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study reported in the main text: 
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3. Force Calibration 

4. Molecular Dynamics Simulations 
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mailto:urbakh@tauex.tau.ac.il
mailto:odedhod@tauex.tau.ac.il
mailto:ernst.meyer@unibas.ch


S2 

 

1. Sample Preparation 

The monolayer graphene film was grown in ultra-high vacuum (UHV, ≤ 1 × 10−10 mbar) on a 

freshly prepared Pt(111) single-crystal surface. The Pt(111) surface was prepared by several cycles 

of Ar+ ion sputtering ( 1200 − 1800  eV, chamber pressure 3 × 10−6  mbar for 10  min.) and 

annealing, using a home-made radio frequency (RF) heater (shown in Figure S1.). For the annealing 

process, the sample was heated to 1200 ℃ and kept at this temperature for 20 min. followed by a 

5 min cooling period. Graphene was prepared by means of high-temperature flash in UHV. The 

sample was heated to 800 ℃ with the RF heater, while the precursor gas, ethylene (C2H4), was dosed 

onto the hot surface directly via a nozzle at a distance of 10– 20 mm. During the dosing process, 

the chamber pressure was maintained at a value of 2 × 10−8  mbar. After 2 min of dosing, the 

sample was maintained at a temperature of 800 ℃ for an extra 20 min., and then cooled down at a 

rate of 1 ℃/sec down to room temperature. 

 

2. Tip Preparation 

Prior to performing friction force measurements, the atomic force microscope (AFM) cantilever 

(PPP-CONT, Nanosensors) was annealed in UHV at a temperature of 200 ℃ for 2 h resulting in 

the removal of residual contaminants from the surface of the AFM tip. This was followed by Ar+ 

ion sputtering of the tip for 2 min to remove the native silicon dioxide covering the tip. 

 

3. Force Calibration 

The normal spring constant 𝑘𝑁 and lateral spring constant 𝑘𝐿 of the rectangular cantilevers are given 

by:1 

 𝑘𝑁 =
𝐸𝑤𝑡3

4𝐿3  (S1) 

 𝑘𝐿 =
𝐺𝑤𝑡3

3ℎ2𝐿
  (S2) 

where 𝑤 is the width, 𝐿 is the length, and 𝑡 is the thickness of the cantilever, ℎ is the height of the 

tip and 𝐸 and 𝐺 are the Young and shear moduli of the material. To evaluate the spring constants, 

the cantilever width and length can be determined via scanning electron microscopy, as shown in 

Figure S2. Furthermore, the resonance frequency, 𝑓0, of the cantilever has been measured to obtain 

an accurate value of the cantilever thickness via the relation:1 
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 𝑡 =
2√12𝜋

1.8752 √
𝜌

𝐸
𝑓0𝐿2 (S3) 

where 𝜌 is the density of the cantilever material. 

Given the values of the spring constants, 𝑘𝑁 and 𝑘𝐿, the force calibration proceeds with determining 

the photodetector sensitivity, 𝑆𝑧 , which is evaluated by performing a standard force curve 

measurement, where the AFM tip is forced onto a hard surface until a certain deflection of the 

cantilever is reached and then it is retracted. During this process, the displacement of the AFM stage 

along the vertical (𝑧) direction and the signal of photodiode detector are recorded. The slope of the 

linear part of the force curve gives 𝑆𝑧. Finally, the normal and lateral forces can be estimated via the 

relations:2 

 𝐹𝑁 = 𝑘𝑁 × 𝑆𝑍 × 𝑉𝑁 (S4) 

and 

 𝐹𝐿 =
3

2
× 𝑘𝐿 ×

ℎ

𝐿
× 𝑆𝑍 × 𝑉𝐿, (S5) 

where 𝑉𝑁, 𝑉𝐿 are the respective voltages measured by the photodiode. 

 

 

Figure S1: AFM image of an atomically clean Pt(111) surfaces prepared prior to graphene growth. 

