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Général de Gaulle, 94010 Créteil cedex, France. Email: paul.dario@u-pec.fr

1



Contents

1 Introduction 2

2 Disordered spin systems 2
2.1 The Imry-Ma phenomenon: Absence and preservation of long-range order in

the presence of a random field . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Introduction

In these lectures we discuss some of the recent rigorous progress in the analysis of disordered
models. Our focus is on disordered spin systems, first-passage percolation and minimal
surfaces in random environments. Within these topics, we discuss the existence or absence
of long-range order in disordered spin systems and questions of localization and delocalization
of interfaces in disordered media.

These notes were initially written for the School on Disordered media, held in Jan-
uary 2024 at the Rényi Institute in Budapest, Hungary. We thank the organizers Ágnes
Backhausz, Gábor Pete, Balázs Ráth and Bálint Tóth for their kind invitation to deliver a
mini-course on these topics there.

2 Disordered spin systems

Spin systems may alter their properties when placed in non-homogeneous environments.
In this section, we consider this effect for the case of a random environment (termed the
disorder), formed from independent, local, random samples, and our focus is on the existence
or absence of long-range order. We emphasize that the disorder is quenched ; in other words,
to sample a configuration of the system, one first samples an instance of the disorder and
then samples a configuration from the model’s disorder-dependent Hamiltonian.

Our systems are defined on the d-dimensional lattice Zd and we write u ∼ v to indicate
that u, v ∈ Zd are nearest-neighbors (i.e., differ in exactly one coordinate and by exactly
one). We also denote the set of edges by E(Zd).

To illustrate the topic, we mainly focus on the random-field spin systems described by
the following formal Hamiltonians and disorder choices:

1. Random-field Ising model: Configurations are described by σ : Zd → {−1, 1}. The
disorder consists of (ηRF-Ising

v )v∈Zd , independent standard Gaussian random variables
(i.e., of mean 0 and variance 1). The disorder strength is denoted λ > 0. The formal
Hamiltonian is

HRF-Ising,ηRF-Ising,λ(σ) := −
∑
u∼v

σuσv − λ
∑
v

ηRF-Ising
v σv. (1)

2. Random-field Potts model: Let q ≥ 2 integer denote the number of states. Configura-
tions are described by σ : Zd → {1, 2 . . . , q}. The disorder consists of (ηRF-Potts

v,k )v∈Zd,k∈{1,...,q},
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independent standard Gaussian random variables. The disorder strength is denoted
λ > 0. The formal Hamiltonian is

HRF-Potts,ηRF-Potts,λ(σ) := −
∑
u∼v

1σu=σv − λ
∑
v

q∑
k=1

ηRF-Potts
v,k 1σv=k. (2)

The case q = 2 is equivalent to the random-field Ising model (the Hamiltonians differ
only by the addition of a disorder dependent term).

3. Random-field Spin O(n) model: Let n ≥ 1 integer denote the number of components.

Configurations are described by σ : Zd → Sn−1. The disorder consists of (η
RF−O(n)
v )v∈Zd ,

independent standard Gaussian random vectors in Rn (i.e., of mean 0 and identity
covariance matrix). The disorder strength is denoted λ > 0. The formal Hamiltonian is

HRF−O(n),ηRF−O(n),λ(σ) := −
∑
u∼v

σu · σv − λ
∑
v

ηRF−O(n)
v · σv. (3)

Here, we endow Rn with the Euclidean inner product x · y :=
∑n

i=1 xiyn and norm
∥x∥2 := x · x, and denote by Sn−1 := {x ∈ Rn : ∥x∥ = 1} the (n − 1)-dimensional
Euclidean sphere. The case n = 1 is again equivalent to the random-field Ising model.

We’ve restricted to Gaussian disorder for simplicity, but note that other disorder choices
(typically having a rotationally-symmetric distribution around 0), are also of interest and
are discussed in the literature.

