
RANDOM MATRICES HOMEWORK SHEET 1

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

To hand in by December 26 to the instructor in class.
The solutions should be written in English if possible.

The numbering of exercises is from “An Introduction to Random Matrices” by Anderson,
Guionnet, Zeitouni which is available at http://cims.nyu.edu/~zeitouni/cupbook.pdf.

(i) Exercise 2.1.5: Recall the semicircle distribution whose density is σ(x) := 1
2π

√
4− x21|x|62.

Define its Stieltjes transform by

S(z) :=

∫
R

σ(x)

x− z
dx, z ∈ C \ [−2, 2].

Prove that

S(z) =
z

2

(√
1− 4

z2
− 1

)
, z ∈ C \ [−2, 2].

Hint: You may rely on the generating function of the Catalan numbers (Lemma 2.1.3).

(ii) Solve Exercise 2.1.30 from the book.
Clarification: The assumptions on XN is that it is a real symmetric N×N matrix whose

entries are independent except for the symmetry restriction (that is, on and above diagonal
entries are independent), though not necessarily identically distributed, have zero mean

and satisfy the bound supN,i,j EeλNXN (i,j)2 6 C for some λ,C > 0.
In part (a) one needs to add the assumption that ‖z‖2 = 1.
In part (b) the term zTXNzi should be replaced by (z − zi)TXNzi. One may also prove
instead the related inequality that (1− δ)2 supz : ‖z‖2=1 z

TXNz 6 supzi∈Nδ z
T
i XNzi.

Hints to part (a): It may be of use to prove that if W1, . . . ,WN are independent zero mean

random variables satisfying supi EeλW
2
i 6 C for some λ,C > 0 then there exist λ′, C ′ > 0

(depending only on λ and C) such that Eeλ′(a1W1+···+aNWN )2 6 C ′ for all a1, . . . , aN ∈ R
satisfying a21 + · · · + a2N = 1. One way to approach this is to first prove that there exists

c > 0 such that supi EesWi 6 ecs
2

for all s ∈ R.
It may also be helpful to note that if X = Y + Z for random matrices X,Y, Z then the

event ‖Xz‖2 > C implies that either ‖Y z‖2 > C
2 or ‖Zz‖2 > c

2 . This can be used to avoid
dealing with the lack of independence stemming from the symmetry of XN .

(iii) Recall that a sequence of probability measures (µn) on R converges weakly to a probability
measure µ on R if ∫

fdµn →
∫
fdµ as n→∞

for every bounded, continuous f : R→ R.
(a) Prove that µn converges weakly to µ if and only if

sup
f

∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣→ 0 as n→∞

where the supremum is taken over all bounded, Lipschitz functions with constant 1,
that is, all f in

BLip := {f : R→ R : |f(x)| 6 1 for all x and |f(x)− f(y)| 6 |x− y| for all x, y}.

Remark: The same is true for probability measures over any Polish space.
Hint: For each ε > 0 there is an M with µ([−M,M ]) > 1 − ε. Approximate with
piecewise linear functions.
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(b) Let d be a metric on probability measures on R satisfying that d(µn, µ)→ 0 as n→∞
if and only if µn converges weakly to µ. Let (µn) be a sequence of random probability
measures and µ be a deterministic probability measure. Prove that µn converges to µ
in the metric d in probability, in the sense that

for every ε > 0, lim
n→∞

P(d(µn, µ) > ε) = 0,

if and only if µn converges to µ weakly in probability, in the sense that

for every bounded, continuous f : R→ R and every ε > 0, lim
n→∞

P
(∣∣∣∣∫ fdµn −

∫
fdµ

∣∣∣∣ > ε

)
= 0.

Remark: Part (a) of the exercise gives a metric satisfying the condition. In class we
applied this to the case that µn is the empirical measure of eigenvalues of an n × n
Wigner matrix and µ is the semicircle law.
Hint: Starting with convergence in d in probability, one may use an argument of the
form “every subsequence has a further subsubsequence . . . ”. In the other direction,
one may develop the ideas in part (a) of the exercise.

(iv) Exercise 2.3.4.
(a) Prove that for any u > 0, v ∈ R,

uv 6 u log u− u+ ev.

Remark: This is a consequence of Young’s inequality (but may also be proved directly).
As usual, we set 0 log 0 := 0.

(b) Let P be a probability measure on Rd. Let f : Rd → [0,∞) be in L1(P ). Prove that∫
f log

(
f∫
fdP

)
dP = sup

{∫
fgdP : g : Rd → R satisfies

∫
egdP 6 1

}
.

(c) Let Q1, . . . , Qd be probability measures on R and P := Q1 × Q2 × · · · × Qd. Let
g : Rd → R satisfy

∫
egdP 6 1. Define

gi(x1, . . . , xd) := log

(∫
eg(x1,...,xd)dQ1(x1) . . . dQi−1(xi−1)∫
eg(x1,...,xd)dQ1(x1) . . . dQi(xi)

)
, 1 6 i 6 d.

Prove that for any f : Rd → [0,∞) in L1(P ),∫
fgdP 6

d∑
i=1

∫ ∫
fi · (gi)idQidP, (1)

where for h : Rd → R and fixed x1, . . . , xi−1, xi+1, . . . , xd we let hi : R→ R be defined
by hi(xi) := h(x1, . . . , xi−1, xi, xi+1, . . . , xd) (thus, a more detailed form of the integral
on the right-hand side of (1) is

∫ ∫
fi(xi) · (gi)i(xi)dQi(xi)dP (x1, . . . , xd).

(d) Deduce that if Q1, . . . , Qd satisfy the log-Sobolev inequality with constant c > 0 then
the same is true for their product measure P .