The height profile across a single atom step edge (yellow curve) was measured using non-contact 

AFM. 
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Figure S2: Scanning electron microscopy image of the AFM cantilever used to determine its length 

and width. 

 

4. Molecular Dynamics Simulations 

The molecular dynamics (MD) simulation model system consists of a 2.5-nm-radius hemispherical 

diamond tip sliding atop a graphene layer supported by a 1.36 nm thick Pt(111) substrate, as shown 

in Fig. S3a. The fact that the experimental tip is made of silicon, should have little effect on the 

qualitative nature of our simulation predictions. Since these are used to identify the main physical 

ingredients of the underlying frictional mechanisms that should be included in the 

phenomenological model, a correct qualitative description is sufficient. The specific experimental 

conditions (including the nature of the tip) are then accounted for by fitting the parameters of the 

phenomenological model to the experimental results. 

The inter-atomic interactions within the diamond tip and the graphene layer are described with the 

second-generation reactive empirical bond order (REBO) potential.3 The inter-atomic interactions 

within the Pt substrate are described via the embedded-atom-method (EAM) potential.4 Because the 

main source of frictional dissipation in our setup is attributed to the interaction of the sliding tip 

with the moiré ridges, rather than the corrugated atomic potential, we can safely use the isotropic 

Lennard-Jones (LJ) potential to describe the cross interactions between the tip, graphene layer, and 

Pt substrate atoms. The LJ parameters for the diamond/graphene carbon atom interactions are taken 

to be 𝜎CC = 3.4 Å and 𝜀CC = 0.00284 eV.5 For carbon and Pt we use 𝜎CPt = 2.936 Å and 𝜀CPt =

0.04092  eV,6 for both the tip-substrate and the graphene-substrate interactions. The moiré 
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superstructures generated by this approach demonstrate similar corrugation as obtained in previous 

experiments.7 All simulations are carried out using the LAMMPS package.8 

To rationalize the experimental results, we generate three different moiré superstructure models with 

periods of 0.4, 1.0, and 2.2 nm by rotating the graphene surface counterclockwise with respect to 

the underlying Pt(111) substrate and annealing the graphene and Pt(111) substrate at 300 K. For the 

smaller superstructures studied, with moiré periods of 0.4 nm and 1.0 nm, finite graphene sheets of 

lateral dimensions of 20.7×16 nm2 and 24.8×24.1 nm2, respectively, are considered. For these model 

systems, minor rotation may occur during the annealing stage, with negligible effect on the 

calculated friction forces. For the larger superstructure studied, with a moiré period of  2.2 nm, a 

model system of lateral dimensions of 23.8×16.4 nm2 is considered with periodic boundary 

conditions along the sliding direction and open boundary conditions along the perpendicular lateral 

direction. The moiré superstructures obtained using this procedure are presented in Fig. S4. The 

hemi-spherical diamond tip model consists of two rigid layers, located at the top of the tip, and all 

other tip atoms are unconstrained (see Fig. S3b). The diamond tip is placed on the annealed graphene 

layer with the center of mass of its rigid part located at one of the moiré pattern centers (away from 

any ridges). The geometry of the combined system is then further relaxed under an external normal 

load (the same load used in the corresponding dynamic simulation) using the FIRE algorithm9, 10 

with a convergence force criteria of 10−4 eV/Å. The normal load is applied by adding a vertical 

constant force on each of the atom in the rigid part of the tip, with magnitude ranging from 0 to 0.04 

nN/atom, corresponding to an overall normal load in the range of 0 to 24.5 nN. To keep the lateral 

position of the rigid part of the tip at the moiré center during this minimization stage, the lateral 

forces acting on the rigid tip section are nullified. 

