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Abstract

We extend the model of Multi-Armed Bandit with unit switching cost to incorporate
a metric between the actions. We consider the case where the metric over the actions can
be modeled by a complete binary tree, and the distance between two leaves is the size of
the subtree of their least common ancestor, which abstracts the case that the actions are
points on the continuous interval r0, 1s and the switching cost is their distance. In this
setting, we give a new algorithm that establishes a regret of rOp

?
kT `T {kq, where k is the

number of actions and T is the time horizon. When the set of actions corresponds to whole
r0, 1s interval we can exploit our method for the task of bandit learning with Lipschitz loss
functions, where our algorithm achieves an optimal regret rate of rΘpT 2{3q, which is the
same rate one obtains when there is no penalty for movements.

As our main application, we use our new algorithm to solve an adaptive pricing problem.
Specifically, we consider the case of a single seller faced with a stream of patient buyers.
Each buyer has a private value and a window of time in which they are interested in buying,
and they buy at the lowest price in the window, if it is below their value. We show that
with an appropriate discretization of the prices, the seller can achieve a regret of rOpT 2{3q

compared to the best fixed price in hindsight, which outperform the previous regret bound
of rOpT 3{4q for the problem.

1. Introduction

Multi-Armed Bandit (MAB) is a well studied model in computational learning theory and
operations research. In MAB a learner repeatedly selects actions and observes their rewards.
The goal of the learner is to minimize the regret, which is the difference between her loss
and the loss of the best action in hindsight. This simple model already abstracts beautifully
the exploration-exploitation tradeoff, and allows for a systematic study of this important
issue in decision making. The basic results for MAB show that even when an adversary
selects the sequence of losses, the learner can guarantee a regret of Θp

?
kT q, where k is

the number of actions and T is the number of time steps (Auer et al., 2002; Audibert and
Bubeck, 2009; see also Bubeck and Cesa-Bianchi, 2012).

The simplicity of the MAB comes at a price. Essentially, the system is stateless, and
previous actions have no influence on the losses assigned to actions in the future. A more
involved model of sequential decision making is Markov Decision Processes (MDPs) where
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the environment is modeled by a finite set of states, and actions are not only associated with
losses but also with stochastic transitions between states. Unfortunately, for the adversarial
setting there are mostly hardness results even in limited cases (Abbasi et al., 2013).

Introducing switching costs is a step of incorporating dependencies in the learner’s action
selection. The unit switching cost has a unit cost per each changing of actions. In such a
setting a tight bound of rΘpk1{3T 2{3q is known (Dekel et al., 2014a). Our main goal is to
extend this basic model to the case of MAB with movement costs, where the cost associated
with switching between arms is given by a metric that determines the distance between any
pair of arms. Such a model already introduces a very interesting dependency in the action
selection process for the learner. Specifically, we study a metric between actions which is
modeled by a complete binary tree, where the distance between two actions is proportional
to the number of nodes in the subtree of their least common ancestor. This abstracts the
case where the arms are associated with k points on the real line and the switching cost
between arms is the absolute difference between the corresponding points (actually, the
tree metric only upper bounds distances on a line, but this upper bound is sufficient for
our applications). Note that we do not assume that pairs of actions with low movement
cost have similar losses: our model retains the full generality of the loss functions, and only
imposes a metric structure on the cost of movement between arms.

Our main result is an efficient MAB algorithm, called the Slowly Moving Bandit (SMB)
algorithm, that guarantees expected regret of at most rOp

?
kT ` T {kq. As we elaborate

later, this result implies that for k ď T 1{3 we can achieve an optimal regret rΘpT 2{3q, and for
k ě T 1{3 we obtain an optimal regret rate of rΘp

?
kT q. It is worth discussing the implication

of our bound. The bound of rΘpT 2{3q for k ď T 1{3 is tight due to the lower bound of Dekel
et al. (2014a), which applies already for k “ 2 actions. The bound of rΘp

?
kT q for k ě T 1{3

is tight due to the classic lower bound for MAB even without movement costs (Auer et al.,
2002). Surprisingly, for a large action set (i.e., k ě T 1{3) we lose nothing in the regret by
introducing movement costs to the problem! Another surprising consequence of our bound
is that there is no loss in the regret by increasing the number of actions from k “ 2 to
k “ ΘpT 1{3q when movement costs are present.

The main application of our SMB algorithm is for adaptive pricing with patient buy-
ers (Feldman et al., 2016). In this adaptive pricing problem, we have a seller who would
like to maximize his revenue. He is faced with a stream of patient buyers. Each buyer has
a private value and a window of time in which she would like to purchase the item. The
buyer buys at the lowest price in its window, in case this price is below the buyer’s private
valuation of the item. (The seller publishes prices sufficient far into the future, so that the
buyer can observe all the relevant prices.) The adaptive price setting is related to the MAB
problem with movement costs in the following way. The prices are continuous (say, r0, 1s)
and the reward is the revenue gained by the seller. The rewards are given by a one–sided
Lipschitz function (specifically, we receive the reward whenever we post a price which is at
most the private value, and zero otherwise). This allows us to apply our bandit algorithm
via discretization of the continuous space. The challenge, though, remains to control the
cost the seller pays which stems from the buyer’s patience.

The seller benchmark is the best single price. Using a single price implies that the buyers
either buy immediately, or never buy. The movement cost models the loss due to having
the buyer patient, which can be thought as the difference between the price of the item
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when the buyer arrives and the price at which it buys. (Note that there might be a gain,
since it might be that when the buyer arrives the price is too high, but later lower prices
make him buy. We ignore this effect for now.) Our main result is that the seller can use
our SMB algorithm and guarantee a regret of at most rOpT 2{3q, using T 1{3 equally-spaced
prices. This is in contrast to a regret of rOpT 3{4q which is achieved by applying a standard
switching cost technique together with a discretization argument (Feldman et al., 2016).

It is interesting to observe qualitatively how our algorithm performs. It is much more
likely to make small changes than large ones; roughly speaking, the probability of a change
drops exponentially in the magnitude of the change. Conceptually, this is a highly desirable
property of a pricing algorithm, and arguably, of any regret minimization algorithm: we
would like to slightly perturb the prices over time without a sever impact on the buyers,
and only rarely make very large changes in the pricing.

Finally, another application of our algorithm is for the case that we have continuous
actions on an interval, and the losses of the actions are Lipschitz. Our algorithm can
handle movement cost which are also Lipschitz on the interval. (We stress that in our
application the losses are deterministic and not stochastic.)

1.1. Related Work

With a uniform unit switching cost (i.e., when switching between any two actions has a unit
cost), it is known that there is a tight rΩpk1{3T 2{3q lower bound for the MAB problem (Dekel
et al., 2014a), which is in contrast to the Op

?
kT q regret upper bound without switching

costs.
Classical MAB algorithms such as Exp3 (Auer et al., 2002) guarantee a regret of

rOp
?
kT q without movement costs. However, they are not guaranteed to move slowly be-

tween actions, and in fact, it is known that Exp3 might make rΩpT q switches between actions
in the worst case (see Dekel et al., 2014a), which makes it inappropriate to directly handle
movement costs.

Our adaptive pricing application follows the model of Feldman et al. (2016). There, for
a finite set of k prices a matching bound of rΩpT 2{3q on the regret is shown. For continuous
prices they remark that their upper bound can be used to derive an rOpT 3{4q regret bound.
Our SMB algorithm improves this regret bound to rOpT 2{3q. There is a slight difference in
the exact feedback model between Feldman et al. (2016) and here: in both models when a
buyer arrives, the sell time is uniquely determined; however, in Feldman et al. (2016) the
seller observes the purchase only at the actual time of the sell, whereas here we assume the
seller observes the sell when the buyer arrives and decides when to purchase. We remark,
though, that as discussed in Feldman et al. (2016) all lower bounds derived there apply to
the current feedback model too.

There is a vast literature on online pricing (e.g., Balcan and Blum, 2006; Balcan et al.,
2008; Balcan and Constantin, 2010; Bansal et al., 2010; Besbes and Zeevi, 2009). The main
difference of our adaptive pricing model is the patience of our buyers, which correlates
between the prices at nearby time steps.

For the case of continuous prices and a single seller, when one consider impatient buyers,
a simple discretization argument can be used to achieve a regret of rOpT 2{3q, and there exists
a similar lower bound of ΩpT 2{3q (Kleinberg and Leighton, 2003). More generally, learning
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Lipschitz functions on a closed interval has been studied by Kleinberg (2004), where an
optimal rΘpT 2{3q regret bound is shown via discretization. Our results show that even if
one adds a movement cost (which is the distance) to the problem, there is no change in the
regret.