To obtain a probability measure (termed a finite-volume Gibbs measure) from the formal
Hamiltonian, one uses the following standard prescription: Fix a temperature T > 0, a finite
Λ ⊂ Zd and a configuration τ (the boundary values). Given a Hamiltonian H#, we write
H#

Λ,τ for the Hamiltonian which includes only the terms that contain a spin in Λ, and where
the spins σv with v /∈ Λ are replaced by τv. For instance, for the random-field Ising model,

HRF-Ising,ηRF-Ising,λ
Λ,τ (σ) := −

∑
u∼v
u,v∈Λ

σuσv −
∑
u∼v

u∈Λ,v /∈Λ

σuτv − λ
∑
v∈Λ

ηRF-Ising
v σv. (4)

Then, the finite-volume Gibbs measure on configurations is given by

dP#,T
Λ,τ (σ) :=

1

Z#,T
Λ,τ

e−
1
T
H#

Λ,τ (σ)
∏
v∈Λ

dκ#(σv)
∏

v∈Zd\Λ

dδτv(σv) (5)

where Z#
Λ,τ (the partition function) is chosen so that P#

Λ,τ is a probability measure and

where κ# denotes the apriori (or single site) measure on spin states for the model. The
apriori measure is the counting measure on {−1, 1} for the random-field Ising and Edwards–
Anderson spin glass models, the counting measure on {1, . . . , q} for the random-field q-state
Potts model and the uniform measure on Sn−1 for the random-field spin O(n) model.

We use the notation ⟨·⟩#,T
Λ,τ for the expectation operator corresponding to the measure

P#,T
Λ,τ .
We will mostly be interested in the properties of the models at low temperatures. In

fact, in the presence of disorder, it turns out that the relevant phenomena already arise
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at zero temperature, and, mostly for simplicity, we will focus solely on this case. The zero-
temperature measure, or finite-volume ground state, P#,0

Λ,τ is defined as the limit in distribution

of P#,T
Λ,τ as T ↓ 0. It is supported on the minimizers of the Hamiltonian H#

Λ,τ , which we term
finite-volume ground configurations1. In fact, in our examples above it is easily seen that
there is a unique minimizer almost surely, so that P#,0

Λ,τ is a delta measure (but note that
there exist random λ,Λ, τ for which there are multiple minimizers).

An important role is played by the Gibbs measures of the model: These are the measures
which arise as limits in distribution of P#,T

Λn,τn
for some sequence of domains Λn ⊂ Zd which

inrease to Zd and some sequence of configurations τn, and also the convex combinations of
these limits. The set of Gibbs measures is naturally random, depending on the realization of
the disorder. Gibbs states at zero temperature are called ground states. They are supported
on ground configurations, configurations σ which locally minimize the formal Hamiltonian
H# in the sense that if σ′ differs from σ in finitely many vertices than H#(σ′)−H#(σ) ≥ 0
(noting that this energy difference is well defined, at least in the above examples, as only
finitely many terms differ in the sums defining the Hamiltonians).

The above spin systems may be considered as perturbations of the corresponding pure
(i.e., non-disordered) spin systems obtained by setting λ = 0 in the formal Hamiltonians.
For instance, the random-field Ising model may be thought of as a perturbation of the Ising
model, defined by the formal Hamiltonian

H Ising(σ) := −
∑
u∼v

σuσv. (6)

Our focus will then naturally be on the way in which the added disorder alters the properties
of the underlying spin system.