The zero-temperature dynamic simulations are performed by driving the diamond tip with a dummy 

atom, mimicking a moving stage, via a spring with stiffness of 10 N/m coupled to the center of mass 

of the rigid part of the tip. The dummy atom moves with a constant velocity of |�⃑�0| = 2 m/s along 

the moiré lattice direction for each moiré configuration (see Fig. S4). To evacuate the heat generated 

at the shear interface, velocity damping with a damping coefficient of 𝜂 = 1.0 ps-1 is applied to 

remote flexible regions of the tip and the Pt(111) far away from the sliding interface (see Figure 

S3b) To that end, we apply a damping force of 𝐟damp,tip
𝑖 (𝑡) and 𝐟damp,Pt

𝑖 (𝑡) to each atom, 𝑖, within the 

damped regions in the tip and Pt substrate, respectively, using the following equations: 

 {
𝐟damp,tip

𝑖 (𝑡) = −𝑚C𝜂(𝑣𝑥
𝑖 (𝑡) − 𝑣0,𝑥)�̂� − 𝑚C𝜂(𝑣𝑦

𝑖 (𝑡) − 𝑣0,𝑦)�̂� − 𝑚C𝜂𝑣𝑧
𝑖(𝑡)�̂�

𝐟damp,Pt
𝑖 (𝑡) = −𝑚Pt ∑ 𝜂𝑣𝛼

𝑖 (𝑡)𝛼=𝑥,𝑦,𝑧 �̂�
. (S6) 
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Here, 𝑚C and 𝑚Pt are the atomic masses of carbon and Pt, respectively, 𝑣𝛼
𝑖 (𝑡) is the 𝛼 Cartesian 

velocity component of the damped ith atom at time t, 𝑣0,𝑥 and 𝑣0,𝑦 are the x and y components of 

sliding velocity �⃑�0, respectively, and �̂� = �̂�, �̂�, �̂� are the unit vectors along the Cartesian 𝑥, 𝑦 and 𝑧 

directions, respectively. Note that lateral damping in the tip is applied according to the velocities 

relative to that of the moving stage, accounting for the fact that in realistic scenarios viscous 

dissipation is caused by the internal degrees of freedom of the sheared bodies. To prevent global 

sliding of the graphene layer due to the tip motion, the carbon atoms residing at the graphene layer 

edges nearly parallel to the sliding direction (see purple regions in Fig. S3) are constrained to their 

initial position via springs of stiffness 0.176 N/m. For each normal load and moiré configuration, 

the dynamic simulation last for 5 ns, with the first two nanoseconds discarded to avoid inclusion of 

transient effects in the analysis. The spring force exerted on the dummy atom is recorded, where 

resistive force is defined as positive and assistive force as negative. Figure S5 presents the smoothed 

lateral force traces presented in the Fig. 5 of the main text along with the corresponding raw data. 

 

(a) (b)

rigid
dampened region 1

rigid
dampened region 2

diamond tip

graphene

Pt(111)

0.3

0.0

Å

   

Figure S3: MD simulation setup. (a) Perspective view of the simulation model system with moiré 

superlattice dimension of ~2.2 nm. (b) Side view of the tip region presented in panel (a). Brown, 

orange, and yellow spheres in the substrate region represent rigid, dampened, and flexible Pt atoms. 

Light-gray, cyan, and dark-gray spheres in the tip region represent rigid, dampened, and flexible 

carbon atoms. The unconstrained graphene layer atoms are color coded according to their out-of-

plane corrugation (see color bar in panel (a)), and the constrained graphene atoms are represented 

by purple spheres. 
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Figure S4: Out-of-plane deformation of three different moiré superstructures of periods: (a) 2.2 nm; 

(b) 1.0 nm; and (c) 0.4 nm. The color scales represent the out-of-plane corrugation of the graphene 

layer. The black dashed lines denote the moiré lattice directions chosen as the corresponding scan 

lines. 

