ARPIP, and GRASP.

Fast parsimony algorithms for simultaneous alignment 
and tree inference have been further optimized in POY5 
(Wheeler et al. 2015). The new method PhyG extends 
POY5 by extending trees to phylogenetic networks that allow 
representing hybridization. Thus, PhyG enables simultaneous 
alignment and phylogenetic network inference (Wheeler 
et al. 2024).

Indels in Bioinformatics, Health, and 
Evolution
Indels and Effect on the Phenotype
While the focus of this review is on interspecies evolution
ary dynamics, indels play a substantial role in population 
genetics too, both as genetic markers and in how they 
shape phenotypes. Indels can affect any functional se
quence and can have a more substantial functional impact 
than SNVs do, in both coding and noncoding regions. 
When indels occur in protein-coding sequence, they can 
add or remove amino acids, potentially changing the con
formation and function of proteins. It was previously 
shown that indels occur more in disordered regions of a 
protein and in regions that are exposed to solvent 
(Benner et al. 1993; Kim and Guo 2010; Light et al. 2013). 
Comparative genomics of protein domains suggests that 
indels have a major role in diversifying the function of do
mains across the tree of life (Wolf et al. 2007). In recent 

years, methods that can predict the phenotypic outcome 
of both nonsynonymous SNVs and short indels in protein- 
coding sequence have emerged (Choi et al. 2012; Hu and 
Ng 2012; Li et al. 2022). In addition, indels often change 
the reading frame, which can result in a complete abroga
tion of transcription due to nonsense-mediated decay of 
the mRNA transcript. This high functional potency of indel 
variants is reflected in the relatively high contribution of 
somatic indel variants to the development of cancer 
(Yang et al. 2010). Similarly, indels are strongly purified 
from most human genes, except from genes that experi
enced substantial relaxation of selective constraints, such 
as most human olfactory genes (Lin et al. 2017). Within 
exons, trinucleotide or homopolymer repetitive regions 
are particularly prone to indels, often leading to disease 
(Gall-Duncan et al. 2022; Elena-Real et al. 2023).

Indels in noncoding sequences also contribute to disease, 
and methods have been proposed to evaluate the pathogen
icity of noncoding indel variants in the human genome 
(Ferlaino et al. 2017). In addition, since indels contribute to 
phenotype, they are among the causal mutations targeted 
in genome-wide association studies (GWAS). Relatively few 
indels are directly typed by the probe-based genotyping chips 
used in GWAS, which typically include mostly SNPs. To some 
degree, the status of indels can be imputed from nearby SNPs 
(Lu et al. 2012), and it has been shown that this indeed im
proves the power of GWAS (Song et al. 2018; Dai et al. 
2020; Kundu et al. 2022; Boatwright et al. 2023). However, in
del mutation rates vary by several orders of magnitude 
(Montgomery et al. 2013), and particularly STRs are highly 
mutable and show reduced linkage disequilibrium with near
by SNP markers, making imputation difficult (Gymrek et al. 
2016). Nevertheless, polymorphic STRs are associated with 
gene expression differences (Bilgin Sonay et al. 2015; 
Gymrek et al. 2016) and modulate complex disease risk 
(Sonay et al. 2015; Jakubosky et al. 2020; Horton et al. 2023; 
Verbiest et al. 2024), and their impact on monogenic disor
ders is increasingly recognized (Trost et al. 2020; Depienne 
and Mandel 2021; Marwaha et al. 2022; Elena-Real et al. 
2023). STRs cannot be typed using standard probe-based 
genotyping techniques, and whole-genome sequencing 
(WGS) is required to genotype these loci. So far, the pheno
typic impact of STRs has been investigated mainly using rela
tively expensive WGS technologies in large consortia 
(Halldorsson et al. 2022). We expect that novel technologies 
such as long-read sequencing (Hon et al. 2020; Sereika et al. 
2022) will eventually enable cost-effective genotyping of STRs.