2.1 The Imry-Ma phenomenon: Absence and preservation of long-
range order in the presence of a random field

The pure (non-disordered) Ising, Potts and spin O(n) models are well known to undergo a
magnetization phase transition (see, e.g., [10]):

1. (Ising model). For L ≥ 0 integer, let

ΛL := {−L, . . . , L}d (7)

and consider the Ising model in ΛL with +-boundary conditions, i.e., with τ ≡ +1.
Then in all dimensions d ≥ 2 there exists a critical temperature T Ising

c (d) such that

lim
L→∞

⟨σ0⟩Ising,TΛL,+

{
= 0 T > T Ising

c (d)

> 0 T < T Ising
c (d)

. (8)

*** and it is further known that the limit is also zero at the critical temperature.
Mention also the exponential rate of decay to zero at high temperatures? Divide into
two parts, with the first part having supremum over boundary conditions? ***

1In the literature, the term finite-volume ground states is often also used for these minimizers
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2. (Potts model). When placing the Potts model under 1-boundary conditions (i.e., τ ≡ 1)
then in all dimensions d ≥ 2 there exists a critical temperature TPotts

c (d) such that

lim
L→∞

⟨1σ0=1⟩Potts,TΛL,1

{
= 1

q
T > TPotts

c (d)

> 1
q

T < TPotts
c (d)

. (9)

3. (O(n) model with n ≥ 2). The pure O(n) models with n ≥ 2 have a continuous
symmetry - for all rotations R in Rn, all domains Λ, boundary values τ and configu-
rations σ, the Hamiltonians satisfy H

O(n)
Λ,Rτ (Rσ) = H

O(n)
Λ,τ (σ) where Rρ : Zd → Sn−1 is

the rotated configuration defined by (Rρ)v := R(ρv). The Mermin–Wagner theorem
thus dictates the absence of a magnetization phase transition in dimension d = 2 at
all positive temperatures T > 0:

lim
L→∞

sup
τ :Zd→Sn−1

∥⟨σ0⟩O(n),T
ΛL,τ

∥ = 0. (10)

An important fact, which will not be discussed here, is that a phase transition does
occur in dimension d = 2: the famed Berezinskii–Kosterlitz–Thouless transition from
a high-temperature regime with exponential decay of the above supremum to a low-
temperature regime with power-law decay. In dimensions d ≥ 3 a magnetization phase
transition occurs: When placing the O(n) model under →-boundary conditions (i.e.,
τ ≡ (1, 0, . . . , 0)) then in all dimensions d ≥ 3 there exists a critical temperature

T
O(n)
c (d) such that

lim
L→∞

∥⟨σ0⟩O(n),T
ΛL,→ ∥

{
= 0 T > T

O(n)
c (d)

> 0 T < T
O(n)
c (d)

. (11)

How does the addition of the random field affect these phase transitions? The added
disorder naturally competes with the ferromagnetic interaction of the pure Hamiltonian and,
at least intuitively, should weaken the long-range order. One may consider several parameter
regimes according to the temperature T and disorder strength λ.

For a sufficiently high threshold temperature T#
0 (d), it follows from Dobrushin’s unique-

ness criterion *** ref *** that the model is disordered for all temperatures T > T#
0 (d) and

all disorder strengths λ ≥ 0 *** in the sense of exponential decay? ***. Moreover, for the
random-field Ising model, it has been shown that one may take TRF-Ising

0 (d) = T Ising
c (d) ***

ref Ding–Sun–Song [6] ***. It is apparently open to obtain a similar result for the random-
field Potts models with q ≥ 3 and the random-field O(n) models with n ≥ 2. *** check that
it is indeed still open ***

There are several results in the literature showing that there exists a threshold disorder
strength λ#

0 (d) such that the models are also disordered when the disorder strength λ > λ#
0 (d)

at all temperatures T , including zero temperature! *** reference such results. For the XY
model, reference Feldman. Is the general O(n) case also done? Is the XY case also done at
positive temperatures? ***