There are many works on continuous action MAB (Kleinberg, 2004; Cope, 2009; Auer
et al., 2007; Bubeck et al., 2011; Yu and Mannor, 2011). Most of the works relate the
change in the payoff to the change in the action in various ways. Specifically, there is an
extensive literature on the Lipschitz MAB problem and various variants thereof (Kleinberg
et al., 2008; Slivkins, 2011; Slivkins et al., 2013; Kleinberg and Slivkins, 2010), where the
expectation of the reward of arms have a Lipschitz property. We differ from that line of
work. Our assumption is about the switching cost (rather than the losses) being related to
the distance between the actions.

The work of Guha and Munagala (2009) discusses a stochastic MAB, in the spirit of the
Gittins index, where there is both a switching cost and a play cost, and gives a constant
approximation algorithm. We differ from that work both in the model, their model is
stochastic and our is adversarial, and in the result, their is a multiplicative approximation
and our is a regret.

Approximating an arbitrary metric using randomized trees (i.e., k-HST) has a long
history in the online algorithms literature, starting with the work of Bartal (1996). The
main goal is to derive a simpler metric representation (using randomized trees) that will
both upper and lower bound the given metric. In this work we need only an upper bound
on the metric, and therefore we can use a deterministic complete binary tree.

2. Setup and Formal Statement of Results

2.1. Bandits with Movement Costs

In this section we consider the Multi-Armed Bandit (MAB) problem with movement costs.
In this problem, that can be described as a game between an online learner and an adversary
continuing for T rounds, where there is a set K “ t1, . . . , ku of k ě 2 arms (or actions) that
the learner can choose from. The set of arms is equipped with a metric ∆pi, jq P r0, 1s that
determines the movement distance between any pair of arms i, j P K.

First, before the game begins, the adversary fixes a sequence `1, . . . , `T P r0, 1s
k of loss

vectors assigning loss values in r0, 1s to the arms.1 Then, on each round t “ 1, . . . , T , the
learner picks an arm it P K, possibly at random, and suffers the associated loss `tpitq. In
addition to incurring this loss, the learner also pays a cost of ∆pit, it´1q that results from
her movement from arm it´1 to arm it. At the end of each round t, the learner receives
bandit feedback : she gets to observe the single number `tpitq, and this number only. (The
movement cost is common knowledge.)

The goal of the learner, over the course of T rounds of the game, is to minimize her
expected movement-regret, which is defined as the difference between her (expected) total
costs—including both the losses she has incurred as well as her movement costs—and the
total costs of the best fixed action in hindsight (that incur no movement costs, since it is

1. Throughout, we assume that the adversary is oblivious, namely, that it cannot react to the learner’s
actions.
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the same action in all time steps); namely, the movement regret with respect to a sequence
`1:T of loss vectors and the metric ∆ equals

RegretMCp`1:T ,∆q “ E

«

T
ÿ

t“1

`tpitq `
T
ÿ

t“2

∆pit, it´1q

ff

´ min
i‹PK

T
ÿ

t“1

`tpi
‹q .

Here, the expectation is taken with respect to the player’s randomization in choosing the
actions i1, . . . , iT .

MAB with a tree metric. Our focus in this paper is on a metric induced over the
actions by a complete binary tree T with k leaves. We consider the MAB setting where
each action i is associated with a leaf of the tree T . (For simplicity, we assume that k is a
power of two.)

We number the levels of the tree T from the leaves to the root. Let levelpvq be the level
of node v in T , where the level of the leaves is 0. Given two leaves i and j, let lcapi, jq
be their least common ancestor in T . Then, given actions i and j let dT pi, jq be the level
of their least common ancestor in T , i.e., dT pi, jq “ levelplcapi, jqq. The movement cost
between i and j is then

∆T pi, jq “
1
k2dT pi,jq P r0, 1s . (1)

Our first main result bounds that movement cost with respect to the given metric:

Theorem 1. There exists an algorithm (see Algorithm 1 in Section 4) that for any sequence
of loss functions `1, . . . , `T guarantees that

RegretMCp`1:T ,∆T q “ rO

ˆ

?
kT `

T

k

˙

.

For k ě T 1{3 the theorem gives an optimal regret bound of rOp
?
kT q. For k ď T 1{3,

we can extend a binary tree with k leaves by turning each leaf into a node whose subtree
is a balanced binary tree and we obtain a new tree with at most 2T 1{3 leaves. We then
associate with each new leaf as its action the action induced by its parent at the level of
original leaves. One can show that the movements between the level of the original actions
is then controlled by OpT 2{3q and we can then exploit this construction to achieve a regret
bound of rOpT 2{3q. In any movement cost problem with at least two arms of fixed constant
distance, a lower bound regret of 2-arm switching cost applies, hence we observe that these
rates are optimal for every k ď T (Dekel et al., 2014a).

The proof of Theorem 1 is provided in Section 4 as a direct corollary of Theorem 4.

Continuum-armed bandit with movement cost. We can apply Algorithm 1 to the
problem of learning Lipschitz functions over the real line with movement regret associated
with standard metric over the interval. In this setting we assume an arbitrary sequence of
functions f1, . . . , fT : r0, 1s ÞÑ r0, 1s where each function ft is L-Lipschitz. i.e.,

|ftpxq ´ ftpyq| ď L|x´ y| @ x, y P r0, 1s .
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Let xt be the action selected by the player at time t. The objective is then to minimize the
movement regret, defined:

RegretMCpf1:T , | ¨ |q “ E

«

T
ÿ

t“1

ftpxtq `
T
ÿ

t“1

|xt ´ xt`1|

ff

´ min
xPr0,1s

T
ÿ

t“1

ftpxq .

One application of our algorithm is a regret bound for Lipschitz functions:

Theorem 2. There exists an algorithm (based on Algorithm 1) that for every sequence of
L-Lipschitz loss functions f1, . . . , fT , with L ě 1, achieves:

RegretMCpf1:T , | ¨ |q “ rO
`

L1{3T 2{3
˘

.

We emphasize that even without movement costs, there is an rΩpT 2{3q lower bound in
this setting (Kleinberg, 2004); hence, the regret bound of Theorem 2 is essentially optimal.

Section 4.6 is dedicated to the proof of Theorem 2. We also note that the result, in fact,
holds for any metric ∆ that is L-Lipschitz (for exact statement see Theorem 12).

2.2. Adaptive Pricing

We consider the following model of online learning, with respect to a stream of patient buyers
with patience at most τ . In our setting the seller posts at time t “ 1 prices ρ1, . . . , ρτ`1 for
the next τ days in advance. Then at each time step t the seller posts price for the t ` τ
day ρt`τ and receives as feedback her revenue for day t. The revenue at time t depends on
buyer bt and the sequence of prices ρt, ρt`1, . . . , ρt`τ in the manner described below.

Each buyer bt, in our setting, is a mapping from a sequence of prices to revenues,
parameterized by her value vt and her patience τt. The buyer proceed by observing prices
ρt, . . . , ρt`τt , and purchases the item at the lowest price among these prices, if it does not
exceed her value. Thus the revenue from the buyer at time t is described as follows:

btpρt, . . . , ρt`τ q “

#

mintρt, . . . , ρt`τtu if mintρt, . . . , ρt`τtu ď vt,

0 otherwise.

Note that at time t the buyer decides whether it will purchase and when. Here, we assume
that the buyer also gets to order the good at day of arrival (at price and time decided by him
according to his patience and private value), thus the seller observes the buyer’s decision
at time t, namely the feedback at time t is given by btpρt, . . . , ρt`τ q. We note that this
feedback model differs from Feldman et al. (2016) where the buyer buy at day of purchase.
However, we note that both lower and upper bounds derived by Feldman et al. apply to
our feedback model as noted there in the discussion.

Our objective is to construct an algorithm that minimizes the regret which is the differ-
ence between revenue obtained by the best fixed price in hindsight and the expected revenue
obtained by the seller, given a sequence b1:T of buyers:

Regretpb1:T q “ max
ρ˚PP

T
ÿ

t“1

btpρ
˚, . . . , ρ˚q ´ E

«

T
ÿ

t“1

btpρt, . . . ρt`τ q

ff

.

Our main result with respect to adaptive pricing is as follows:
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Theorem 3. There exists an algorithm (see Algorithm 2 in Section 5) that for any sequence
of buyers b1, . . . ,bT with maximum patience τ achieves the following regret bound:

Regretpb1:T q “ rOpτ1{3T 2{3q .

