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Abstract
We consider the problem of prediction with expert advice when the losses of the experts have
low-dimensional structure: they are restricted to an unknown d-dimensional subspace. We devise
algorithms with regret bounds that are independent of the number of experts and depend only on
the rank d. For the stochastic model we show a tight bound of Θp

?
dT q, and extend it to a setting

of an approximate d subspace. For the adversarial model we show an upper bound of Opd
?
T q and

a lower bound of Ωp
?
dT q.

1. Introduction

Arguably the most well known problem in online learning theory is the so called prediction with
experts advice problem. In its simplest form, a learner wishes to make an educated decision and at
each round chooses to take the advice of one of N experts. The learner then suffers a loss between
0 and 1.

It is a standard result in online learning that, without further assumptions, the best strategy for
the learner will incur Θp

?
T logNq regret (Cesa-Bianchi and Lugosi, 2006). However, it is natural

to assume that while experts are abundant, their decisions are based on common paradigms and
that their decision making is based on few degrees of freedom – for example, if experts are indeed
experts, their political bias, social background or school of thought largely dominates their decision
making. Experts can also be assets on which the learner wishes to distribute her wealth. In this
setting, weather, market condition and interests are dominant factors.

It is also sensible to assume that one can exploit this structure to achieve better regret bounds,
potentially independent of the actual number of experts while still maintaining a strategy of picking
an expert’s advice at each round. Our main result is of this flavor and we show how a learner can
exploit hidden structure in the problem in an online setting.

We model the problem as follows: We assume that each expert corresponds to a vector ui in
Rd space where d is potentially small. Then at each round the experts loss corresponds to a scalar
product with a vector vt chosen arbitrarily, and possibly in an adversarial manner. The learner does
not observe the chosen embedding of the experts in Euclidean space nor the vectors vt, and can only
observe the loss of each expert.
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To further motivate our setting, let us consider the low rank expert model in the stochastic
case. It is well known that for linear predictors in d-dimensional space the regret will be Op

?
dT q,

independent of the number of experts. Indeed, we show that a simple follow the leader algorithm
will achieve this regret bound. In fact, one novelty of this paper is a regret bound that depends on
an approximate rank – formally we show that one can improve on the Op

?
T logNq regret bound

and derive bounds that depend on the approximate rank rather than the number of experts.
The non-stochastic setting is more challenging. It is true that for linear predictors in d-dimension

one can achieve Op
?
dT q regret bound even in the non-stochastic case. But the result assumes that

learner has access to the geometric structure of the problem, namely, the embedding of the experts in
the Euclidean space. Given the embedding one can apply a Follow the Regularized Leader approach
with proper regularization to derive the desired regret bound.

Our main result is a regret minimization algorithm that achieves an Opd
?
T q regret in this low

d-rank setting, when the learner does not have access to the experts’ embedding in Euclidean space.
Our algorithm does not need to know the value of the rank d, and adaptively adapts to it. Thus we
demonstrate a regret bound that is independent of number of experts. We accompany this upper
bound with an Ωp

?
dT q lower bound.

Our results are part of a larger agenda in online learning. A working premise in Online Learning
is that in most cases the stochastic case is the hardest case. Indeed, the literature is filled with
generalization bounds and their analogue regret bounds. However, a striking difference is that
the statistical bounds are often achieved using simple ERM algorithms, that are oblivious to any
structure in the problem, even if the structure is required for the generalization bounds to be valid.
In contrast, to achieve the analogue regret bound, one has to work harder. For finite hypothesis class
the logN factor is achieved by a sophisticated algorithm, and for more general convex problems in
Euclidean space a problem-specific regularization needs to be invoked in order to achieve optimality.
Thus, a key difference is that online algorithms need to be tailored to the structure of the problem.
This leads to the disappointing fact that to achieve optimal regret bounds, it is not enough for the
problem to be structured but the learner needs to actively understand the structure.

Our current research is an attempt to better understand this key difference: we wish to under-
stand whether an online linear predictor can somehow exploit the geometry of the problem in an
implicit manner, similarly to batch ERM algorithms, and how. For this, we invoke a setting where
the learner must choose its predictor without the a-priori ability to devise a regularizer. Our findings
so far indeed demonstrate that even without access to the structure the learner can indeed overcome
her dependence on the irrelevant parameter N .

Technically, one should compare our regret bound of Opd
?
T q to the standard regret bound of

Op
?
T logNq. For our bound to be superior one needs that d “ op

?
logNq; while this can indeed

be the case in various settings, our result can be better seen as a first step in a more general research
direction. We aim to understand how online algorithms can take advantage of structural assumptions
in the losses, without being given any explicit information about it.

1.1. Related Work

Low rank assumptions are ubiquitous in the Machine Learning literature. They have been success-
fully applied to various problems, most notably to matrix completion (Candès and Recht, 2009;
Foygel and Srebro, 2011; Srebro et al., 2004) but also in the context of classification with missing
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data (Goldberg et al., 2010; Hazan et al., 2015) and large scale optimization (Shalev-Shwartz et al.,
2011).

A similar problem that was studied in the literature is the Branching Experts Problem (Gofer
et al., 2013). In the branching expert problem N potential experts are effectively only k distinct
experts, but the clustering of the experts to the k clusters is unknown a-priori. This case can be con-
sidered as a special instance of our setting as indeed we can embed each expert as a k-dimensional
vector. Gofer et al. (2013) proved a sharp Θp

?
kT q regret (the bound is tight only when k ă c logN

for some constant c ą 0). It is perhaps worth noting that when effectively only k experts appear,
the stochastic bound is Op

?
T log kq, thus showing that in this similar problem, it is not true that

the stochastic case is the hardest case.