Exercise: Prove the above assertion at zero temperature for the random-field Ising and
Potts models. *** can use a percolation argument with the points of large disorder. Can
make this a guided exercise and reference [2, Appendix A] ***
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Given the above results, interest is naturally directed towards the regime of low temper-
ature and weak disorder strength. This was famously addressed in the physics literature by
the work of Imry–Ma, who argued that the magnetized phase will be lost, in the presence
of arbitrarily weak disorder, in dimension d = 2 for the random-field Ising and Potts models
(and more general systems), and in all dimensions d ≤ 4 for the random-field O(n) model
with n ≥ 2. This prediction was famously made rigorous by the work of Aizenman–Wehr,
who greatly extended its scope. Imry–Ma further predicted that the magnetized phase will
be retained by the disordered system in higher dimensions (dimensions d ≥ 3 for the random-
field Ising and Potts models and dimensions d ≥ 5 for the random-field O(n) models with
n ≥ 2). For the random-field Ising model, this claim was under significant debate in the
physics literature, with Parisi–Surlas *** presenting arguments against it. The debate was
famously resolved by the rigorous works of Imbrie *** (at zero temperature) and Bricmont–
Kupiainen *** (at all temperatures) who showed that the Imry–Ma prediction is correct:
the magnetized phase is retained already in three dimensions.

*** Open problem: Long-range order for the random-field spin O(n) model in dimensions
d ≥ 5 (even at zero temperature and even for the random-field XY model). ***

*** Can add here the d ≥ 3 work of Ding–Liu–Xia that the critical temperature can be
arbitrarily close to the pure Ising model if the disorder strength is sufficiently small. There
is a related work of Ding–Huang–Xia in d = 2 at the critical temperature to find the critical
scaling of the disorder strength with the size of the box. ***

The next sections discuss the Imry–Ma prediction in more detail. We first present a
recent short proof of the existence of the magnetized phase in dimensions d ≥ 3 due to
Ding–Zhuang [7]. Then, we discuss quantitative aspects of the absence of phase transition in
lower dimensions, presenting the work of Dario–Harel–Peled [5] and highlighting the many
remaining open questions.

2.1.1 Long-range order in the random-field Ising and Potts models

In this section we present the argument of Ding–Zhuang [7] for the existence of long-range
order in the random-field Ising model in dimensions d ≥ 3, at low temperature and weak
disorder. The argument can be thought of as a version of the famous Peierls argument
for showing long-range order, adapted to disordered spin systems. It extends a technique of
Fisher–Fröhlich–Spencer [8] which was introduced in an earlier attempt to settle the problem
(this latter work gave strong support to the long-range order prediction by showing that it
would occur if there were “no domain walls within domain walls”; see also *** Chalker ***).

The argument also adapts to the random-field Potts model, and gave the first proof of
existence of a magnetized phase there.

Theorem 2.1. For every d ≥ 3 there exists T0 > 0 and λ0 > 0 such that for all 0 ≤ T < T0

and 0 ≤ λ < λ0,

lim
L→∞

E
[
⟨σ0⟩RF-Ising,ηRF-Ising,T

ΛL,+

]
> 0. (12)

To present the argument in its simplest form, we discuss only the zero temperature case
random-field Ising model, leaving the extension to the other cases as an exercise *** add the
exercise ***.
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Fix d ≥ 3. Let λ0 be chosen sufficiently small and positive for the following arguments
and fix a disorder strength 0 ≤ λ < λ0. Fix L ≥ 0 integer. For brevity, in the proof, we
remove λ and L from most of the notation and write η for ηRF-Ising. We let ση be the, almost-
surely unique, finite-volume ground configuration of the Ising model in ΛL with +-boundary
values. Also denote the finite-volume ground energy by

GEη := HRF-Ising,η
ΛL,+

(ση). (13)

We denote the edge boundary of a set A ⊂ Zd by

∂A := {{u, v} ∈ E(Zd) : |{u, v} ∩ A| = 1}. (14)

For an integer ℓ ≥ 1 we let

Cℓ := {A ⊂ Zd : A finite and connected, Ac connected, 0 ∈ A, |∂A| = ℓ},
C := ∪∞

ℓ=0Cℓ
(15)

The first observation is that if ση
0 = −1 then there exists a (random) set A ∈ C, A ⊂ ΛL,

such that ση ≡ −1 on the interior vertex boundary of A and ση ≡ 1 on the exterior vertex
boundary of A. Suppose A is such a set. Define a new configuration and random field by
flipping the configuration and random field on A,

ση,A
v :=

{
−ση

v v ∈ A

ση
v v /∈ A

,

ηAv :=

{
−ηv v ∈ A

ηv v /∈ A
.