It is interesting to note that even though a lower bound of ΩpT 2{3q stems from two dif-
ferent sources we can still achieve a regret rate of rOpT 2{3q. Indeed, Kleinberg and Leighton
(2003) showed that optimizing over the continuum r0, 1s leads to a lower bound of ΩpT 2{3q,
irrespective of the patience of the buyers. Second, Feldman et al. (2016) showed that when-
ever the seller wishes to optimize between more than two prices, a lower bound of ΩpT 2{3q

holds for patient buyers.
In this work we deal with both obstacles together—patient buyers and optimization over

the r0, 1s interval—yet the two obstacles can be dealt without leading to a regret bound
that is necessarily worse then each obstacle alone.

Our solution to the adaptive pricing problem is based on employing a MAB with move-
ment costs algorithm that allows small change in the prices. The reason one needs to em-
ploy an algorithm with small movement cost stems from the memory of the buyers: roughly
speaking, whenever the seller encounters a buyer with patience, the potential revenue of the
seller will be the revenue at time t minus any discount price that buyer may encounter on
future days. Indeed, for the case of two prices, Feldman et al. (2016) constructed a sequence
of buyers that reduces the problem to MAB with switching cost: a step in demonstrating a
ΩpT 2{3q regret bound: thus a fluctuation in prices is indeed a cause for a high regret.

A full proof of Theorem 3 is provided in Section 5.

3. Overview of the approach and techniques

In this section we give an informal overview of the main ideas in the paper and describe the
techniques used in our solution. We begin with the main ideas behind our main result: an
optimal and efficient algorithm for MAB problems with movement costs. Later we continue
with the adaptive pricing problem, and show how it is abstracted as an instance of the
MAB problem with movement costs.

From continuum-armed to multi-armed. In our main applications, we consider ac-
tions that are associated to points on the interval r0, 1s equipped with the natural metric
∆px, yq “ |x ´ y|. As a preliminary step, we use discretization in order to make the ac-
tion space finite and capture the setting by the MAB framework. That is, we reduce the
problem of minimizing regret over the entire r0, 1s interval to regret minimization over k
actions associated with the equally-spaced points K “ t 1k ,

2
k , . . . , 1u. Our challenge is to

then to design a regret minimization algorithm over A whose cumulative movement cost
with respect to the metric r∆pi, jq “ |i´ j|{k is bounded.

Our approach builds upon the basic techniques underlying the Exp3 algorithm for the
basic MAB problem, which we recall here. Exp3 maintains over rounds a distribution pt over
the k actions and chooses an action it „ pt; thereafter, it updates its sampling distribution
multiplicatively via pt`1piq 9 ptpiq ¨ expp´η¯̀

tpiqq, where ¯̀
t is an unbiased estimator of true
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loss vector `t constructed using only the observed feedback `tpitq. Specifically, the estimator
used by Exp3 is

¯̀
tpiq “

1tit “ iu

ptpiq
`tpitq @ i P K .

A simple computation shows that ¯̀
t is indeed an unbiased estimator of `t, namely that

Er¯̀ts “ `t, and the crucial bound for Exp3 is then obtained by controlling a variance term
of the form Erpt ¨ ¯̀2t s, and showing that it is of the order rOpkq at all rounds t. This in turn
implies the rOp

?
kT q bound of Exp3.

Controlling movements with a tree. As a first step in controlling the movement
costs of our algorithm, one can think of an easier problem of controlling the number of
times the algorithm switches between actions in the left part of the interval, namely in
AL “ t

1
k , . . . ,

1
2u, and actions in the right part of the interval, AR “ t

1
2 `

1
k , . . . , 1u. Indeed,

since each such switch might incur a high movement cost (potentially close to 1), any
algorithm for MAB with movement costs must avoid making such switches too often. In
principle, a solution to this simpler problem can be then lifted to a solution to the actual
movement costs problem by applying it recursively to each side of the interval.

The thought experiment above motivates our tree-based metric: this metric assigns a
fixed cost of 1 to any movement between the left and right parts of the interval—that
correspond to the topmost left and right subtrees—and recursively, a cost of 2d{k for any
movement between subtrees in level d of the tree. The tree metric is always an upper
bound on the natural metric on the interval, namely r∆pi, jq ď 1

k2dT pi,jq “ r∆T pi, jq, so that
controlling movement costs with respect to r∆T suffices for controlling movement costs with
respect to the natural distance on r0, 1s. While this upper bound might occasionally be
very loose,2 the tree-metric effectively captures the difficulties of the original movement
costs problem with the natural metric over r0, 1s.

Hence, we henceforth focus on constructing an algorithm with low movement costs with
respect to a tree-based metric over a full binary tree. To accomplish this, we will regulate
the probability of switching the ancestral node. Namely, if we denote by Adpiq the subtree
at level d of the tree containing action i, our goal is to design an algorithm that switches
between actions i and j such that Adpiq ‰ Adpjq with probability at most 2´d. This would
ensure that the expected contribution of level d in the tree to the movement cost of the
algorithm is Op1{kq per round. Indeed, switching between subtrees at level d (while not
making a switch at higher levels) results with a movement cost of roughly 2d{k. Overall, the
contribution of all layers in the tree to the total movement cost would then be OppT {kq log kq,
as required.

Lazy sampling. Our challenge now is to construct an algorithm that switches infre-
quently between subtrees at higher levels of the tree. However, recall that typical bandit
algorithms choose their actions i1, . . . , iT at random from sampling distributions p1, . . . , pT
maintained throughout the evolution of game. In order to guarantee that consecutive ac-
tions it and it´1 will belong to the same subtree with high probability, the algorithm would
have to sample ii in a way which is highly correlated with the preceding action it´1.

2. For example, the distance between 1
2

´ 1
k

and 1
2

` 1
k

according to the metric ∆T is 1.
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Suppose that the marginals of the subtrees at some level d do not change between the
distributions pt´1 and pt; namely, that the cumulative probability assigned to the leaves
of each such subtree by both pt´1 and pt is the same. In this case, we argue that we can
sample our new action it at time t, based on the preceding action it´1, from the conditional
distribution ptp¨ | Adpit´1qq. In other words, if we think of sampling an action i from pt as
sampling a path in the tree leading to the leaf associated with i, then for determining it on
round t we copy the top d edges from the path at time t´1, and only sample the remaining
bottom edges (those contained in the subtree Adpit´1q) according to the new distribution
pt. Intuitively, this can be justified because the distribution of the top d edges in the path
leading to it is the same as that of the top d edges in the path leading to it´1, so we may
as well keep the random bits associated with them and only resample bits associated with
the remaining edges from fresh.

The lazy sampling scheme sketched above raises a major difficulty in the analysis: since
it is sampled from a conditional of pt that might be very different from pt itself, it is no
longer clear that it is distributed according to the “correct” distribution. In other words,
conditioned on pt (which intuitively is a summary of the past), the random variable it is
certainly not distributed according to pt. Nevertheless, our analysis demonstrates a crucial
property of the distributions pt maintained the sampling scheme, which is sufficient for the
regret analysis: we show that for all subtrees A at all levels of the tree, it holds that

E
„

1ti P Au

ptpAq



“ 1 .

That is, even though it is sampled indirectly from pt, it is still distributed according to pt
in a certain sense.

Rebalancing the marginals. The lazy sampling we described above reduced the prob-
lem of controlling the frequency of movements in the actions i1, . . . , iT , to controlling the
frequency in which the marginal distribution of p1, . . . , pT over subtrees is updated by our
algorithm. Next, we describe how the latter is accomplished (where the frequency of update
is exponentially-decreasing with the level of the subtree). To illustrate the technique, let
us consider an easier problem: instead of demanding infrequent updates for subtrees in all
levels, we shall only attempt to rebalance the marginals at the topmost level, with the goal
of making them being updated with probability at most 2´D “ 1{k. We will demonstrate
how the estimator r`t can be modified in a way that induces such infrequent updates at the
top level. Denote the left subtree at the top level by AL (containing actions 1

k , . . . ,
1
2) and

the right topmost subtree by AR (containing actions 1
2 `

1
k , . . . , 1). First, we choose

σt “

#

1´ 1
δ with probability δ;

1 with probability 1´ δ.