Complexity measures for online learning. We are not the first to try and understand what is the
proper analogue for ERM in the online setting. Notions like the VC-dimension and Rademacher
complexities have been extended to notions of Littlestone-Dimension (Littlestone, 1988; Shalev-
Shwartz, 2011), and Sequential Rademacher Complexity (Rakhlin et al., 2010) respectively.

The SOA algorithm suggested by Ben-David et al. (2009) is a general framework for regret
minimization that depends solely on the Littlestone dimension. However, the SOA algorithm is
conceptually distinct from an ERM algorithm within our framework: to implement the SOA algo-
rithm, one has to have access to the structure of the class (specifically, one needs to compute the
Littlestone dimension of subclasses within the algorithm).

Sequential Rademacher complexity seems like a powerful tool for improving our bounds and
answering some of our open problems. There are also advances in constructing effective algorithms
within this framework (Rakhlin et al., 2012). However, as the branching expert example shows,
there is no general argument that show that structure in the problem leads to stochastic–analogue
bounds on the complexity.

Learning from easy data. In another line of research, which is similar in spirit to ours, several
authors attempt to go beyond worst-case analysis in online learning, and provide algorithms and
bounds that can exploit deficiencies in the data. Work in this direction includes the study of worst-
case robust online algorithms that can also adapt to stochastic i.i.d. data (e.g., Hazan and Kale,
2009; Rakhlin et al., 2013; De Rooij et al., 2014; Sani et al., 2014), as well as the exploration of
various structural assumptions that can be leveraged for obtaining improved regret guarantees (e.g.,
Cesa-Bianchi et al., 2007; Hazan and Kale, 2010, 2011; Chiang et al., 2012; Rakhlin and Sridharan,
2013). However, to the best of our knowledge, low rank assumptions in online learning have not
been explored in this context.

Adaptive online algorithms. Online adaptive learning methods have recently been the topic of
extensive study and are effective for large scale stochastic optimization in practice. One of the ear-
liest and most widely used methods in this family is the AdaGrad algorithm (Duchi et al., 2011),
a subgradient descent method that dynamically incorporate knowledge of the geometry of the data
from earlier iterations. Our problem can be cast into an online linear optimization problem and
subgradient descent methods are indeed applicable. It might seem at first sight that adapting the
regularization via AdaGrad can lead to desired results. However, the analysis of the AdaGrad al-
gorithm can only yield an Op

?
dNT q bound on the regret in our low-rank setting. In fact, a closer

inspection reveals that the
?
N factor in the latter bound is unavoidable for AdaGrad: as we show

in Appendix B, in our setting the regret of AdaGrad is lower bounded by Ωpmint
?
N,T uq.
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2. Problem Setup and Main Results

We recall the standard adversarial online experts model for T rounds withN experts. At each round
t “ 1, . . . , T , the learner chooses a probability vector xt P ∆N , where ∆N denotes the N -simplex,
namely the set of all possible distributions over N experts,

∆N “

!

x P RN : @i, xpiq ě 0 and
ÿN

i“1
xpiq “ 1

)

.

An adversary replies by choosing a loss vector `t P r´1, 1sN ,1 and the learner suffers a loss xtp`tq “
xt ¨ `t. The objective of the learner is to minimize her regret, which is defined as follows,

RegretT “

T
ÿ

t“1

xt ¨ `t ´ min
iPrNs

T
ÿ

t“1

`tpiq.

In the stochastic online experts model, the adversary selects a distribution D over the loss vectors
in r´1, 1sN , and at time t a random `t P r´1, 1sN is selected from D. The regret is.

RegretT “

T
ÿ

t“1

xt ¨ Er`ts ´ min
iPrNs

T
ÿ

t“1

Er`tpiqs ,

where the expectations are taken over the random loss vectors selected from D.
In our setting, we wish to assume that there is a structure over the experts which implies that

the loss vectors are structured, and are derived from a low rank subspace. Therefore we will add
the following constraint over the adversary: let L P RNˆT be the loss matrix obtained in hindsight
(i.e., the t’th column of L is `t). We restrict the feasible strategies for the adversary to only such
that satisfy:

rankpLq “ d .

An equivalent formulation of our model is as follows: An adversary chooses at the beginning of
the game a matrix U P RNˆd, where each row corresponds to an expert. At round t the adversary
chooses a vector vt, and the learner gets to observe `t where `t “ Uvt. The objective of the learner
remains the same: to choose at each round a probability distribution xt that minimizes the regret.
We stress that the learner observes only the loss vectors `t, and does not have access to either U or
the vectors vt.

2.1. Main Results

We next state the main results of this paper:

Theorem 1 The T -round regret of Algorithm 2 (described in Section 4 below) is at most Opd
?
T q,

where d “ rankpLq.

We remark that a regret upper bound of Op
?
T mintd,

?
logNuq is attainable by combining the

standard multiplicative-updates algorithm with our algorithm.2 Our upper bound is accompanied
by the following lower bound.

1. As will become apparent later, in our setup it is more natural to consider symmetric r´1, 1s loss values rather than the
typical r0, 1s losses. The two variants of the problem are equivalent up to a simple shift and scaling of the losses—a
transformation that preserves the rank of the loss matrix.

2. A standard way to accomplish this is by running the two online algorithms in parallel, and choosing between their
predictions by treating them as two meta-experts in another multiplicative-weights algorithm.
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Theorem 2 For any online learning algorithm, T and d ď log2N , there exists a sequence of loss
vectors `1, . . . `T P r´1, 1sN such that

RegretT “

T
ÿ

t“1

xt ¨ `t ´ min
iPrNs

T
ÿ

t“1

`tpiq ě

c

dT

8
,

and rankpLq “ d.