 

 

Figure S5: Raw (thin lines) versus smoothed (thick lines) lateral force traces. (a) Lateral force traces 

obtained for moiré superstructure dimension of 2.2 nm, under zero normal load (blue), and normal 

loads of 12.3 (red) and 24.5 nN (orange). (b) Lateral force traces obtained for moiré supercell 

dimensions of 0.4 (black), 1.0 (green), and 2.2 nm (red) under a normal load of 12.3 nN. In Fig. 5 

of the main text we presented the smoothed lateral force traces. 
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5. Detailed Derivation of the Phenomenological Model 

In this section, we provide a derivation of the analytical expression for the friction force obtained 

via the phenomenological model introduced in the main text. Within this model, a tip is pulled 

towards a moiré ridge through an elastic spring that connects it to a stage moving at constant 

velocity, 𝑣. The interactions between the tip and the moiré ridge and the pulling spring are described 

by potentials that are schematically shown in Fig. S6. The tip-stage interaction (dashed orange line) 

is given by a simple harmonic potential, where the force experienced by the tip is given by 𝐹 =

𝜅(𝑥𝑠 − 𝑥𝑡)  where 𝜅  is the effective spring constant, 𝑥𝑡  is the tip position, and 𝑥𝑠  is the stage 

position. The tip-ridge interactions (solid blue line) are described by a reactive potential. The 

minimum of this potential corresponds to the equilibrium tip-ridge distance between the tip and the 

ridge at the attached state. At infinite, the two are detached and do not interact. At intermediate 

distances, we introduce a small energy barrier for attachment (∆𝐸𝑎
0), which reflects the fact that 

both ridge and tip sections are of finite dimensions, hence when the tip approaches the ridge parts 

of it can be in the repulsive region, while other parts can be in the attractive region. The balance 

between the two can induce an energy barrier. Importantly, the barrier accounts for possible 

scenarios where the tip climbs atop the ridge instead of attaching to it - scenarios that cannot 

otherwise be captured by a one-dimensional model. The corresponding barrier for detachment, ∆𝐸𝑑
0, 

is measured between the tip-ridge potential minimum the top of the barrier, which are separate by a 

distance of 𝑥0. 

Energy

tip-ridge

tip-stage

   

Figure S6: Schematic illustration of the one-dimensional tip-ridge (solid blue line) and tip-stage 

(dashed orange line) potentials used to construct the phenomenological model. 
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The total potential experienced by the tip is the sum of the two potentials. Hence, in the total 

potential the attachment and detachment barriers are varied due to the stage motion. For detachment 

the pulling spring will promote detachment hence effectively reducing the detachment barrier. This 

reduction can be evaluated from the elastic contribution of the spring when pulling the tip from its 

attached position (𝑥𝑡 = 0) to the top of the barrier (𝑥𝑡 = 𝑥0): 

 ∆𝐸𝑑 =
1

2
𝜅(𝑥𝑠 − 𝑥0)2 −

1

2
𝜅𝑥𝑠

2 = −𝜅𝑥𝑠𝑥0 +
1

2
𝜅𝑥0

2. (S7) 

For the attachment process, as long as the tip is free, it follows the position of the stage along the 

minimum of the harmonic potential, defined as 0. At the top of the barrier, the energy is the same 

as described above. Therefore, the effective increase in barrier height in the combined potential is 

given by: 

 ∆𝐸𝑎 =
1

2
𝜅(𝑥𝑠 − 𝑥0)2 − 0 =

1

2
𝜅(𝑥𝑠 − 𝑥0)2. (S8) 

These spring induced changes of effective energy barrier heights ∆𝐸d and ∆𝐸a affect the detachment 

and attachment rates, which can be now written using the Arrhenius relation as: 

 {
𝑘𝑑 = 𝑘𝑑

0exp(−𝛽∆𝐸𝑑)

𝑘𝑎 = 𝑘𝑎
0exp(−𝛽∆𝐸𝑎)

, (S9) 

where 𝛽 = 1/𝑘B𝑇 , T is the temperature, 𝑘B  is the Boltzmann constant, and 𝑘𝑑
0 and 𝑘𝑎