Indels as Phylogenetic Markers
Due to the improved sequencing methods and the ease of 
obtaining large amounts of genomic data, indels are now 
increasingly recognized as an independent source of infor
mation and potential molecular markers in medical and 
evolutionary studies. In human populations, indel vari
ation is not only frequent but also affects many functional 
genomic regions (Mills et al. 2006). Selected functionally 
important indels may serve as biomarkers in personalized 
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medicine (Chuzhanova et al. 2003; Mullaney et al. 2010; 
Sehn 2015). Indels have been linked to at least 22% of her
editary and complex somatic diseases (Stenson et al. 2009). 
For example, in human tumor samples, in addition to the 
traditionally used tumor mutational burden, the analysis 
of indel burden further informs cancer prognostics and 
stratification (Wu et al. 2019). As mentioned above, indels 
resulting from STR length variations may be involved in 
regulation of gene expression. Verbiest et al. (2024) derived 
a set of such eSTR loci, whose lengths have a linear relation
ship with expression levels in colorectal cancer tumors. 
These could be considered as candidate biomarkers, subject 
to further classification and clinical validation. The same 
study showed that indel patterns are predictive of the 
microsatellite instability status, which is used by clinicians 
for prognostics and therapy choices. Microsatellite unstable 
tumors appear to be dominated by short deletions.

The evolutionary dynamics of indels may be even more 
prominent in the genomes of pathogens. Viral sequences 
have also shown that indel patterns could be linked to the 
origin of new variants and changes in pathogenicity. The ana
lysis of the SARS-CoV-2 spike protein showed an increase of 
indels over time, suggesting a selective advantage (Rao et al. 
2021). Multiple reports detailing indels in the spike protein 
suggest that indel patterns can be used for the identification 
of coronavirus strains and their infectious properties 
(Andersen et al. 2020; Liu et al. 2020; Som et al. 2022). In 
the malaria parasite Plasmodium falciparum, indels are the 
most common polymorphism within the core genome, con
tributing to high genomic diversity and drug resistance 
(Miles et al. 2016). Indel diversity in HIV-1, much of which 
is presumably driven by selection, allows to identify patterns 
specific to different subtypes (e.g. Palmer and Poon 2019).

Deletion Bias
Already in 1973, based on the analysis of a few globin se
quences, it was found that out of 13 indels, only two were 
insertions, suggesting that deletions are more common 
than insertions (Fitch 1973). This observation of an excess 
of deletions was subsequently confirmed by a study in which 
a much larger number of sequences were analyzed, which 
also proposed a mutational model that favors deletions as 
a result of a DNA repair mechanism (de Jong and Rydén 
1981). In general, the indel ratio in proteins reflects the out
come of both mutation and selection processes. By demon
strating a strong deletion bias in processed pseudogenes, it 
was shown that deletion bias mainly reflects bias in the mu
tation process toward deletions (Graur et al. 1989). Research 
that followed generally confirmed the existence of a muta
tion bias toward deletions (Zhang and Gerstein 2003; Kuo 
and Ochman 2009) and proposed model-selection methods 
to test for the presence of such a bias in specific empirical 
data sets (Loewenthal et al. 2021).

Short indels (up to 50 bp) are only one of the factors 
that determine the lengths of genomic entities such as in
trons, exons, and intergenic noncoding regions. Other fac
tors are, for example, microsatellite expansion, gene and 

domain duplications, insertions of mobile genetic ele
ments, large deletions, and whole-genome duplication. 
While variation in the rate of short indel events clearly 
contributed to the observed differences in genome archi
tectures and sizes among species, their relative contribu
tion relative to other factors is unknown and likely varies 
among different phylogenetic clades. In mammals and 
aves, for example, it was estimated that microdeletions ac
count for <10% of the total DNA lost over the past few 
dozen million years (Kapusta et al. 2017).