3. Preliminaries

3.1. Notation

Let In be the nˆ n identity matrix. Let 1n be a vector of length n with all 1 entries. The columns
of a matrix U are denoted by u1, u2, . . .. The i’th coordinate of a vector x is denoted by xpiq. For
a matrix M , we denote by M : the Moore-Penrose pseudo-inverse of M . For a positive definite
matrix H ą 0 we will denote its corresponding norm }x}H “

?
xTHx, and its dual norm }x}˚H “?

xTH´1x. Given a positive semi-definite matrix M ľ 0 its corresponding Ellipsoid is defined as:

EpMq “ tx : xTM :x ď 1u .

3.2. Ellipsoidal Approximation of Convex Bodies

A main tool in our algorithm is an Ellipsoid approximation of convex bodies. Recall John’s theorem
for symmetric zero-centered convex bodies.

Theorem 3 (John’s Theorem; e.g, Ball, 1997) Let K be a convex body in Rd that is symmetric
around zero (i.e., K “ ´K). Let E be an ellipsoid with minimum volume enclosing K. Then:

1
?
d
E Ď K Ď E .

While computing the minimum volume enclosed ellipsoid is computationally hard, for symmetric
convex bodies it can be approximated to within 1`ε factor in polynomial time. Specifically, given as
input a matrix A P RNˆd, consider the polytope PA “ tx : }Ax}8 ď 1u. We have the following.

Theorem 4 (Grötschel et al., 2012, Theorem 4.6.5) There exists a poly-time procedure MVEEpAq
that receives as input a matrix A P RNˆd and returns a matrix M such that

1
?

2d
EpMq Ď PA Ď EpMq.

3.3. Online Mirror Descent

Another main tool in our analysis is the well-known Online Mirror Descent (OMD) algorithm for
online convex optimization. The Online mirror descent is a subgradient descent method for opti-
mization over a convex set in Rd that employs a regularization term, chosen a-priori. In Algorithm 1
we describe the algorithm for the special case where the convex set is ∆N and the regularization
function is chosen to be } ¨ }2H for some input matrix H ą 0:

The regret bound of the algorithm is dependent on the choice of regularization and is given as
follows:
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Algorithm 1 Online Mirror Descent (OMD)
1: input: H ą 0, tηtuTt“1, x1 P ∆N .
2: for t “ 1 to T do
3: Play xt
4: Suffer cost xt ¨ `t and observe `t
5: Update

xt`1 “ arg min
xP∆N

`t ¨ x` η
´1
t }x´ xt}

2
H .

6: end for

Lemma 5 (e.g., Hazan, 2015) The T -round regret of the OMD algorithm (Algorithm 1) is bounded
as follows:

T
ÿ

t“1

`t ¨ xt ´
T
ÿ

t“1

`t ¨ x
˚ ď

1

ηT
}x1 ´ x

˚}2H `
1

2

T
ÿ

t“1

ηtp}`t}
˚
Hq

2 .

3.4. Rademacher Complexity

Our tool to analyze the stochastic case will be the Rademacher Complexity, specifically we will use
it to bound the regret of a “Follow The Leader” algorithm (FTL). Recall that the FTL algorithm
selection rule is defined as follows:

xt “ arg min
xP∆N

t´1
ÿ

i“1

`i ¨ x.

One way to bound the regret of the FTL algorithm in the stochastic case is by bounding the
Rademacher complexity of the feasible samples. Recall that the Rademacher Complexity of a class
of target function F over a sample St “ t`1, . . . , `tu is defined as follows

RpF , Stq “ Eσ

«

sup
fPF

1

t

t
ÿ

i“1

σifp`iq

ff

,

where σ P t´1, 1ut are i.i.d. Rademacher distributed random variables. The following bound is
standard and well known, and for completeness we provide a proof in Appendix A.1.3

Lemma 6 Let K be a symmetric convex set centered around zero in Rd. Recall that the dual set
K˚ is defined as follows:

K˚ “ tx : sup
yPK

|y ¨ x| ď 1u.

Let St “ t`1, . . . , `tu Ď K and let F Ď αK˚ be a subclass of linear functions, then:

RpF , Stq ď α

c

d

t
.

Another standard bound applies to the case where F is bounded in the l1-norm.

3. Surprisingly, we could not find any specific reference that precisely derives it.

6



ONLINE LEARNING WITH LOW RANK EXPERTS

Lemma 7 (Kakade et al., 2009) Let St “ tˆ̀1, . . . , ˆ̀
tu P RN and let F1 be a subclass of linear

functions such that supt}f}1 : f P Fu ď 1, then:

RpF1, Stq ď max
i
} ˆ̀i}8

c

2 logN

t
.

The Rademacher complexity is a powerful tool in statistical learning theory and it allows us to
bound the generalization error of an FTL algorithm. Namely, for every sample St “ t`1, . . . , `tu
denote:

fS “ arg min
fPF

t
ÿ

i“1

fp`iq.

Then we have the following bound for every f˚ P F (for i.i.d. loss vectors; see for example Shalev-
Shwartz and Ben-David, 2014):

E
St„D

E
`„D

rfStp`q ´ f
˚p`qs ď 2 E

St„D
rRpF , Stqs .