Then, for A P tAL, ARu we set

r`tpiq “ ¯̀
tpiq ´

σt
η

log

˜

ÿ

jPA

ptpjq

ptpAq
e´η

¯̀tpjq

¸

@ i P A .
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Here, ¯̀
t is the basic Exp3 estimator discussed earlier. In terms of estimation, r`t is still an

unbiased estimator of the true vector `t: since Erσts “ 0 it follows that Err`ts “ `t. However,
the added term has a balancing effect at the top level of the tree: a simple computation
reveals that if σt “ 1 (which occurs with high probability), the multiplicative update of the
algorithm applied on the vector r`t ensures that ptpALq “ pt`1pALq and ptpARq “ pt`1pARq.
In other words, with probability 1 ´ δ, the cumulative (i.e., marginal) probability of both
subtrees at the top level is remained fixed between rounds t and t` 1.

The balancing effect we achieved comes at a price: for small values of δ the magnitude
of r`t becomes large, as it might be the case that σt « ´1{δ. Nevertheless, it is not hard to
show that the variance term Erpt ¨ r`2t s is bounded by Opk ` 1{δq. In particular, for δ “ 1{k
we retain a variance bound of Opkq, while changing the marginals of the two top subtrees
with probability no larger than 1{k. As a result, by sampling accordingly from the slowly-
changing distributions pt we can ensure that the movements at the top level contribute at
most OpT {kq to the total movement cost of the algorithm.

Evidently, the estimator described above only remedies the problem at the top level,
and the movement costs at lower levels of the tree might still be very large (effectively,
within each subtree the algorithm does nothing but simulating Exp3 on the leaves). Still,
using a similar yet more involved technique we can induce a balancing effect at all levels
simultaneously and ensure that the marginal probabilities of the subtrees at level d are
modified by the algorithm with probability at most 2´d. The construction adds a balancing
term corresponding to each level of the tree in a recursive manner that takes into account
the balancing terms at lower levels.

From adaptive pricing to bandits. We now discuss how to reduce adaptive pricing
with patient buyers to a MAB problem with movement costs. We employ a reduction
similar to the one used by Kleinberg and Leighton (2003); however, the patience of the
buyers introduce some difficulties, as we discuss below. For now, we ignore the buyers’
patience and give the idea of the reduction in the simplest case.

Intuitively, in order to adaptively pick prices from the interval r0, 1s so as to minimize
regret with respect to the best fixed price in hindsight, we could directly apply a standard
MAB algorithm, e.g., Exp3, over a discretization A “ t 1k ,

2
k , . . . , 1u of the interval, treating

each of the k prices as an arm that generates a reward whenever it is pulled. Furthermore,
since the buyers’ valuations are not disclosed after purchase, the feedback observed by
the seller is very limited and nicely captured by the MAB abstraction. Since the buyers’
valuations are one-sided Lipschitz, the best price in A will lose at most OpT {kq in total
revenue as compared to the best fixed price in the entire r0, 1s interval. Thus, provided an
algorithm that achieves rOp

?
kT q expected regret with respect to the best price in A, we

could pick k “ ΘpT 1{3q and obtain the optimal rOpT 2{3q regret for the pricing problem.

Patient buyers and movement costs. A main complication in the above MAB ap-
proach arises from the buyers’ patience: the revenue extracted from a single buyer is de-
termined not only by the price posted by the seller on the day of the buyer’s arrival, but
also by prices posted on the subsequent days subject to the buyer’s patience. As a result,
if the seller change prices abruptly on consecutive days, a strategic buyer—that purchases
in the minimal price, if at all—could make use of this fact to gain the item at a lower price,
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which lowers the revenue of the seller. Roughly speaking, the latter additional cost to the
seller is controlled by the absolute difference between the prices she posted at consecutive
days. Thus, the pricing problem with patient buyers can be reduced to a MAB problem
with movement costs, where the online player suffers an additional movement cost each time
she changes actions, and the movement cost is determined by the metric (absolute value
distance) between the respective actions.

The reduction sketched above is made precise in Section 5, where we also address an
additional difficulty stemming from the adaptivity of the feedback signal observed by the
seller: the latter is contaminated by the effect of prices posted at earlier rounds on the
buyers, and has to be treated carefully.

4. The Slowly Moving Bandit Algorithm

In this section we present the Slowly Moving Bandit (SMB) algorithm: our optimal algo-
rithm for the Multi-armed bandit problem with movement costs.

In order to present the algorithm we require few additional notations. Recall that in our
setting, we consider a complete binary tree of depth D “ log2 k whose leaves are identified
with the actions 1, . . . , k (in this order). For any level 0 ď d ď D and arm i P K, let Adpiq
be the set of leaves that share a common ancestor with i at level d (where level d “ 0 are
the singletons). We denote by Ad the collection of all k{2d subsets of leaves:

Ad “
!

t1, . . . , 2du, t2d ` 1, . . . , 2 ¨ 2du, . . . , tk ´ 2d ` 1, . . . , ku
)

@ 0 ď d ď D .

The SMB algorithm is presented in Algorithm 1. The algorithm is based on the mul-
tiplicative update method, and in that sense is reminiscent of the Exp3 algorithm (Auer
et al., 2002). Similarly to Exp3, the algorithm computes at each round t an estimator r`t to
the true, unrevealed loss vector `t using the single loss value `tpitq observed on that round.

As discussed in Section 3, in addition to being an (almost) unbiased estimate for the
true loss vector, the estimator r`t used by SMB has the additional property of inducing
slowly-changing sampling distributions pt, that allow for sampling the actions it in a way
that the overall movement cost is controlled. This is achieved by choosing at random, at
each round t, a level dt of the tree to be rebalanced by the algorithm using the balancing
vectors ¯̀

t,d. For reasons that will become apparent later on, the level dt is determined by
choosing a random sign σt,d for each level d in the tree and identifying the bottommost level
with a negative sign, namely

dt “ mint0 ď d ď D : σt,d ă 0u, where σt,D “ ´1.

Then, as we show in the analysis, the terms ¯̀
t,d defined using the signs σt,d have a balancing

effect at levels d ě dt.
A major difficulty inherent to our approach, also common to many bandit optimization

settings (e.g., Dani et al., 2007; Alon et al., 2015; Bubeck et al., 2016), is the fact that the
estimated losses r`tpiq might receive negative values that are very high in absolute value.
Indeed, the balancing term ¯̀

t,d corresponding to level d is roughly as large as 2d{ptpitq, and
might appear with a negative sign in r`t. Algorithm 1 resolves this issue by zeroing-out the
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estimator r`t whenever it chooses an action whose probability is too small, which ensures
that the ¯̀

t,d terms never become too large. We remark that the standard approaches used
to resolve such issues (the simplest of which is mixing the distribution pt with the uniform
distribution over the k actions) fail in our case, as they break the rebalancing effect which
is tailored to the specific multiplicative update of the algorithm.

Initialize p1 “ u, d0 “ D and i0 „ p1; for t “ 1, . . . , T :
(1) Choose action it „ ptp ¨ | Adt´1pit´1qq, observe loss `tpitq
(2) Choose σt,0, . . . , σt,D´1 P t´1,`1u uniformly at random
(3) Compute vectors ¯̀

t,0, . . . , ¯̀t,D´1 recursively via

¯̀
t,0piq “

1tit “ iu

ptpiq
`tpitq ,

and for all d ě 1:

¯̀
t,dpiq “ ´

1

η
log

¨

˝

ÿ

jPAdpiq

ptpjq

ptpAdpiqq
e´ηp1`σt,d´1q

¯̀
t,d´1pjq

˛

‚

(4) Define Bt “ ti P K : ptpAdpiqq ă 2dη for some 0 ď d ă Du
and set

r`t “

#

0 if it P Bt;

¯̀
t,0 `

řD´1
d“0 σt,d

¯̀
t,d otherwise

(5) Update:

pt`1piq “
ptpiq e

´ηr`tpiq

řk
j“1 ptpjq e

´ηr`tpjq
@ i P K

Algorithm 1: The SMB algorithm.

The following theorem is the main result of this section. Theorem 1 is an immediate
corollary.

Theorem 4. For any sequence of loss functions `1, . . . , `T , The SMB algorithm (Algo-
rithm 1) guarantees that

Regretp`1:tq “ O

ˆ

log k

η
` ηTk log k

˙

.

In particular, by setting η “ 1{
?
kT the expected regret of the algorithm is bounded by

Op
?
Tk log kq. Furthermore, for the metric ∆T (see Eq. (1)), the expected total movement

cost of the algorithm is Er
řT
t“2 ∆T pit, it´1qs “ OppT {kq log kq.