Variation in Indel Rates
Variation in substitution rates and patterns among different 
clades within the tree of life was extensively studied (Drake 
et al. 1998). In contrast, substantially less is known about 
variation in indel dynamics among different taxonomic 
clades. Gu and Li (1995) analyzed small data sets and used 
simple methods to infer indel rates; their estimates of the 
Zipfian length distribution parameter varied from 1.93 
in noncoding mitochondrial DNA to 1.70 in primate globin 
noncoding regions. Fan et al. (2007) analyzed coding and 
noncoding indels in 18 mammalian genomes and found 
that the Zipfian length parameter ranged from 1.059 for de
letions in chimpanzee to 1.883 for insertions in rabbit. 
Petrov et al. (1996) reported high intrinsic rate of DNA 
loss in Drosophila, an observation was later confirmed by 
Loewenthal et al. (2021), who studied differences in indel 
rates among 15 taxonomic groups and found that the inser
tion rates, the deletion rates, and the average size of an indel 
event substantially vary among these groups. Indel rates 
were also found to vary among different lineages of HIV-1 
(Palmer and Poon 2019). Finally, indel rates are strongly cor
related with substitution rates and were found to be nega
tively correlated with the effective population size (Lynch 
et al. 2023). Clearly, recent advances in methods to infer in
del rates together with the wealth of genomic data should 
enable deeper understanding of the variation of indel rates 
across clades and the factors that drive such variation.

Conclusions
Overall, indels can often provide valuable evolutionary sig
nals, aiding taxonomic classification and improving statistical 
support for phylogenetic branches that are weakly sup
ported by substitutions. Increasingly, indel mutations are 
considered in biomedical applications. However, the analysis 
of indel variation is often hampered by the lack of appropri
ate bioinformatic pipelines; and, despite recent develop
ments, statistical indel models and methods for practical 
applications are still lagging behind the more mature tools 
for analyzing SNVs. Therefore, it is important that research
ers analyzing indel evolutionary dynamics are aware of cur
rent limitations and should follow “good-enough practices.”

Good-Enough Practices
First, indel information is only as good as the alignment that 
determines the placement of indels. As a result, indel 
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information should only be used when the alignment was in
ferred with a phylogeny-aware aligner (see Table 1). However, 
some phylogeny-aware alignment software, such as PRANK, 
relies heavily on a guide tree to place indels. If this guide 
tree is wrong, then indels may be incorrectly placed. Ideally, 
each phylogeny should be scored using an MSA that is con
sistent with that particular phylogeny. Thus, for the best qual
ity, the MSA and the tree should be inferred jointly (see 
Table 1). More specifically, when the goal is to infer the 
tree, uncertainty overalignments should be accounted for, 
and vice versa, when the goal is to infer alignments, uncer
tainty in the tree should be accounted for. At any rate, instead 
of point estimates of either the tree, the MSA, or both, it is 
best to consider the distribution of possible MSAs and trees, 
weighted by their probabilities in downstream analyses.

There is a high amount of phylogenetic information in 
shared indels. However, for this information to be accounted 
for, it is especially important to account for alternative place
ment of indels, i.e. to explicitly consider alignment uncer
tainty. This is true even when indels are inferred using a 
good model and state-of-the-art alignment programs. It is 
especially important to account for alignment uncertainty 
when analyzing homologous sequences with low sequence 
similarity. This includes sequences that diverged in the 
deep past and also sequences such as noncoding sequences 
that have diverged more recently but are not under strong 
selection. Perhaps the best method of accounting for align
ment uncertainty is to average over alternative alignments 
using Bayesian methods. However, alternative methods 
that sacrifice some accuracy may be substantially faster, 
such as performing the same analysis on a collection of alter
native alignments to see how much the result varies.

When using information from shared indels to group taxa 
on the phylogeny, it may be important to correctly assess the 
weight of evidence in shared indels. Models such as TKF1 or 
the model that treats “-” as a fifth nucleotide can exaggerate 
the evidence in longer indels, since they either explicitly or 
implicitly assume that gaps spanning multiple MSA columns 
evolved from multiple indel events of a single character. 
Since indels are rare events, this can substantially inflate 
the weight of longer indels. Thus, analyses that use informa
tion from shared indels to reconstruct phylogenies would 
ideally use models that distinguish the occurrence of an indel 
from the length of gaps within an MSA. Additionally, caution 
should be used when analyzing data sets that contain very 
long indels, such as the deletion of an entire domain. This 
is because current models of indel lengths often assume a 
geometric distribution on indel length, under which very 
long indels are not expected to occur.