Applying this to FTL in the experts setting we have, in terms of regret, that for any x˚:

E

«

T
ÿ

t“1

`t ¨ xt ´ `t ¨ x
˚

ff

“

T
ÿ

t“1

E
`1,...,`t´1„D

E
`t„D

r`t ¨ xt ´ `t ¨ x
˚s

ď 2
T
ÿ

t“1

E
St´1„D

rRp∆N , St´1qs . (1)

4. Upper Bound

In this section we discuss our online algorithm for the adversarial model, which is given in Al-
gorithm 2. The algorithm is a version of Online Mirror Descent with adaptive regularization. It
maintains a positive-definite matrix H , which is being updated whenever the newly observed loss
vector `t is not in the span of previously appeared losses. In all other time steps—i.e., when `t
remains in the previous span—the algorithm preforms an Online Mirror Descent type update (see
Algorithm 1), with the function }x}2H “ xTHx as a regularizer.

The algorithm updates the regularization matrix H so as to adapt to the low-dimensional geom-
etry of the set of feasible loss vectors. Indeed, as our analysis below reveals, H is an ellipsoidal
approximation of a certain low-dimensional convex set in RN to which the loss vectors `t can be
localized. This low-dimensional set is the intersection of the unit cube in N dimensions—in which
the loss vectors `t reside by definition—and the low dimensional subspace spanned by previously
observed loss vectors, given by spanpUq. Whenever the latter subspace changes, namely, once a
newly observed loss vector leaves the span of previous vectors, the ellipsoidal approximation is
recomputed and the matrix H is updated accordingly.

To derive Theorem 1, we begin with analyzing a simpler case where the learner is aware of the
subspace from which losses are derived. Specifically, assume that at the beginning of the rounds,
the learner is equipped with a rank d matrix U such that for all losses `1, `2, . . . P spanpUq where
we denote by spanpUq the span of the columns of the matrix U .
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Algorithm 2 Online Low Rank Experts
1: Initialize: x1 “

1
N 1N , τ “ 0, k “ 0, U “ tu

2: for t “ 1 to T do
3: Observe `t, suffer cost xt ¨ `t.
4: if `t R spanpUq then
5: Add `t as a new column of U , reset τ “ 0, and set k Ð k ` 1.
6: Compute M “ MVEEpUTq and H “ In ` U

TMU .
7: end if
8: let τ Ð τ ` 1 and ηt “ 4

a

k{τ , and set:

xt`1 “ arg min
xP∆N

`t ¨ x` η
´1
t }x´ xt}

2
H .

9: end for

In this simplified setting, we can obtain a regret bound of Op
?
dT q via John’s theorem (The-

orem 3).4 As discussed above, the loss vectors `1, . . . , `T can be localized to the intersection of
the unit cube in N dimensions with the d-dimensional subspace spanned by the columns of U .
Then, John’s theorem asserts that the minimal-volume enclosing ellipsoid of the intersection is a?
d-approximation to the set of feasible loss vectors.

Theorem 8 Run Algorithm 1 with Input H , tηtu and x1 defined as follows: (i) H “ In`U
TMU ,

where M “ MVEEpUTq, (ii) ηt “ 4
a

d{t, where d “ rankpUq, and (iii) x1 P ∆ is arbitrary. If
`1, . . . , `T P spanpUq , then the expected T -round regret of the algorithm is at most 8

?
dT .

Proof Consider the d-dimensional polytope

P “ tv P Rd : }UTv}8 ď 1u.

Then by John’s Theorem (Theorem 3), we have,

Ep 1
2dMq Ď P Ď EpMq . (2)

In order to apply Lemma 5, we need to bound both }`t}˚H and }x1´x
˚}2H . We first bound the norms

}`t}
˚
H . Notice that for each loss vector `t there exists vt P P such that `t “ UTvt (as `t P spanpUq

and }`t}8 ď 1). Thus, we can write,

p}`t}
˚
Hq

2 “ `TtH
´1`t “ vTt UpIn ` U

TMUq´1UTvt ď vTt UpU
TMUq:UTvt “ vTtM

´1vt ,

where we have used the fact that UpUTMUq:UT “ M´1 for matrices U and M ą 0 (see
Lemma 11 in Appendix A). Now, since vt P P and EpMq is enclosing P , we obtain vTtM

´1vt ď 1.
This proves that p}`t}˚Hq

2 ď 1.
Next we bound }x1 ´ x˚}H ď 2 Since }x1 ´ x˚}H ď 2 maxxP∆n }x}H , it suffices to bound

maxxP∆n }x}H . Hence, our goal is to show that }x}H ď 2
?
d for all x P ∆n. Since }x}2H “

4. We remark that for the simplified setting, the Op
?
dT q regret bound is in fact tight, as our Ωp

?
dT q lower bound

(given in Section 5) applies in a setting where the subspace of the loss vectors is known a-priori to the learner.
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1 ` 2d }x}2H 1 with H 1 “ 1
2dU

TMU , it is enough to bound the norm }x}2H 1 . Given a convex set in
Rd, recall that the dual set is given by

P ˚ “ tx : sup
pPP

|x ¨ p| ď 1u.

The dual of an ellipsoid EpMq is given by pEpMqq˚ “ EpM´1q and it is standard to show that
Eq. (2) implies in the dual:

pEpMqq˚ Ď P ˚ Ď pEp 1
2dMqq

˚.

Taken together we obtain that P ˚ Ď Ep2dM´1q. Note that by definition the columns of U are in
P ˚, hence, for every ui, }ui}2M ď 2d. Since x P ∆N ,

}x}2H 1 “
1
2d}Ux}

2
M ď 1

2d max
i
}ui}

2
M ď 1 .

Equipped with the bounds }x}H ď
?