The rest of the section focuses on proving Theorem 4. We begin by stating a useful tech-
nical bound that we use throughout our analysis to control the magnitude of the balancing
vectors ¯̀

t,d. For a proof of the lemma, see Section 4.5 below.
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Lemma 5. For all t and 0 ď d ă D the following holds almost surely:

0 ď ¯̀
t,dpiq ď

1tit P Adpiqu

ptpAdpiqq

d´1
ź

h“0

p1` σt,hq @ i P K . (2)

In particular, if σt,h “ ´1 then ¯̀
t,d “ 0 for all d ą h.

One useful implication of the lemma is that, since ¯̀
t,d “ 0 for all d ą dt, we can express

our estimator r`t in the following equivalent form:

r`t “ ¯̀
t,0 ´ ¯̀

t,dt `

dt´1
ÿ

h“0

¯̀
t,h . (3)

4.1. Rebalancing the marginals

Our first step is to show that the marginals of the distributions pt over subtrees of actions
are not modified by the algorithm with high probability, as a result of adding the balancing
vectors ¯̀

t,d.

Lemma 6. For all d ě dt we have that pt`1pAq “ ptpAq for all A P Ad.

For the proof, we require the next technical result about the balancing vectors ¯̀
t,d

computed by the algorithm.

Lemma 7. If σt,0 “ . . . “ σt,d´1 “ 1 then:

ÿ

iPA

ptpiqe
´η¯̀t,dpiq “

ÿ

iPA

ptpiqe
´ηr`t,dpiq @ A P Ad ,

where r`t,d “ ¯̀
t,0 `

řd´1
h“0

¯̀
t,h.

Proof. The proof proceeds by induction on d. For the base case d “ 0, the claim follows
trivially as ¯̀

t,0 “ r`t,0. Next, we assume the claim is true for some value of d ě 0 and prove
it for d` 1. Pick any A P Ad`1 and write A “ A1 YA2 where A1, A2 are disjoint sets from
Ad. Notice that the vector ¯̀

t,d is uniform over A1 and A2, namely ¯̀
t,dpiq “ cA1 for all i P A1

for some cA1 ě 0, and similarly ¯̀
t,dpiq “ cA2 for all i P A2 for some cA2 ě 0. Hence, we have

ÿ

iPA

ptpiqe
´ηr`t,d`1piq “

ÿ

iPA

ptpiqe
´ηr`t,dpiqe´η

¯̀
t,dpiq

“ e´ηcA1

ÿ

iPA1

ptpiqe
´ηr`t,dpiq ` e´ηcA2

ÿ

iPA2

ptpiqe
´ηr`t,dpiq

“ e´ηcA1

ÿ

iPA1

ptpiqe
´η¯̀t,dpiq ` e´ηcA2

ÿ

iPA2

ptpiqe
´η¯̀t,dpiq

“
ÿ

iPA

ptpiqe
´η¯̀t,dpiqe´η

¯̀
t,dpiq

“
ÿ

iPA

ptpiqe
´2η¯̀t,dpiq ,

13
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where the third equality uses the induction hypothesis. On the other hand, by the recursive
definition of ¯̀

t,d`1 and the fact that ¯̀
t,d`1 is uniform over A, we have

ÿ

iPA

ptpiqe
´η¯̀t,d`1piq “ ptpAq

ÿ

iPA

ptpiq

ptpAq
e´ηp1`σt,dq

¯̀
t,dpiq “

ÿ

iPA

ptpiqe
´2η¯̀t,dpiq .

Combining both observations, we obtain
ÿ

iPA

ptpiqe
´η¯̀t,d`1piq “

ÿ

iPA

ptpiqe
´ηr`t,d`1piq

which concludes the inductive argument.

We can now prove Lemma 6.

Proof of Lemma 6. It is enough to prove that pt`1pAq “ ptpAq for all A P Adt , as each
set in Ad for d ą dt is a disjoint union of sets from Adt .

Observe that if it P Bt (see Algorithm 1 for the definition of Bt) then r`t “ 0 and the
claim is certainly true as pt`1 “ pt in this case. Thus, we henceforth assume that it R Bt,
in which case r`t “ r`t,dd ´

¯̀
t,dd where r`t,dt “

¯̀
t,0 `

řdt´1
h“0

¯̀
t,h (recall Eq. (3)). Now, pick any

A P Adt and j P A. Since ¯̀
t,dtpiq “ cA for all i P A for some cA ě 0, and using Lemma 7 we

obtain

e´ηcA “
ÿ

iPA

ptpiq

ptpAq
e´η

¯̀
t,dt
piq “

ÿ

iPA

ptpiq

ptpAq
e´η

r`t,dt piq . (4)

On the other hand, from r`t “ r`t,dt ´
¯̀
t,dt it follows that e´η

r`tpiq “ e´η
r`t,dt piq{e´ηcA for all

i P A, and by Eq. (4) we have

ÿ

iPA

ptpiqe
´ηr`tpiq “

ř

iPA ptpiqe
´ηr`t,dt piq

e´ηcA
“ ptpAq .

In words, the multiplicative update does not change the probabilities of the sets in Adt ,
hence pt`1pAq “ ptpAq for all A P Adt as required.

4.2. Lazy sampling

Our next step is to show that the sampling scheme employed by Algorithm 1 is valid and
gives rise to low movement costs on expectation. Specifically, we would like to show that
in a certain sense, the action it on round t is distributed in expectation according to the
distribution pt, even though it is sampled from a conditional of pt in a way that is highly
correlated with the preceding action it´1. Furthermore, we will show that the correlations in
the sampling scheme are designed in a way that the expected movement between consecutive
actions is small. These properties are formalized in the following lemma.

Lemma 8. For all t and 0 ď d ă D the following hold:

• for all A P Ad we have

E
„

1tit P Au

ptpAq



“ 1 ; (5)
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• with probability at least 1´ 2´pd`1q, we have that Adpitq “ Adpit´1q.

Eq. (5) is central to our analysis below, and virtually all of our probabilistic arguments
involving the random variables it and pt will be based on this property. We remark that if
we were to sample it directly from the distribution specified by pt, then Eq. (5) would have
been trivially true. However, the it are sampled from a conditional of pt that might be very
different from pt itself; nevertheless, the lemma shows that Eq. (5) still continues to hold
under the skewed sampling process.

Lemma 8 also implies the slow-movement property of the algorithm: at the high levels
of the tree, where the subtrees are “wide”, the actions it and it´1 are very likely to belong
to the same subtree. The probability of switching subtrees increases exponentially with the
level in the tree: at the lower levels, where the subtrees are “narrow”, subtree switches may
occur more often as the movement cost incurred by such switches is low.

Proof of Lemma 8. The second statement is true since we pick it`1 „ ptpi | Adtpitqq, so
that Adpit`1q ‰ Adpitq can occur only if d ă dt. This happens with probability 2´pd`1q.

Next, we show Eq. (5) by induction on t. For t “ 1 the statement is true since i1 „ p1.
For the induction step, condition on dt and fix any d ě dt and A P Ad. By Lemma 6 we
have that ptpAq “ pt`1pAq. Also it P A if and only if it`1 P A, since d ě dt implies that
it P A if and only if Adtpitq Ď A and Adtpit`1q “ Adtpitq. Hence, we have

E
„

1tit`1 P Au

pt`1pAq

ˇ

ˇ

ˇ

ˇ

dt



“ E
„

1tit P Au

ptpAq

ˇ

ˇ

ˇ

ˇ

dt



“ E
„

1tit P Au

ptpAq



“ 1 , (6)

where the last equality holds true since dt depends solely on σt,0, . . . , σt,D´1 which are
independent of it and pt (note that this equality then holds for any set A, regardless of the
fact that A P Ad).

Next, we consider any d ă dt and A P Ad. Let A1 P Adt be the subtree such that A Ď A1,
and recall that it`1 „ pt`1pi | Adtpitqq. Hence,

E
„

1tit`1 P Au

pt`1pAq

ˇ

ˇ

ˇ

ˇ

it P A
1, pt`1, dt



“ E
„

1tit`1 P Au

pt`1pA | A1qpt`1pA1q

ˇ

ˇ

ˇ

ˇ

it P A
1, pt`1, dt



“
1

pt`1pA1q
.

(7)

Since it P A
1 implies that it`1 P A

1, we have

E
„

1tit`1 P Au

pt`1pAq

ˇ

ˇ

ˇ

ˇ

dt, pt`1



“ E
„

1tit`1 P A
1u ¨ E

„

1tit`1 P Au

pt`1pAq

ˇ

ˇ

ˇ

ˇ

it P A
1, pt`1, dt

 ˇ

ˇ

ˇ

ˇ

dt, pt`1



.