Since genomic sequences are known to be highly heteroge
neous, indel rates should be inferred from the data being ana
lyzed rather than fixed to default values. These rates 
determine the relative weight of shared indels and shared sub
stitutions in grouping taxa on the tree. However, indel rates 
that are inferred under single-character indel models do not 
have the same interpretation, as they attempt to fit the indel 
rate and the indel length with a single parameter. This single 
parameter then cannot be interpreted as the biological rate of 

indels. Further, as indels were shown to have different rates, 
models that assume the same rate for both should be avoided. 
Such considerations should also be accounted for when simu
lating MSAs, as otherwise, simulations fail to reflect the evolu
tionary patterns observed in empirical data sets.

Future Directions
Despite the remaining challenges, a good selection of stat
istical methods for analyzing indels is already available and 
should be used. Researchers can take the advantage of in
del information by wider incorporation of suitable indel 
methods into all steps of bioinformatic pipelines, in ac
cordance with “good-enough” practices and paying atten
tion to inference uncertainty as discussed above.

In the medical field, the importance of indels is increas
ingly recognized, particularly when analyzing STRs, which 
due to their low information content were previously con
sidered “junk DNA.” The high mutation rate and complex 
error profiles of STRs make analysis of indels in these loci 
challenging. Better genotyping technologies and bioinfor
matic pipelines, including for imputation of multiallelic 
STRs, will open up new possibilities for understanding com
plex disease and monogenic disorders.

In evolutionary biology, statistical alignment approaches 
are limited by the accuracy of their indel models. Improved 
alignment accuracy depends on improved indel models. 
Such improvements can range from better approximations 
to the indel process at large branch lengths (Holmes 2020; 
De Maio 2021), to more realistic distributions of indel 
lengths (Cartwright 2007; Wygoda et al. 2024), to models 
of processes that we are currently ignoring, such changes 
in microsatellite length. These models are especially import
ant in applications that use indels as informative characters, 
for example in phylogeny reconstruction.

In part because of the formidable technical challenges, 
existing models of indels have remained comparatively 
simple compared to single-nucleotide substitution mod
els. These difficulties are exacerbated by the need to ana
lyze data sets of growing sizes. In search for scalable 
solutions, fast approximations for phylogenetic likelihoods 
of substitution models were proposed (De Maio et al. 2023; 
Prillo et al. 2023), opening new avenues of research to in
clude indels. Efficient representation of sequences can 
bring further advantages (Karasikov et al. 2020).

Big data support the emergence of novel data-driven 
machine learning approaches. This presents an opportun
ity to develop more sophisticated “black box” indel mod
els, which could complement the more traditional partly 
mechanistic mutation models that have been used so far.

Machine Learning
In theory, machine learning could be used to predict inser
tion and deletion rates that depend on surrounding se
quence context, as well as structural and functional 
features and signals of selection. While such factors could 
be explicitly modeled, deep networks may be able to extract 
relevant patterns directly from the analyzed sequences. 
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Currently machine learning models in evolutionary biology 
tend to be trained on simulated data (Suvorov et al. 2020; 
Azouri et al. 2021; Wang, Sun, et al. 2023). This may limit 
the degree to which unknown phenomena can be inferred, 
since we still cannot simulate sufficiently realistic MSAs 
(Trost et al. 2024). Further, recent work suggests that deep 
learning methods infer phylogenies similar to those inferred 
with ML, right or wrong (Thompson et al. 2024). However, 
for phylogeny and alignment reconstruction methods, we 
also lack reliable empirical benchmarks. We anticipate that 
machine learning algorithms will be increasingly introduced 
to molecular evolution inference algorithms and will enable 
more accurate and often faster inference of model para
meters. Approach for representing MSAs in a form that 
can be processed by neural networks is just beginning. 
Current techniques involve converting input sequences to 
a string that is “translated” to a string representing the 
aligned sequences via “transformer” neural networks that 
are used in language translation (Dotan et al. 2024).

Neural networks do not provide a mechanistic model 
that explains why its predictions are correct. Thus, they 
might be able to predict that indels occur in particular 
places without an explanation of why they occur there.

