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Abstract

We ask whether there exists an efficient unsupervised learning algorithm for mixture of
Gaussians in the over-complete case (number of mixtures is larger than the dimension).
The notion of learning is taken to be worst-case compression-based, to allow for improper
learning.

1. Introduction

One of the most prominent and well studied paradigms of unsupervised learning is that
of learning Mixture-Of-Gaussians (MOG). In this setting, a given distribution over data is
assumed to be from a mixture distribution over normal random variables, and the goal is
to identify the Gaussians and in turn provide a good clustering of the data.

The MOG model has long served as a tool for scientific discovery, see e.g. (Hardt, 2014)
and references therein. Numerous algorithms have been developed over the years for MOG
under various probabilistic assumptions. However, computationally MOG it is known to be
a hard problem, requiring exponential sample complexity in the distributional setting (Kalai
et al., 2012; Regev and Vijayaraghavan, 2017; Arora et al., 2005). The related worst-case
problem of “k-means” is known to be NP-hard (Dasgupta, 2008).

This does not prohibit efficient improper learning. Numerous computationally hard
supervised learning problems, such as Max-Cut, are learnable efficiently and without a
significant penalty in sample complexity (Hazan et al., 2012). However, this requires a
definition of unsupervised learning that is not probabilistic and allows for convex relaxation.

We thus focus on the definition of unsupervised learning in terms of compression with
low reconstruction error, see formal definition and references in (Hazan and Ma, 2016).

Henceforth we describe an efficient improper learning algorithm for MOG in the under-
complete case, and ask whether such an efficient algorithm exists in general.

2. Problem definition

We consider a pair of a class of compression functions F : X → {0, 1}k over a domain
X = Rd, and a fixed reconstruction function ρF . Given a distribution D over X we define
the reconstruction error of a fixed f ∈ F as:

R(f ; ρF ) = E
x∼D
‖ρF (f(x))− x‖2.
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Throughout, if the reconstruction function is known, we will neglect the dependence of R
in ρF and simply write R(f) (it is possible to consider a compression scheme in which the
reconstruction function is also a function over the sample, although for simplicity we ignore
this option here).

Given a new pair G : X → {0, 1}k′ and ρG , we will say that an algorithm A learns F
through G with sample complexity m(ε) if given a sample S = {x1, . . . , xm} drawn IID from
some unknown distribution D, then with probability 2/3 the algorithm A returns g ∈ G
such that

R(g) ≤ min
f∈F

R(f) + ε

The quantities of interest are the computational efficiency of the algorithm A, the de-
pendence of the sample complexity m in ε and the Rademacher complexity of F , and the
compression factor which depends on k′. Note that if we don’t consider k′ , one can always
use k′ = d log 1/ε bits of representation to return an ε–net whose reconstruction error is
ε-competitive with any MOG model. However, we desire a k′ parameter which depends
polynomially on the hypothesis class learned k′ = poly(k, log 1/ε).

The Euclidean reconstruction error is related to the log-probability error in the proba-
bilistic interpretation of the generative mixture of Gaussians model.

3. Learning MOG by PCA

In this section we show how to efficient (and improperly) learn the spherically symmetric
version of MOG according to the definitions above, but only in the underconstrained case
and with exponential blowup in compression size.

Let X ∈ Rm×d be a data matrix sampled i.i.d from some arbitrary distribution x ∼ D.
We let R = maxx∈X ‖x‖.

Given a set of k centers of Gaussians, k << d, µ1, ..., µk (w.l.o.g. with norm at most
one), minimize reconstruction error given by

Ex∼D[min
i
‖µi − x‖2]

We next provide a relaxation of the objective that may consider improper solutions. Specif-
ically we allow several means to contribute to the reconstruction error, and consider the
following objective:

Ex∼D[ min
‖αx‖1 ≤ 1

‖
∑
j

αjµj − x‖2]

Let M ∈ Rd×k be the matrix of all µ vectors. Then we can further relax and write the
optimization problem as

min
M

Ex∼D[ min
αx∈Rk

‖x−Mαx‖2]

This corresponds to an encoding by vector α rather than by a single coordinate.
We can write the closed form solution to αx as:

arg min
α′
x

‖x−Mαx‖2 = M−†x
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where M−† denotes the pseudo inverse, and the objective becomes

min
αx

‖x−Mαx‖2 = ‖x−MM−†x‖2

Thus, we’re left with the optimization problem of

min
M

Ex∼D[‖x−MM †x‖2]

which amounts to PCA.
Thus, by finding the k-PCA of the data, we can ensure reconstruction error less than

the best k-MOG model, which satisfies our definition of improper unsupervised learning.
PCA is also an efficient algorithm.

In terms of representation size, however, things are not as satisfying. To represent the
encoding by PCA up to ε error, one needs k log R

ε bits. This is in contrast to the log k bits
required by k-MOG. This is also the reason why PCA only works up to k = d, i.e. the
underconstrained case.

4. The Question

We offer 100$ for the solver of the following question: design a simple and efficient algorithm
for k-MOG with only poly(log(k), log 1

ε ) compression size, that works for the overconstrained
case. Bi-criteria approximation algorithms for k-means may be a good place to start, such
as in (Makarychev et al., 2015). Alternatively, prove an impossibility for the existence of
any such efficient algorithm.

An additional 100$ is offered for a solution of the analogue of this question to the
hypothesis class of general Gaussians, that may have non-identity convariance. Spectral
auto-encoders may be a good place to start (Hazan and Ma, 2016).
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