(8)

Taking Eqs. (7) and (8) together and taking the expectation over pt`1, we obtain that for
every d ă dt:

E
„

1tit`1 P Au

pt`1pAq

ˇ

ˇ

ˇ

ˇ

dt



“ E
„

1tit`1 P A
1u

pt`1pA1q

ˇ

ˇ

ˇ

ˇ

dt



“ 1 ,

where last equality follows from Eq. (6) as A1 P Adt .
To conclude, we showed that for all d we have:

E
„

1tit`1 P Au

pt`1pAq

ˇ

ˇ

ˇ

ˇ

dt



“ 1 .

Taking the expectation over dt, we obtain the desired result.
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4.3. Bounding the bias and variance

Next, we turn to bound the variance of the loss estimates r`t and the bias of their expectations
from the true loss vectors. These bounds would become useful for controlling the expected
regret of the underlying multiplicative updates scheme.

We begin with analyzing the bias of our estimator. The following lemma shows that
our estimates are “optimistic”, in the sense that they always bound the true losses from
below, yet they do not overly underestimate the losses incurred by the algorithm. The proof
is somewhat involved, as a result of the “bad events” Bt under which the estimated loss
vectors r`t are being zeroed-out, thereby introducing biases into the estimation.

Lemma 9. For all t, we have Err`tpiqs ď `tpiq and Er`tpitqs ď Erpt ¨ r`ts ` ηk log2 k.

Proof. Observe that, by Eq. (5) of Lemma 8,

Er¯̀t,0piqs “ `tpiqE
„

1tit “ iu

ptpiq



“ `tpiq .

We now prove that Err`t,0piqs ď Er¯̀t,0piqs for all i, which would imply the first claim. By
construction we have Err`tpiq | it P Bts “ 0 ď Er¯̀t,0piq | it P Bts. Also, since Erσt,ds “ 0 and
σt,d is independent of it and ¯̀

t,d (the latter only depends on σt,0, . . . , σt,d´1), we have

Err`t | it R Bts “ Er¯̀t,0 | it R Bts `
D´1
ÿ

d“0

Erσt,dsEr¯̀t,d | it R Bts “ Er¯̀t,0 | it R Bts . (9)

Together, we obtain Err`t,0piqs ď Er¯̀t,0piqs as required.
Next, to bound Er`tpitqs observe that Erpt ¨ r`t | it P Bts “ 0 and, similarly to Eq. (9),

Erpt ¨ r`t | it R Bts “ Erpt ¨ ¯̀t,0 | it R Bts “ Er`tpitq | it R Bts .

Denote βt “ P rit P Bts. Then

Er`tpitqs “ βtEr`tpitq | it P Bts ` p1´ βtqEr`tpitq | it R Bts
ď βt ` p1´ βtqErpt ¨ r`t | it R Bts
“ βt ` Erpt ¨ r`ts ,

where for the inequality we used the fact that `tpitq ď 1.
To complete the proof, we have to show that βt ď ηk log2 k. To this end, write

Prit P Bts ď
D´1
ÿ

d“0

PrptpAdpitqq ă 2dηs .

Using Eq. (5) to write

E
„

1

ptpAdpitqq



“

k
ÿ

i“1

1

|Adpiq|
E
„

1tit P Adpiqu

ptpAdpiqq



“

k
ÿ

i“1

1

|Adpiq|
“ |Ad| “

k

2d

together with Markov’s inequality, we obtain

P
”

ptpAdpitqq ă 2dη
ı

“ P
„

1

ptpAdpitqq
ą

1

2dη



ď
k

2d
¨ 2dη “ kη .

We conclude that βt “ Prit P Bts ď ηk log2 k, as required.
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Our next step is to bound the relevant variance term of the estimator r`t.

Lemma 10. For all t, we have Erpt ¨ r`2t s ď 2k log2 k.

Proof. Observe that

r`2t piq ď

˜

¯̀
t,0piq `

D´1
ÿ

d“0

σt,d¯̀t,dpiq

¸2

.

Since Erσt,ds “ 0 and Erσt,dσt,d1s “ 0 for all d ‰ d1, we have for all i that

Err`2t piqs “ Err`2t,0piqs `
D´1
ÿ

d“0

Er¯̀2t,dpiqs ď 2
D´1
ÿ

d“0

Er¯̀2t,dpiqs . (10)

On the other hand, for all d we have by Lemma 5 that

pt ¨ ¯̀
2
t,d ď

řk
i“1 ptpiq1tit P Adpiqu

ptpAdpitqq2

d´1
ź

h“0

p1` σt,hq
2

“
1

ptpAdpitqq

d´1
ź

h“0

p1` σt,hq
2

“

k
ÿ

i“1

1

|Adpiq|

1tit P Adpiqu

ptpAdpiqq

d´1
ź

h“0

p1` σt,hq
2 .

Since it is independent of the σt,h, and recalling Eq. (5), we get

Erpt ¨ ¯̀2t,ds ď
k
ÿ

i“1

1

|Adpiq|
E
„

1tit P Adpiqu

ptpAdpiqq

 d´1
ź

h“0

Erp1` σt,hq2s “
k
ÿ

i“1

2d

|Adpiq|
“ 2d|Ad| “ k .

Together with Eq. (10), this gives

Erpt ¨ r`2t s ď 2
D´1
ÿ

d“0

Erpt ¨ ¯̀2t,ds ď 2k log2 k.

4.4. Concluding the proof

To conclude the proof and obtain a regret bound, we will use the following well-known
second-order regret bound for the multiplicative weights (MW) method, essentially due to
Cesa-Bianchi et al. (2007) (see also Alon et al. (2015) for the version given here). For
completeness, we give a proof of this bound in Section 4.5 below.

Lemma 11 (Second-order regret bound for MW). Let η ą 0 and let c1, . . . , cT P Rk be real
vectors such that ctpiq ě ´1{η for all t and i. Consider a sequence of probability vectors
q1, . . . , qT P ∆k defined by q1 “ p

1
k , . . . ,

1
k q, and for all t ą 1:

qt`1piq “
qtpiq e

´ηctpiq

řk
j“1 qtpjq e

´ηctpjq
@ i P rks .
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Then, for all i˚ P rks we have that

T
ÿ

t“1

qt ¨ ct ´
T
ÿ

t“1

ctpi
˚q ď

log k

η
` η

T
ÿ

t“1

qt ¨ c
2
t .

We now have all we need in order to prove our main result.

Proof of Theorem 4. First, we bound the expected movement cost. Lemma 8 says that
with probability at least 1´ 2´pd`1q, the actions it and it´1 belong to the same subtree on
level d of the tree, which means that ∆pit, it´1q ď 2d{k with the same probability. Hence,

Er∆pit, it´1qs ď
D´1
ÿ

d“0

2d

k
P
„

∆pit, it´1q ą
2d

k



ď

D´1
ÿ

d“0

1

2k
“

log2 k

2k
,

and the cumulative movement cost is then OppT {kq log kq.
We turn to analyze the cumulative loss of the algorithm. We begin by observing that

r`tpiq ě ´1{η for all t and i. To see this, notice that r`t “ 0 unless it R Bt, in which case we
have, by Lemma 5 and the definition of Bt,

0 ď ¯̀
t,dpiq ď

2d

ptpAdpitqq
ď

1

η
@ 0 ď d ă D ,

and since r`t has the form r`t “ ¯̀
t,0`

řdt´1
h“0

¯̀
t,h´¯̀

t,dt (recall Eq. (3)), we see that r`tpiq ě ´1{η.
Hence, we can use second-order bound of Lemma 11 on the vectors r`t to obtain

T
ÿ

t“1

pt ¨ r`t ´
T
ÿ

t“1

r`tpi
˚q ď

log k

η
` η

T
ÿ

t“1

pt ¨ r`
2
t

for any fixed i˚ P rks. Taking expectations and using Lemmas 9 and 10, we have

E

«

T
ÿ

t“1

`tpitq

ff

´

T
ÿ

t“1

`tpi
˚q ď

log2 k

η
` 2ηTk log2 k .

Choosing η “ 1{
?
Tk, we get a regret bound of Op

?
Tk log kq.

4.5. Additional technical proofs

Here we give a proof of our technical lemma bounding the magnitude of the balancing terms
¯̀
t,d.