1` 2d ď 2
?
d for all x P ∆n and }`t}˚H ď 1 for all t,

we are now ready to analyze the regret of the algorithm, which via Lemma 5 can be bounded as
follows:

RegretT “
T
ÿ

t“1

`t ¨ xt ´
T
ÿ

t“1

`t ¨ x
˚

ď
1

ηT
}x1 ´ x

˚}2H `
1

2

T
ÿ

t“1

ηtp}`t}
˚
Hq

2 7 Lemma 5

ď
4

ηT
max
xP∆n

}x}2H `
1

2

T
ÿ

t“1

ηtp}`t}
˚
Hq

2 7 }x1 ´ x
˚}H ď 4 max

xP∆n

}x}H

ď
16d

ηT
`

1

2

T
ÿ

t“1

ηt 7 max
xP∆n

}x}2H ď 4d, }`t}
˚
H ď 1.

A choice of ηt “ 4
a

d{t, together with the inequality
řT
t“1 1{

?
t ď 2

?
T , gives the theorem.

The d-low rank setting does not assume that the learner has access to the subspace U , and poten-
tially an adversary may adapt her choice of subspace to the learner’s strategy. However, the learner
can still obtain regret bounds that are independent of the number of experts. We are now ready to
prove Theorem 1.

Proof of Theorem 1 Let t0 “ 1, td`1 “ T and for all 1 ď k ď d let tk be the round where
the k’th column is added to U . Also, let Tk “ tk`1 ´ tk the length of the k’th epoch. Notice
that between rounds tk and tk`1 the algorithm’s execution is identical to Algorithm 1 with input
depicted in Theorem 8. Therefore its regret in this time period is at most 8

?
kTk. The total regret is

then bounded by

8
d
ÿ

k“0

a

kTk ď 8

g

f

f

e

d
ÿ

k“0

k ¨

g

f

f

e

d
ÿ

k“0

Tk ď 8d
?
T ,

and the theorem follows.
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4.1. Stochastic Online Experts

We now turn to analyze the regret in the stochastic model, where the loss vectors `t are chosen
i.i.d. from some unknown distribution. In this case we can achieve a right regret bound of Op

?
dT q

using a simple “Follow The Leader” (FTL) algorithm. We will in fact show an even stronger result
for the stochastic case, that an approximate rank is enough to bound the complexity. Recall that the
approximate rank, rankεpLq, of a matrix is defined as follows (see Alon et al., 2013):

rankεpLq “ mintrankpL1q : }L1 ´ L}8 ă εu.

The following statement is the main result for this section:

Theorem 9 Assume that an adversary chooses her losses t`tu i.i.d. from some distribution D sup-
ported on r´1, 1sN . Then the T -round regret of the FTL algorithm is bounded by:

RegretT ď 8E
”

a

T ¨ rankεpLq
ı

` ε
a

T logN,

for every 0 ď ε ă 1. In particular, if rankpLq ď d almost surely, then RegretT “ Op
?
dT q.

Proof Our proof relies on Eq. (1) and a bound for Rp∆N , Stq. Fix a sequence ST “ t`1, . . . , `T u
and let d “ rankεpLq and let U be N ˆ d matrix such that

L “ UV ` L̂ ,

where maxi,j |L̂i,j | ă ε. We will denotes the columns of L̂ by ˆ̀
1, . . . ˆ̀

N . We define a symmetric
convex set centered around zero in Rd as follows:

K “ tv : supi |ui ¨ v| ď 2u .

Note that for every vt we have that vt P K if ε ď 1. By definition of the set we have: ui P 2K˚

for every i. One can verify that K˚ is convex, hence if we let F “ convpu1, . . . , uN q we have
that F Ď 2K˚. We can think of F as a linear function space, where fupvq “ u ¨ v. It follows by
Lemma 6 that RpF , Stq ď

a

2d{t. Finally,

Rp∆N , Stq “ E

«

sup
xP∆N

t
ÿ

i“1

1

t
σix ¨ `i

ff

ď E

«

sup
xP∆N

1

t

t
ÿ

i“1

σix ¨ Uvi

ff

` E

«

sup
xP∆N

1

t

t
ÿ

i“1

σix ¨ ˆ̀

ff

.

Next, we have:

E

«

sup
xP∆N

1

t

t
ÿ

i“1

σix ¨ Uvi

ff

“ E

«

sup
xP∆N

1

t

t
ÿ

i“1

σipU
Txq ¨ vi

ff

“ sup
fPconvpuiq

E

«

1

t

t
ÿ

i“1

σifpviq

ff

“ RpF , Stq ă 2

c

d

t
. (3)

and by Lemma 7,

E sup
xP∆N

«

1

t

t
ÿ

i“1

σix ¨ ˆ̀
i

ff

ď ε

c

2 logN

t
. (4)

10
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Taking Eq. (3) and Eq. (4) together, we have:

Rp∆N , Stq ď 2

c

rankε L

t
` ε

c

2 logN

t
.

The statement now follows from Eq. (1).

5. Lower Bound

We now prove Theorem 2. For our proof we will rely on lower bounds for online learning of
hypotheses classes with respect to the Littlestone dimension (see Shalev-Shwartz, 2011). For a
class H of target functions h : X Ñ t0, 1u, the Littlestone dimension LdimpHq measures the
complexity, or online learnability, of the class.

To define LdimpHq one considers trees whose internal nodes are labeled by instances. Any
branch in such a tree can be described as a sequence of examples px1, y1q, . . . , pxd, ydq where xi is
the instance associated with the ith node in the path, and yi is 1 if xi`1 is the right child of the i–th
node, and yi “ 0 otherwise. LdimpHq is then defined as the depth of the largest binary tree that is
shattered by H. An instance-labeled tree is said to be shattered by a class H if for any root-to-leaf
path px1, y1q, . . . , pxd, ydq there is some h P H such that hpxiq “ yi.