(16)

The discrete ±1 symmetry of the random-field Ising model then leads to the energy gap

HRF-Ising,η(ση)−HRF-Ising,ηA(ση,A) ≥ 2|∂A|. (17)

This implies that also
GEη −GEηA ≥ 2|∂A| (18)

The argument will be (eventually) concluded by proving that, for each ℓ,

P
(
∃A ∈ Cℓ such that |GEη −GEηA | ≥ 2|∂A|

)
≤ Cd exp

(
−cd

ℓ
d−2
d−1

λ2

)
(19)

(with Cd, cd > 0 depending only on d).
The proof of (19) makes use of the concentration properties of the distribution of the

ground energy. The first and fundamental ingredient is the following consequence of the
Gaussian isoperimetric inequality of Borell and Tsirelson–Ibragimov–Sudakov *** ref? ***.

Theorem 2.2 (Concentration of maximum of Gaussian process). Let T be a compact set.
Let (Xt)t∈T be a continuous Gaussian process (not necessarily centered). Denote Mt :=
maxt∈T Xt. Then E(Mt) < ∞ and for every u > 0,

P(|Mt − E(Mt)| ≥ u) ≤ 2e
− u2

2σ2
T (20)

with σ2
T := supt∈T Var(Xt).
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This result is applied conditionally. For each finite A ⊂ Zd, write ηAc for the restriction
of η to Ac. Observe that conditionally on ηAc , GEη is the minimum of a Gaussian process on
the compact set T = {−1, 1}ΛL , whose maximal variance is λ2|A∩ΛL| ≤ λ2|A|. Theorem 2.2
thus implies that, almost surely,

P
(∣∣GEη −E(GEη | ηAc)

∣∣ ≥ u | ηAc

)
≤ 2e

− u2

2λ2|A| . (21)

This will be applied through the following useful corollary.

Corollary 2.3. There exist C, c > 0 such that for each A ⊂ Zd and u > 0,

P
(∣∣GEη,L,λ−GEηA,L,λ

∣∣ ≥ u
)
≤ Ce

−c u2

λ2|A| , (22)

and also for each A,A′ ⊂ Zd and u > 0,

P
(∣∣GEηA

′
,L,λ −GEηA,L,λ

∣∣ ≥ u
)
≤ Ce

−c u2

λ2|A∆A′| , (23)

where A∆A′ is the symmetric difference of A and A′.

Proof. The essential point is that, almost surely, E(GEη | ηAc) = E(GEηA | ηAc), which
follows from the fact that ηA has the same distribution as η and ηA = η on Ac. It thus
follows from (21) that, almost surely,

P
(∣∣GEη,L,λ−GEηA,L,λ

∣∣ ≥ u | ηAc

)
≤ Ce

−c u2

λ2|A| , (24)

The inequality (22) follows by taking the expectation of (24). Inequality (23) follows
from (22) by replacing η with ηA

′
(which has the same distribution as η).

To understand (19) better, observe first that the same bound holds for a fixed determin-
istic finite set A ⊂ Zd by (22) and the isoperimetric inequality

|A| ≤ Cd|∂A|d/(d−1). (25)

Indeed,

P(GEη −GEηA ≥ 2|∂A|) ≤ C exp

(
−c

|∂A|2

λ2|A|

)
≤ C exp

(
−cd

|∂A|
d−2
d−1

λ2

)
(26)

where we use the convention that the values of the positive C, c, Cd, cd may change from
expression to expression, with C,Cd only increasing and c, cd only decreasing (but C, c remain
absolute constants and Cd, cd depend only on d).