Proof of Lemma 5. We will prove the claim by induction on d. For the base case d “ 0,
Eq. (2) follows directly from our definitions and the fact that 0 ď `tpiq ď 1 for all i.
Next, we prove that Eq. (2) holds for some d assuming it hold for all d1 ă d. Since
p1` σt,d´1q¯̀t,d´1piq ě 0 for all i by the induction hypothesis, the recursive definition of ¯̀

t,d

implies that

¯̀
t,dpiq ě ´

1

η
log

˜

ÿ

jPAdpiq

ptpjq

ptpAdpjqq

¸

“ 0 .
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Furthermore, the definition of ¯̀
t,d together with the convexity of ´ log x and Jensen’s in-

equality give

¯̀
t,dpiq ď p1` σd´1q

ÿ

jPAdpiq

ptpjq

ptpAdpjqq
¯̀
t,d´1pjq

ď
1tit P Adpiqu

ptpAdpiqq

ÿ

jPAd´1piq

ptpjq

ptpAd´1pjqq

d´1
ź

h“0

p1` σt,hq

“
1tit P Adpiqu

ptpAdpiqq

d´1
ź

h“1

p1` σt,hq ,

where in the second inequality we used the induction hypothesis. This concludes the induc-
tive argument.

Finally, for completeness, we give a proof of Lemma 11 being central to our regret
analysis.

Proof of Lemma 11. The proof follows the standard analysis of exponential weighting
schemes: let wtpiq “ exp

`

´ η
řt´1
s“1 cspiq

˘

and let Wt “
ř

iPV wtpiq. Then qtpiq “ wtpiq{Wt

and we can write

Wt`1

Wt
“

k
ÿ

i“1

wt`1piq

Wt

“

k
ÿ

i“1

wtpiq exp
`

´η ctpiq
˘

Wt

“

k
ÿ

i“1

qtpiq exp
`

´η ctpiq
˘

ď

k
ÿ

i“1

qtpiq
`

1´ ηctpiq ` η
2ctpiq

2
˘

“ 1´ η
k
ÿ

i“1

qtpiqctpiq ` η
2

k
ÿ

i“1

qtpiqctpiq
2 ,

where the inequality uses the inequality ex ď 1`x`x2 valid for x ď 1. Taking logarithms,
using logp1´ xq ď ´x for all x ď 1, and summing over t “ 1, . . . , T yields

log
WT`1

W1
ď

T
ÿ

t“1

k
ÿ

i“1

`

´η qtpiqctpiq ` η
2 qtpiqctpiq

2
˘

.

Moreover, for any fixed action i˚, we also have

log
WT`1

W1
ě log

wT`1pkq

W1
“ ´η

T
ÿ

t“1

ctpi
˚q ´ log k .

Putting together and rearranging gives the result.
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4.6. Learning Continuum–Arm Bandit with Lipschitz Loss Functions

In this section we turn to show how to reduce the problem of learning Lipschitz functions to
MAB with tree-metric movement costs. Specifically we aim at proving Theorem 2, which
follows directly from the following statement,

Theorem 12. Set k “ L2{3T 1{3 and η “ 1{
?
kT . Consider a procedure that receives actions

from Algorithm 1 and returns as feedback ftp
it
k q then for every sequence of L-Lipschitz loss

functions f1, . . . , fT and an L-Lipschitz metric ∆, we have that:

RegretMCpf1:T ,∆q “ rO
`

L1{3T 2{3
˘

.

In particular, the result holds for L ě 1 and ∆pxt, xt`1q “ |xt ´ xt`1|.

Proof. First note that for every x˚ P r0, 1s we can find x “ t 1k ,
2
k , . . . , 1u such that ftpxq ´

ftpx
˚q ď L{k “ L1{3T´1{3, hence

T
ÿ

t“1

`

ftpxq ´ ftpx
˚q
˘

“ L1{3T 2{3.

Therefore if we can show that the regret against every x˚ P t 1k ,
2
k , . . . 1u is bounded by

OpL1{3T 2{3q we obtain that the same regret bound is true for every x P r0, 1s.
Next, we apply Algorithm 1 on the a fully balanced tree where we associate with the

leaves t1, . . . , ku the actions t 1k ,
2
k . . . , 1u. One can then show that |i´j|

k ď ∆T pi, jq. We
then obtain by Theorem 4 that for every x P t 1k ,

2
k . . . , 1u:

E

«

T
ÿ

t“1

ftpxtq

ff

´min
x

T
ÿ

t“1

ftpxq “ OpηkT q “ rOpL1{3T 2{3q .

As to the second term in the regret we obtain that

E

«

T
ÿ

t“1

∆pxt, xt`1q

ff

ď L
T
ÿ

t“1

|xt ´ xt`1| ď E

«

L
T
ÿ

t“1

∆T pit, it`1q

ff

“ rO

ˆ

L
T

k

˙

“ rOpL1{3T 2{3q .

Taken together we obtain that

E

«

T
ÿ

t“1

ftpxtq `
T
ÿ

t“1

∆pxt, xt`1q

ff

´ min
xPt 1

k
,...,1u

T
ÿ

t“1

ftpxq “ rOpL1{3T 2{3q .

5. Online Pricing with Patient Buyers

In this section we present our reduction of adaptive pricing with patient buyers to a MAB
with movement costs.

The reduction is presented in Algorithm 2 and uses our algorithm for MAB with move-
ment costs (Algorithm 1) as a black-box. The algorithm divides the time interval T into
τ blocks and updates the price on T “ T {τ time steps. At each time step t the algorithm
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publishes a fixed price for the whole block of τ consecutive days. Then, as feedback, the
algorithm receives the mean revenue for those days, which we denote by

r1t “
1

τ

tτ
ÿ

k“pt´1qτ`1

bkpρk, . . . , ρk`τ q .

Thus, we can consider the algorithm as an online algorithm over T rounds: where at each
round t the algorithm announces a fixed action ρ1t`1 (the price for the next τ days) and
receives at the end of the round as feedback r1t. Note that prices are always announced τ
days in advance, as required. Dividing the horizon into T {2τ blocks ensures that buyers see
at most two different prices. This in turns lead to a reduction to the case τ “ 1.

Next, as discussed briefly in Section 3, the main difficulty in reducing the adaptive
pricing problem to MAB, which Algorithm 2 overcomes, is in that the feedback function is
not only a function of the current posted price (which is in fact the price tomorrow) but
also of past prices. For example, for τ “ 1 the revenue at time t is a function of ρt and ρt`1,
where only ρt`1 needs be posted at time t. Algorithm 2 overcomes this issue by employing
techniques from Dekel et al. (2014b) for handling adaptive feedback. The tools developed
there allow regret minimization when feedback is taken only in time steps when the price
is fixed for a period of time.

The algorithm draws β1, . . . , βT unbiased Bernoulli random variables, and this sequence
determines the switches in prices and updates. The algorithm posts a new price only on
rounds where βt “ 0 and βt`1 “ 1, and invoke the update rule of Algorithm 1 only on rounds
where βt`1 “ 0 and βt`2 “ 1. Note that these two events never co-occur, and further the
algorithm exploits the feedback only on days prior to a switch, thus guaranteeing that the
feedback is always on days when prices are fixed throughout the present and future block.

Parameters: horizon T , and maximal patience τ

Initialize, T “ T {p2τq, k “ T
1{3

, η “ 2{
?
Tk

Initialize an instance B of SMBpk, ηq
Draw i.i.d. unbiased Bernoulli r.v. β0, . . . , βT
Sample i1 „ B, set ρ11 “ i1{k
Announce prices ρ1 “ ρ2 “ . . . , pτ “ ρ11
For t “ 1, . . . , T

(1) If βt “ 0 and βt`1 “ 1, sample it`1 „ B; otherwise set it`1 “ it
(2) Set ρ1T`1 “ it`1{k and announce prices: ρtτ`1 “ ¨ ¨ ¨ “

ρpt`1qτ “ ρ1t`1
(3) Collect revenues rpt´1qτ`1, . . . , rtτ and set

r1tpρ
1
tq “

1

τ

tτ
ÿ

k“pt´1qτ`1

rk

(4) If βt`1 “ 0, βt`2 “ 1, update B with feedback ft “ 1´ r1tpρ
1
tq

Algorithm 2: Adaptive pricing with patient buyers.
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Relying on these techniques, we construct an algorithm that produces a sequence of
prices with low regret if each buyer bt would observe price ρt. However, in our setting, a
buyer may buy at a consecutive time steps; the additional cost we suffer is bounded by the
potential cost of switching to lower prices, namely, by the movement cost of the algorithm.