To prove Theorem 2, we need the following result about the Littlestone dimension.

Lemma 10 (Ben-David et al., 2009) Let H be any hypothesis class with finite LdimpHq, where
Ldim is the Littlestone-dimension of a class H. For any (possibly randomized) algorithm, there
exists a sequence of labeled instances pv1, y1q, . . . , pvT , yT q with yt P t0, 1u such that

E

«

T
ÿ

t“1

|ŷt ´ yt|

ff

´min
hPH

T
ÿ

i“1

|hpxtq ´ yt| ě

c

LdimpHqT
8

.

where ŷt is the algorithm’s output at iteration t.

Proof of Theorem 2 We let H be the 2d vertices of the d-dimensional hypercube. We define a
function class F over the domain X “ te1, . . . , edu of standard basis vectors. A function fu P F ,
is labeled by u P H, and defined over the set of basis vector ej , as follows,

fupejq “

#

0 if upjq “ ´1,
1 if upjq “ 1.

One can verify that LdimpFq “ d. For each ui P H and y P t0, 1u, we can write

|fuipejq ´ y| “
1´ p2y ´ 1q ¨ ui ¨ ej

2
.

By Lemma 10, we deduce that for any algorithm, there exists a sequence pv1, ȳ1q, . . . , pvT , ȳT q of
standard basis vectors v1, . . . , vT and ȳ1, . . . ȳT P t´1, 1u such that:

T
ÿ

t“1

ÿ

i

xtpiqui ¨ pȳtvtq ´min
u

T
ÿ

i“1

u ¨ pȳtvtq ě 2

c

dT

8
. (5)
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We now consider an adversary that chooses U as his expert matrix, and at round t the learner ob-
serves `t “ Upȳtvtq. The lower bound now follows from Eq. (5); the fact that rankpLq “ d follows
from the fact that our experts are embedded in Rd.

6. Discussion and Open Problems

We considered the problem of experts with a hidden low rank structure. Our findings are that in the
non-stochastic case, similar to the stochastic case, the regret bounds are independent of the number
of experts. The most natural question is then to bridge the gap between the upper and lower bounds:

Open Problem 1 Is there an algorithm that can achieve regretOp
?
dT q for any sequence `1, . . . , `T

such that rankpLq “ d? Alternatively, can one prove a lower bound of Ωpd
?
T q?

As discussed, our agenda is more general than the low-rank setting. Our aim is to construct new
online algorithms that can exploit structure in the data, without explicit information on the structure.
Other settings can also be considered within our framework.

Another interesting setting, that avoids dependence in dimension, is to assume that experts are
embedded in a Hilbert space. By isomorphisms of Hilbert spaces this is equivalent to an adversary
that chooses an expert embedding matrix U P RNˆN such that for every ui we have }ui}2 ď 1 and
correspondingly at each time point we receive a vector vt such that }vt}2 ď 1 as a result we have a
factorization:

L “ UVT, }U}2,8, }V }2,8 ď 1,

where }X}2,8 “ sup}y}ď1 }Xy}8. Recall the definition of the max-norm, also called the γ2-norm
(Srebro and Shraibman, 2005):

}L}max “ min
UVT“L

}U}2,8 ¨ }V }2,8.

Thus, similar to the low rank setting we can define this setting as follows: At each round a learner
chooses xt P ∆N , an adversary replies by choosing a loss vector `t, and the learner incurs the
corresponding loss. The adversary is restricted to strategies such that }L}max ď 1. The importance
of this setting is that the proper generalization bound for this case is dimension independent (e.g.,
Kakade et al., 2009). Hence, we ask the following question:

Open Problem 2 Is there an algorithm that can achieve regretOp
?
T q for any sequence `1, . . . , `T

such that }L}max ď 1?

We can also generalize this setting to any pair of norms, } ¨ } and its dual } ¨ }˚, where the description
of the game remains the same. The adversary chooses an embedding U of the experts with bounded
} ¨ } norm. Then, at each round he chooses a set of vectors vt with } ¨ }˚ bounded norm.

Finally, a different interesting direction to pursue in future work is to extend the noisy result to
the adversarial setting. Namely,

Open Problem 3 Is there an algorithm that can achieve regret Op
?
dT ` ε

?
T logNq for any

sequence `1, . . . , `T such that rankεpLq ď d?

12
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Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combinato-
rial optimization, volume 2. Springer Science & Business Media, 2012.

Elad Hazan. Introduction to Onlne Convex Optimization, Draft. now Publishers Inc., 2015.

Elad Hazan and Satyen Kale. On stochastic and worst-case models for investing. In Y. Bengio,
D. Schuurmans, J.D. Lafferty, C.K.I. Williams, and A. Culotta, editors, Advances in Neural In-
formation Processing Systems 22, pages 709–717. Curran Associates, Inc., 2009.

Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by variation
in costs. Machine learning, 80(2-3):165–188, 2010.

Elad Hazan and Satyen Kale. Better algorithms for benign bandits. The Journal of Machine Learn-
ing Research, 12:1287–1311, 2011.

Elad Hazan, Roi Livni, and Yishay Mansour. Classification with low rank and missing data. In
Proceedings of The 32nd International Conference on Machine Learning, pages 257–266, 2015.

Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction:
Risk bounds, margin bounds, and regularization. In Advances in neural information processing
systems, pages 793–800, 2009.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine learning, 2(4):285–318, 1988.