However, the estimate (26) does not suffice to establish (19) via a union bound, since the
number of subsets A ∈ C with |∂A| ≤ ℓ is at least cd exp(Cdℓ) (this may be argued directly.
One may also consult [9] or [3, Theorem 6 and Theorem 7], noting the equivalence in [4,
Appendix A]). Instead, the estimate (19) is derived from the concentration bound (23) using a
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coarse-graining technique (or chaining argument) introduced by Fisher–Fröhlich–Spencer [8]
in a closely-related context. We proceed to elaborate on this technique.

Given a set A ⊂ Zd and integer N ≥ 1, let AN be the N -coarse-grained version of A
defined as the union of all cubes B ⊂ Zd, of the form v + {0, 1, . . . , N − 1}d with v ∈ NZd,
which satisfy |A ∩B| ≥ 1

2
|B|. We consider all possible coarse grainings of sets in Cℓ,

CN
ℓ := {AN : A ∈ Cℓ}. (27)

The following basic inputs are established in [8] *** for d = 3 and maybe special value of
the parameter; see also [4] for extensions ***

Proposition 2.4. For each integer ℓ,N ≥ 1,

|CN
ℓ | ≤ Cde

Cd
ℓ

Nd−1 log(N+1) (28)

and, for each A ∈ Cℓ,
|A2N∆AN | ≤ CdNℓ. (29)

*** Very roughly, |∂AN | ≈ |∂A| so that AN may be regarded as a set with surface volume
|∂A|/Nd−1 after shrinking the lattice Zd by a factor N . This is complicated, however, by the
fact that AN need not be connected or have connected complement ***

One may then prove (19) via the following chaining argument. Write the telescopic
expansion

GEη −GEηA =
K−1∑
k=0

(
GEη

A
2k+1 −GEη

A
2k
)

(30)

where we note that A20 = A1 = A and where we choose K sufficiently large that A2K = ∅
(so that ηA2K = η). Specifically, choosing K so that 2K has order ℓ

1
d−1 suffices by the

isoperimetric inequality (25). Then, for each choice of positive coefficients (αk)
K−1
k=0 summing

to 1 we have, using Proposition 2.4,

P
(
∃A ∈ Cℓ such that |GEη −GEηA | ≥ 2|∂A|

)
≤

K−1∑
k=0

P
(
∃A ∈ Cℓ such that |GEη

A
2k+1 −GEη

A
2k | ≥ 2αkℓ

)
≤

K−1∑
k=0

∑
B∈C2k

ℓ ,B′∈C2k+1

ℓ
∃A∈Cℓ with B=A

2k
,B′=A

2k+1

P
(
|GEηB

′

−GEηB | ≥ 2αkℓ
)

≤
K−1∑
k=0

∑
B∈C2k

ℓ ,B′∈C2k+1

ℓ
∃A∈Cℓ with B=A

2k
,B′=A

2k+1

Ce
−c

α2
kℓ2

λ2|B∆B′|

≤
K−1∑
k=0

Cde
Cd(k+1) ℓ

2k(d−1) e−cd
α2
kℓ

λ22k (31)
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which one may check is less than the right-hand side of (19) when 0 ≤ λ ≤ λ0 with λ0 ≤ cd
positive but sufficiently small, and letting αk = γ2−

1
4
min{k,K−k} with γ a normalizing constant

ensuring that the αk sum to 1.
*** Exercise: Extend argument to low, positive temperatures. Change ground energy to

free energy.
Exercise: Extend argument to random-field Potts model. ***

2.1.2 Quantitative estimates on the absence of magnetization in low-dimensional
systems

*** Here we will review results from Dario–Harel–Peled [5]. ***
*** Point to exercise (maybe in appendix?) on the absence of a magnetized phase for

the two-dimensional random-field Ising model at zero temperature ***
*** Open problem: Uniformity of distribution of random-field Potts spin at the origin in

dimension d = 2. ***
*** Mention also quantum version [1] and its accompanying papers in the physics liter-

ature ***
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