0  are the 

detachment and attachment rates in the absence of interaction with the stage. Substituting Eqs. S7 

and S8 into Eq. S9 then yields: 

 {
𝑘𝑑 = 𝑘𝑑

0exp [𝛽𝜅𝑥𝑠𝑥0 −
𝛽𝜅

2
𝑥0

2]

𝑘𝑎 = 𝑘𝑎
0exp [−

𝛽𝜅

2
(𝑥𝑠 − 𝑥0)2]

. (S10) 

To obtain Eq. (2) of the main text, which is originally derived to describe single-molecule force 

measurements,11 we assume that the tip-spring potential is much softer than the tip-ridge potential. 

Hence, upon pulling the attached tip will stay at the minimum of the tip-ridge potential until the 

stage-tip spring is stretched to the point where detachment occurs. With this, the applied force is 

given by 𝐹 = 𝜅(𝑥𝑠 − 𝑥𝑡) = 𝜅𝑥𝑠. Substituting this into Eq. (S10) we arrive at Eq. (2) of the main 

text: 

 𝑘𝑑(𝐹) = 𝑘𝑑
0 exp [𝛽 (𝐹𝑥0 −

1

2
𝜅𝑥0

2)].  
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To obtain a similar expression for the detachment rate, we need to make one further assumption that 

during a detachment event, the position of the slider hardly changes, such that we can use the same 

expression for 𝑥𝑠 = 𝐹 𝜅⁄ . This yields Eq. (3) of the main text: 

 𝑘𝑎(𝐹) = 𝑘𝑎
0exp [−

𝛽𝜅

2
(𝐹 𝜅⁄ − 𝑥0)2].  

In order to derive Eq. (6) for the friction force presented in the main text, it should be taken into 

account that when the tip is attached to the ridge, following any detachment process at a pulling 

force smaller than 𝐹𝑒𝑞 (the force at which the detachment and attachment rates are equal, 𝑘𝑑(𝐹) =

𝑘𝑎(𝐹)) it will quickly snap back to the attached state. Therefore, for 𝐹 < 𝐹𝑒𝑞, the tip will be mainly 

trapped in the attached state, so that the measured detachment force cannot be smaller than 𝐹𝑒𝑞.11 

For forces higher than 𝐹𝑒𝑞, the attachment barrier rapidly increases and the attachment rate reduces 

accordingly. This allows us to neglect the second term on the right-hand side of the master equation 

(1) of the main text for 𝐹 > 𝐹𝑒𝑞: 

 
𝑑𝑝𝑎(𝑡)

𝑑𝑡
≅ −𝑘𝑑(𝑡)𝑝𝑎 (S11) 

Recalling that the stage is moving at constant velocity 𝑥𝑠 = 𝑣𝑡, and assuming that at 𝑡 = 0 the tip 

is at the attached state 𝑥𝑡 = 0 we may write: 

𝐹 = 𝜅(𝑥𝑠 − 𝑥𝑡) = 𝜅𝑥𝑠 = 𝜅𝑣𝑡 

Using this relation in Eq. (S11) and rearranging the terms we find that: 

 ∫
𝑑𝑝𝑎

𝑝𝑎

𝑝𝑎

1
≅ −

1

𝜅𝑣
∫ 𝑘𝑑(𝑓)𝑑𝑓

𝐹

𝐹𝑒𝑞
= −

1

𝜅𝑣
∫ 𝑘𝑑

0e𝛽(𝐹𝑥0−
1

2
𝜅𝑥0

2)𝑑𝑓
𝐹

𝐹𝑒𝑞
. (S12) 

Eq. (S12) can be solved as: 