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Confer-
ence on Learning Theory, pages 993–1019, 2013.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Random averages,
combinatorial parameters, and learnability. In Advances in Neural Information Processing Sys-
tems, pages 1984–1992, 2010.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Localization and adaptation in online
learning. In Proceedings of the Sixteenth International Conference on Artificial Intelligence and
Statistics, pages 516–526, 2013.

Sasha Rakhlin, Ohad Shamir, and Karthik Sridharan. Relax and randomize: From value to algo-
rithms. In Advances in Neural Information Processing Systems, pages 2141–2149, 2012.

Amir Sani, Gergely Neu, and Alessandro Lazaric. Exploiting easy data in online optimization. In
Advances in Neural Information Processing Systems, pages 810–818, 2014.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in
Machine Learning, 4(2):107–194, 2011.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge University Press, 2014.

Shai Shalev-Shwartz, Alon Gonen, and Ohad Shamir. Large-scale convex minimization with a
low-rank constraint. arXiv preprint arXiv:1106.1622, 2011.

14



ONLINE LEARNING WITH LOW RANK EXPERTS

Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In Learning Theory, pages
545–560. Springer, 2005.

Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin matrix factorization. In
Advances in neural information processing systems, pages 1329–1336, 2004.

Appendix A. Technical Proofs

Lemma 11 Let M P Rdˆd, U P Rdˆn such that M ą 0 and U . Then

UpUTMUq:UT “M´1.

Proof Let N “ M1{2U . Then, we have NpNTNq:NT “ Id. To see this, write the SVD decom-
position N “ OΣVT with diagonal non-singular Σ P Rdˆd and OOT “ OTO “ VTV “ Id.
Then,

NpNTNq:NT “ OΣVTpV Σ2VTq:V ΣOT “ OΣVTpV Σ´2VTqV ΣOT “ Id.

Expanding the definition of N , we get M1{2UpUTMUq:UTM1{2 “ Id, and since M1{2 is non-
singular, we can multiply by M´1{2 on both sides and obtain the lemma.

A.1. Proof of Lemma 6

The proof relies on the following corollary of John’s Theorem:

Lemma 12 Let K be a symmetric convex set centered around zero in Rd. There exists a positive
semi-definite matrix Σ such that for every x P K:

xTΣx ď sup
fPK˚

|fpxq|2 ď dpxTΣxq .

Proof of Lemma 6 W.l.o.g., we assume α “ 1, the general case follows since RpαF , Sq “
αRpF , Sq. We have

RpF , Sq “ Eσ

«

sup
fPF

1

t

t
ÿ

i“1

σifp`iq

ff

“ Eσ

«

sup
fPF

fp
1

t

t
ÿ

i“1

σi`iq

ff

ď

g

f

f

eEσ

«

sup
fPF

f2p
1

t

t
ÿ

i“1

σip`iqq

ff

.
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Next, we take Σ whose existence follows from Lemma 12. Note that Σ defines a scalar product.
Specifically let us denote x`i, `jy “ `Ti Σ`j , and also we let }`i}22 “ `Ti Σ`i. Then we have

g

f

f

eEσ

«

sup
fPK˚

f2

˜

1

t

t
ÿ

i“1

σi`i

¸ff

ď

g

f

f

f

edEσ

»

–

1

t2

›

›

›

›

›

t
ÿ

i“1

σi`i

›

›

›

›

›

2

2

fi

fl

“

g

f

f

edEσ

«

1

t2

t
ÿ

i,j“1

σiσjx`i, `jy

ff

“

g

f

f

edEσ

«

1

t2

t
ÿ

i“1

σ2}`i}22

ff

“

g

f

f

e

d

t2

t
ÿ

i“1

}`i}22

ď

c

d

t
max
i
}`i}22 ď

d

d

t
max
i

sup
fPK˚

f2p`iq ď

c

d

t
,

as claimed.

Appendix B. Lower Bounds for the AdaGrad Algorithm

AdaGrad (see Algorithm 3) is an algorithm that adapts the regularization matrix with respect to prior
losses. Our aim in this section is to show that this learning scheme of the regularization cannot lead
to a regret bound that is independent of the number of experts. Our strategy is as follows: since the
AdaGrad algorithm depends on a learning rate parameter η we consider two cases: either η scales
with N and becomes smaller, but then we show that for some sequence the algorithm’s update is
“too slow”. On the other hand, we show that if η does not scale with N , the algorithm becomes less
stable, and we can again inflict damage. Taken together we prove the following statement:

Theorem 13 Consider Algorithm 3. For concreteness we assume that x1 “
1
N 1. For sufficiently

large N , if T ă
?
N{6 then there exist a sequence t`1, . . . , `T u such that RegretT ě T {2 and

rankpLq “ 1.

Lemma 14 Consider Algorithm 3 with arbitrary η and δ. For concreteness we assume that x1 “
1
N 1. For sufficiently large N , if T ď max

`

1
36η2

` 2
?
δ

6η , η
2N ´ δ

˘

then there exist a sequence
`1, . . . , `T such that RegretT ě T {2 and rankpLq “ 1.

Proof We prove each bound separately.

Case 1: T ă 1
36η2

` 2
?
δ

6η . We let `t “ e “ p´1, 1
N´1 ,

1
N´1 ,

1
N´1 , . . . ,

1
N´1q for all t. For every t

we have that
Gt “

a

teeT ` δI

and
ηG´1

t `t “
η

?
t` δ}e}

e.
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Algorithm 3 AdaGrad
1: Input: η, δ, x1 P ∆N .
2: Initialize: S0 “ G0 “ δI
3: for t “ 1 to T do
4: Observe `t, suffer cost xt ¨ `t.
5: set

St “ St´1 ` `t`
T
t , Gt “ S

1{2
t

yt`1 “ xt ´ ηG
´1
t `t

xt`1 “ arg min
xP∆N

}yt`1 ´ x}
2
Gt

6: end for

Next we use the inequality:

T
ÿ

t“1

1
?
t` δ

ď

ż T

0

1
?
t` δ

dt “ 2
´?