Toward More Realistic Indel Models
One obvious step toward more realistic models would be re
laxing the assumption of constant indel rate. In empirical 
protein data sets, indel rates are often higher in some regions 
(e.g. regions exposed to solvent in the tertiary structure) and 
lower in others (such as buried regions). In regions where the 
indel rate is higher, we expect to find more indels, but prob
ably less shared indels. Future models should allow spatial 
variation of the indel rate along the sequence, possibly con
sidering hotspot/coldspot regions. Such models should be fit 
to the empirical data, simultaneously with computing the 
alignment. This is a challenging problem because it involves 
a priori dividing the sequence into spatial regions while at 
the same time indels alter the space. Alignment methods 
that consider indel hotspots/coldspots are a step in this dir
ection (Satija et al. 2008, 2009). Similarly, models like PIP, 
which rely on single-site indel events, can account for such 
factors by assigning site-specific indel evolutionary rate to 
each column in the MSA, similar to the common practice 
for substitutions. However, the practical value of such an ap
proach has not yet been evaluated.

Previous reports clearly indicate the heterogeneity of indel 
rates also among taxa. For example, Petrov et al. (1996) re
ported an exceptionally high deletion rate in Drosophila 
and Loewenthal et al. (2021) showed that both the insertion 
rate and the deletion rate can have more than 2-fold differ
ences among different clades. Together, such observations 
suggest that future models should account for shifts in indel 
rates within branches in the phylogenetic tree, possibly using 
similar approaches applied within covarion-like substitution 
models (Petrov et al. 1996; Galtier 2001; Loewenthal et al. 
2021). Moreover, like substitutions, indels were observed to 
be context dependent (Chang and Benner 2004; de la 

Chaux et al. 2007; Messer and Arndt 2007; Kvikstad et al. 
2009); therefore, including context dependency features 
could lead to better fit to data making a model more realistic.

More realistic models are expected to be more computa
tionally demanding and applying them to large data sets may 
be computationally challenging. However, approximations 
that sacrifice some accuracy but nevertheless capture the 
main biological phenomena may be developed. Moreover, 
such realistic models could be very useful to study more intri
cate effects in targeted analyses of specific regions or proteins 
on smaller data sets.

In general, new models should aim to provide a better 
mechanistic understanding of indel evolutionary dynam
ics. Just like substitutions, indels are affected by a number 
of contacts in protein structure; therefore, one can antici
pate the potential fitness effects of indels. Given this, is it 
possible to combine both substitutions and indels to
gether in the mutation-selection framework (Teufel et al. 
2018)? Good statistical models even without a mechanistic 
basis can be used for simulations that provide a better test 
of our current inference method.

Further biological realism can be achieved by bringing 
structural aspects into an indel model. Ideally, analyses of pro
tein sequences would reflect the effects of selection due to 
changes in 3D structure and fitness of proteins when predict
ing the observed rates of substitution and indel mutations. 
One approach is to introduce the atomic coordinates as la
tent variables in a 3D diffusion process, initially focusing 
only on alpha carbons and assuming that each alpha carbon 
drifts independently (Challis and Schmidler 2012). Later mod
els incorporate proximity constraints (Larson et al. 2020) and 
bond angles (Golden et al. 2017) between adjacent amino 
acids. There remain further technical challenges regarding 
consistency of such models, such as maintaining continuity 
of flanking atomic coordinates immediately prior and subse
quent to indel events. One path forward is to continue devel
opment of these models, addressing these technical 
challenges; another is to develop alternative latent variable 
models based (for example) on pairwise interaction terms be
tween amino acids (such as Potts models) or on residue con
tact graphs. Arguably, all latent variable approaches suffer 
from limitations inherent to the fact that the protein struc
ture is, in reality, an emergent property of the biological se
quence, not a jointly inherited one.

Correct handling of indels in comparative sequence ana
lysis continues to present many open problems. Recent ad
vances in machine learning have not yet solved this problem; 
indeed, many of the neural network methods used in gen
omic side step the handling of indels completely, assuming 
their input sequences are of fixed length. An improved treat
ment of this issue is an important challenge if we are to 
understand the observed range of natural genetic variation.
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