 𝑝𝑎(𝐹) = exp {
𝐹𝛽

𝜅𝑣
[𝑘𝑑(𝐹𝑒𝑞) − 𝑘𝑑(𝐹)]}, (S13) 

where 𝐹𝛽 = 𝑘B𝑇 𝑥0⁄  .Then, the mean detachment force 〈𝐹𝑑〉 can be calculated by averaging the 

force 𝐹 with the detachment probability density, calculated as the reduction in the probability to be 

at the attached state with increasing pulling force, −
𝑑𝑝𝑎(𝐹)

𝑑𝐹
: 

 〈𝐹𝑑〉  = ∫ (−
𝑑𝑝𝑎(𝑓)

𝑑𝑓
) 𝑓𝑑𝑓

∞

𝐹𝑒𝑞
. (S14) 
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Performing integration by parts in Eq. (S14) we obtain: 

〈𝐹𝑑〉  = ∫ [−
𝑑(𝑝𝑎(𝑓)𝑓)

𝑑𝑓
+ 𝑝𝑎(𝑓)] 𝑑𝑓

∞

𝐹𝑒𝑞
= −𝑝𝑎(𝑓)𝑓| ∞

𝐹𝑒𝑞
+ ∫ 𝑝𝑎(𝑓)𝑑𝑓

∞

𝐹𝑒𝑞
= 

= 𝐹𝑒𝑞 + exp (
𝐹𝛽𝑘𝑑(𝐹𝑒𝑞)

𝜅𝑣
) ∫ exp (−

𝐹𝛽𝑘𝑑(𝑓)

𝜅𝑣
) 𝑑𝑓 =⏞

𝑠≡
𝐹𝛽𝑘𝑑(𝑓)

𝜅𝑣
∞

𝐹𝑒𝑞
  

= 𝐹𝑒𝑞 + exp (
𝐹𝛽𝑘𝑑(𝐹𝑒𝑞)

𝜅𝑣
) ∫

𝐹𝛽

𝑠
exp(−𝑠)𝑑𝑠

∞
𝐹𝛽𝑘𝑑(𝐹𝑒𝑞)

𝜅𝑣

= 𝐹𝑒𝑞 + 𝐹𝛽exp (
𝐹𝛽𝑘𝑑(𝐹𝑒𝑞)

𝜅𝑣
) 𝐸1 (

𝐹𝛽𝑘𝑑(𝐹𝑒𝑞)

𝜅𝑣
)  

= 𝐹𝑒𝑞 + 𝐹𝛽exp (
𝑣∗

𝑣
) 𝐸1 (

𝑣∗

𝑣
),  (S15) 

where 𝑣∗ = 𝐹𝛽𝑘𝑑(𝐹𝑒𝑞) 𝜅⁄ , and we have used the relation  

 
𝑑𝑠

𝑑𝐹
=

𝐹𝛽

𝜅𝑣

𝑑𝑘𝑑(𝐹)

𝑑𝐹
=

𝐹𝛽

𝜅𝑣

𝑑

𝑑𝐹
{𝑘𝑑

0 exp [𝛽 (𝐹𝑥0 −
1

2
𝜅𝑥0

2)]} =
1

𝜅𝑣𝛽𝑥0
𝛽𝑥0𝑘𝑑(𝐹) =

𝑘𝑑(𝐹)

𝜅𝑣
=

𝑠

𝐹𝛽
  

or  

 
𝑑𝐹

𝑑𝑠
=

𝐹𝛽

𝑠
.  

Considering that in the overdamped stick-slip regime of motion, described by the two-state model, 

the lateral force increases linearly in time when the tip is in the trapped state and then drops to zero 

after the detachment, the time-averaged friction force, 〈𝐹〉 can be calculated from the corresponding 

triangular area under the force trace of a single stick-slip event (see schematic illustration of Fig. 

S7) as 1/2〈𝐹𝑑〉, yielding Eq. (6) of the main text. 

 

 

Figure S7: Schematic illustration of the relation between detachment force 〈𝐹〉𝑑(𝑣) and the kinetic 

friction 〈𝐹〉𝑘(𝑣) assumed in the model. 
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