The remainder of the section is devoted to proving Theorem 3. We begin by establishing
additional notation required for the proof. We will denote the expected revenue from the
buyers at each block as follows:

btpρ
1
t, ρ

1
t`1q “

1

τ

pt`1qτ
ÿ

k“tτ`1

bkpρk, . . . , ρk`τtq .

Note that since the blocks are of size τ , each buyer can see at most prices that are published
on the next block, hence ρk`τt either equals ρ1t or ρ1t`1. In turn, this means that the expected
revenue is indeed a function of ρ1t and ρ1t`1 alone.

We will further denote the expected revenue from buyers if they observe only the price
at time of arrival as follows:

btpρ
1
tq “

1

τ

pt`1qτ
ÿ

k“tτ`1

bkpρ
1
t, . . . , ρ

1
tq .

First, we are estimating the performance on the subsequence of rounds where the algo-
rithm exploits the received feedback.

Lemma 13. Let β1, . . . , βT be a sequence of unbiased Bernoulli random variables, denote

S “ tt P rT s : βt`1 “ 0, βt`2 “ 1u,

and denote the elements of S in increasing order S “ tts1 ď ts2 , . . . ,ď ts|S|u. For any price

ρ˚ P t 1k ,
2
k , . . . , 1u, Algorithm 2 enjoys the following guarantee:

E

«

ÿ

tPS

btpρ
˚q ´ btpρ

1
tq

ff

“ rOpT
2{3
q ,

and

E

»

–

|S|
ÿ

s“1

|ρ1ts ´ ρ
1
ts`1
|

fi

fl “ rOpT
2{3
q .

Proof. For each sequence of buyers b1, . . . ,bT , define a sequence of loss functions `1 . . . , `T
according to:

`tpiq “ 1´ bt

ˆ

i

k

˙

.

First note that for every t P S we have ρ1t “ ρ1t`1. The algorithm, in turn, announces the
same price ρ1t for all days: tpt ´ 1qτ ` 1, . . . , pt` 1qτu, hence the revenue obtained from
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buyer bk for every pt´ 1qτ ` 1 ď k ď tτ is given by btpρ
1
t, ρ

1
tq. Hence, the feedback used to

update the algorithm B at round t is

ft “ 1´ r1t “ 1´
1

τ

tτ
ÿ

k“pt´1qτ`1

bkpρk, . . . , ρk`τ q “ 1´
tτ
ÿ

k“pt´1qτ`1

1

τ
bkpρ

1
tq “ `tpitq .

In words, we have shown that at every step t P S, Algorithm 2 receive action it and return
to Algorithm 1 as feedback `tpitq. Thus Algorithm 2 applies Algorithm 1 on the sequence
of losses t`tutPS . As a corollary we have that:

E

«

ÿ

tPS

btpρ
˚q ´ btpρ

1
tq

ˇ

ˇ

ˇ

ˇ

ˇ

S

ff

“ E

«

ÿ

tPS

`tpi
˚q ´ `tpitq

ˇ

ˇ

ˇ

ˇ

ˇ

S

ff

“ Opηk|S|q .

Taking expectation over S and noting Er|S|s “ 1
4T we get that

E

«

ÿ

tPS

btpρ
˚q ´ btpρ

1
t, q

ff

“ OpT
2{3
q .

As in Section 4.6, note that if we associate with the prices the corresponding actions on
the tree we obtain that |ρ1t ´ ρ1t`1| ď ∆T pit, it`1q hence we obtain as a second guarantee
that the movement cost of the algorithm is given by

E

»

–

|S|
ÿ

s“1

|ρ1ts ´ ρ
1
ts´1
|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

S

fi

fl “ E

»

–

|S|
ÿ

s“1

1
k |its ´ its´1 |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

S

fi

fl ď E

»

–

|S|
ÿ

s“1

1
k∆pits , its´1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

S

fi

fl “ O p 1k |S|q .

Again taking expectation over S we get that

E

»

–

|S|
ÿ

s“1

|ρ1ts ´ ρ
1
ts´1
|

fi

fl “ rO
`

1
kT

˘

.

Next, we upper bound the regret over the expected regret over the blocks of buyers, b̄t:

Lemma 14. For every ρ˚ P t 1k ,
2
k , . . . , 1u we have that

E

»

–

T
ÿ

t“1

btpρ
˚q ´ btpρ

1
t, ρ

1
t`1q

fi

fl ď 4E

«

ÿ

tPS

btpρ
˚q ´ btpρ

1
tq

ff

` E

»

–

|S|
ÿ

s“1

|ρ1ts ´ ρ
1
ts´1
|

fi

fl .

Proof. First note that for every ρ˚ we have

E

«

ÿ

tPS

btpρ
˚q

ff

“ E

«

T
ÿ

t“1

btpρ
˚qβt`2p1´ βt`1q

ff

.

Since the Bernoulli random variables are independent of bt and ρ˚ we get that

E

«

ÿ

tPS

btpρ
˚q

ff

“ E

«

T
ÿ

t“1

btpρ
˚qβt`2p1´ βt`1q

ff

“
1

4
E

«

T
ÿ

t“1

btpρ
˚q

ff

. (11)
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Similarly we have that

E

«

ÿ

tPS

btpρ
1
tq

ff

“ E

»

–

T
ÿ

t“1

btpρ
1
tqβt`2p1´ βt`1q

fi

fl “
1

4
E

»

–

T
ÿ

t“1

btpρ
1
tq

fi

fl ,

where the equality holds since ρ1t is independent of βt`1 and βt`2. We can bound btpρ
1
t, ρ

1
t`1q ě

btpρ
1
t, ρ

1
tq ´ |ρ

1
t ´ ρ

1
t`1|. Hence btpρ

1
t, ρ

1
t`1q ě bpρ1tq ´ |ρ

1
t ´ ρ

1
t`1|, and we obtain:

E

»

–

T
ÿ

t“1

btpρ
1
t, ρ

1
t`1q

fi

fl ě E

»

–

T
ÿ

t“1

btpρ
1
tq ´ |ρ

1
t ´ ρ

1
t`1|

fi

fl

“ 4E

«

ÿ

tPS

btpρ
1
tq

ff

´

T
ÿ

t“1

E
“

|ρ1t ´ ρ
1
t`1|

‰

“ 4E

«

ÿ

tPS

btpρ
1
tq

ff

´ E

»

–

|S|
ÿ

t“s

|ρ1ts ´ ρ
1
ts´1
|

fi

fl , (12)

where last equality is true since, we have that ρ1t “ ρ1t`1 unless ρ1t´1 P S in which case we
have that ρ1t´1 “ ρ1t “ ρ1ts for some s and ρ1t`1 “ ρ1ts`1

. Taken together with Eqs. (11)
and (12) we obtain the desired result.

We are now ready to prove the main result of this section.

Proof of Theorem 3. First, for any ρ P t 1k , . . . , 1u, by employing Lemma 14 we have the
following:

E

«

T
ÿ

t“1

btpρ, . . . , ρq ´ btpρt, . . . , ρt`τ q

ff

“

T
ÿ

t1“1

t1τ
ÿ

t“pt1´1qτ`1

`

b1tpρ, . . . , ρq ´ btpρt, . . . , ρt`τ q
˘

“ τE

»

–

T
ÿ

t“1

btpρq ´ btpρ
1
t, ρ

1
t`1q

fi

fl

ď
τ

4
E

«

ÿ

tPS

btpρq ´ btpρ
1
tq

ff

` τE

»

–

|S|
ÿ

s“1

|ρ1ts ´ ρ
1
ts´1
|

fi

fl .

Next, for any ρ˚ P r0, 1s there exist ρ P t 1k , . . . , 1u such that ρ˚ ą ρ and btpρ
˚, . . . , ρ˚q ă

btpρ, . . . , ρq `
1
k . Hence, for every ρ˚ P r0, 1s we obtain that

T
ÿ

t“1

btpρ
˚, . . . , ρ˚q ´ E

«

T
ÿ

t“1

btpρt, . . . ρt`τ q

ff

ď
τ

4
E

«

ÿ

tPS

btpρq ´ btpρ
1
tq

ff

` τE

»

–

|S|
ÿ

s“1

|ρ1ts ´ ρ
1
ts´1
|

fi

fl`OpTk q .
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By Lemma 13 we now obtain

T
ÿ

t“1

btpρ
˚, . . . , ρ˚q ´ E

«

T
ÿ

t“1

btpρt, . . . , ρt`τ q

ff

“ O

ˆ

a

τkT `
τT

k
`
T

k

˙

“ Opτ1{3T 2{3q ,

and using our choice of k gives the result.
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Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic
bandits. In COLT, pages 217–226, 2009.
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