T ` δ ´
?
δ
¯

.

For T ď
´

1
6η `

?
δ
¯2
´ δ “ 1

36η2
` 2

?
δ

6η , we have that:

?
T ` δ ´

?
δ ă

1

6η
;

1

N
`

η

}e}

T
ÿ

i“1

1
?
t` δ

ď
1

N
`

2η

}e}

´?
T ` δ ´

?
δ
¯

ď
1

2
,

where last inequality follows since }e} ą 1 and we assumeN ě 6. One can observe that our update
rule does not take yt out of the simplex ∆N and we have

xt “
1

N
1´

η

}e}

ÿ 1
?
t` δ

e,

and further, xtp1q ă 1
2 . In hindsight xtp1q suffers loss ´T while all other experts suffer positive

loss. Hence the algorithm’s regret is at least

RegretT ě
T

2
.

Case 2: T ă η2N´δ. We now choose e “ p`1,`1,`1,`1,`1,`1
loooooooooooooomoooooooooooooon

N{2 times

,´1,´1,´1,´1,´1,´1
loooooooooooooomoooooooooooooon

N{2 times

q.

and let
`t “ p´1qt`1e.

As before note that

ηG´1
t `t “

p´1qt`1η
?
t` δ}e}

e “
p´1qt`1η
a

Npt` δq
e.

We claim that for
?
t` δ ă η

?
N and t ą 1 we have that:
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xt “
2

N

$

’

’

’

&

’

’

’

%

p1, 1, 1, 1, 1, 1
loooooomoooooon

N{2 times

, 0, 0, 0, 0, 0, 0
loooooomoooooon

N{2 times

q t is even,

p0, 0, 0, 0, 0, 0
loooooomoooooon

N{2 times

, 1, 1, 1, 1, 1, 1
loooooomoooooon

N{2 times

q t is odd.
(6)

Hence xt`t “ 1 and since the cumulative loss of each expert is at most 1 we have that:

RegretT ě
T

2
.

To see that Eq. (6) holds, we will show the statement for x2 other cases are easier and follow the
same proof: y1 “ 1 1

N ` αe, where |α| ą 1?
N

, hence it has the form

yt “ pa, a, a, a, a, a
loooooomoooooon

N{2 times

,´b,´b,´b,´b,´b
loooooooooomoooooooooon

N{2 times

q

where a´ b “ 2{N and a, b ą 0. The statement now follows from Lemma 15 (see below).

Proof of Theorem 13 By Lemma 14 we need to show that

min
η,δ

max

˜

1

9η2
` 2

?
δ

3η
, η2N ´ δ

¸

ą

?
N

6
.

To prove this, we note that since both terms in the max are monotone in both variables, the minimum
is attained when there is equality, i.e., the minimal η, δ satisfy:

1

36η2
` 2

?
δ

6η
“ η2N ´ δ.

Since 1
36η2

` 2
?
δ

6η ` δ “
´

1
6η `

?
δ
¯2

, we get:

?
N “

1

η

ˆ

1

6η
`
?
δ

˙

,

and we have that: ?
N

6
“

?
2

36η2
`

?
δ

6η
ă

?
2

36η2
` 2

?
δ

6η
.

It remains to prove Lemma 15, that was used for the proof of Lemma 14.

Lemma 15 Let y “ pa, a, a, a, a, a
loooooomoooooon

N{2 times

,´b,´b,´b,´b,´b
loooooooooomoooooooooon

N{2 times

q where a, b ě 0 and assume that a´ b “

2{N . Let Gt “
?
δI ` αeeT

´1{2
for some α ą 0, where

e “ p`1,`1,`1,`1,`1,`1
loooooooooooooomoooooooooooooon

N{2 times

,´1,´1,´1,´1,´1,´1
loooooooooooooomoooooooooooooon

N{2 times

q .
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Then
min
xP∆N

1

2
}y ´ x}2Gt

“
2

N
p1, 1, 1, 1, 1, 1
loooooomoooooon

N{2 times

, 0, 0, 0, 0, 0
loooomoooon

N{2 times

q .

Proof Considering the Lagrangian and KKT conditions, we observe that x minimizes the distance
iff the following hold:

1. x P ∆N (primal feasibility)

2. λ ą 0 and θp1q “ θp2q “ ¨ ¨ ¨ “ θpNq. (dual feasibility)

3. x “ y `G´1
t pλ` θq (stationarity)

4. xpiq ‰ 0 ñ λpiq “ 0 and λpiq ‰ 0 ñ xpiq “ 0. (complementary slackness)

Next note that e is an eigenvector of Gt and we have for some c ă 0 that

G´1
t ce “ p´b,´b,´b,´b,´b,´b

looooooooooooomooooooooooooon

N{2 times

,`b,`b,`b,`b,`b
loooooooooomoooooooooon

N{2 times

q.

Now we can write

ce “ p0, 0, . . . , 0, 0
loooooomoooooon

N{2 times

,´2c,´2c, . . . ,´2c,´2c
loooooooooooooomoooooooooooooon

N{2 times

q

loooooooooooooooooooooooomoooooooooooooooooooooooon

λ

`pc, c, c, c, c, c
looooomooooon

N{2 times

, c, c, c, c, c, c
looooomooooon

N{2 times

q

looooooooooooooomooooooooooooooon

θ

,

that concludes the proof.
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