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1. Refined Fitting Parameters of the Registry Dependent Interlayer Potential for Graphene and h-BN 

The registry dependent interlayer potential (ILP) and the Kolmogorov Crespi (KC) potential have the 

following general pairwise form:1-3 

 𝑉𝑉�𝐫𝐫𝑖𝑖𝑖𝑖,𝐧𝐧𝑖𝑖,𝐧𝐧𝑖𝑖� = Tap�𝑟𝑟𝑖𝑖𝑖𝑖��𝑉𝑉att�𝑟𝑟𝑖𝑖𝑖𝑖� + 𝑉𝑉Rep�𝐫𝐫𝑖𝑖𝑖𝑖,𝐧𝐧𝑖𝑖 ,𝐧𝐧𝑖𝑖� + 𝑉𝑉Coul�𝑟𝑟𝑖𝑖𝑖𝑖��. (S1) 

Here, 𝑉𝑉att�𝑟𝑟𝑖𝑖𝑖𝑖�, 𝑉𝑉Rep�𝐫𝐫𝑖𝑖𝑖𝑖,𝐧𝐧𝑖𝑖 ,𝐧𝐧𝑖𝑖�, and 𝑉𝑉Coul�𝑟𝑟𝑖𝑖𝑖𝑖� correspond to the long-range van der Waals attraction, 

short-range Pauli repulsion, and monopolar electrostatic interactions, respectively. These terms take 

different forms in the KC and ILP potentials as detailed below. 𝐫𝐫𝑖𝑖𝑖𝑖 is the vector distance between atoms 𝑖𝑖 

and 𝑗𝑗  residing on different layers, while 𝐧𝐧𝑘𝑘  is a unit vector normal to the surface at the 𝑘𝑘 th atomic 

position. The latter is defined as the average of the three vectors normal to the planes defined by the triangles 

formed by the 𝑘𝑘th atom with its three nearest neighbors within the hexagonal lattice. These three normals 

are calculated as the cross products between the displacement vectors from atomic position 𝑘𝑘 to two of its 

nearest neighbors, considering each distinct couple of nearest neighbors.4 In open boundary systems, the 

atoms at the edges have only one or two nearest neighbors. The normal to an atom having two nearest 

neighbors is calculated as the cross product between the displacement vectors to its two nearest neighbors. 

In the case of an atom that has only one nearest neighbor, first the cutoff is adjusted in order to include one 

or two second nearest neighbors; the normal is then computed following the appropriate procedure out of 

the two outlined above. The taper function 
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provides a continuous long-range cutoff (up to third derivative) that dampens the various interactions at 

interatomic separations larger than 𝑅𝑅cut,𝑖𝑖𝑖𝑖. 

 

1.1  The Interlayer Potential (ILP) 

The analytical form of the long-range attractive term is adapted from the Tkatchenko-Scheffler 

augmentation scheme5 to density functional theory (DFT) given by the standard 𝑟𝑟−6 expression dampened 

at short range by a Fermi-Dirac type function, which in DFT calculations avoids double counting of 

interactions: 

 𝑉𝑉att�𝑟𝑟𝑖𝑖𝑖𝑖� = − 1

1+𝑒𝑒−𝑑𝑑𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖 �𝑠𝑠𝑅𝑅,𝑖𝑖𝑖𝑖∙𝑟𝑟𝑖𝑖𝑖𝑖
eff�−1� �

𝐶𝐶6,𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖
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Here, 𝐶𝐶6,𝑖𝑖𝑖𝑖 is the pairwise dispersion coefficient of atoms 𝑖𝑖 and 𝑗𝑗 residing on adjacent layers, 𝑟𝑟𝑖𝑖𝑖𝑖eff is 

the sum of their effective equilibrium vdW atomic radii, and 𝑑𝑑𝑖𝑖𝑖𝑖  and 𝑠𝑠𝑅𝑅,𝑖𝑖𝑖𝑖  are unit-less parameters 

defining the steepness and onset of the short-range Fermi−Dirac type damping function. 

The repulsive term is written as a combination of isotropic and anisotropic contributions as follows: 

 𝑉𝑉Rep�𝐫𝐫𝑖𝑖𝑖𝑖,𝐧𝐧𝑖𝑖,𝐧𝐧𝑖𝑖� = 𝑒𝑒
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where 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑖𝑖 are constants that set the energy scales associated with the isotropic and anisotropic 

repulsion, respectively, 𝛽𝛽𝑖𝑖𝑖𝑖  and 𝛾𝛾𝑖𝑖𝑖𝑖  set the corresponding interaction ranges, and 𝛼𝛼𝑖𝑖𝑖𝑖  is a parameter  

that sets the steepness of the isotropic repulsion function. The lateral interatomic distance 𝜌𝜌𝑖𝑖𝑖𝑖  is defined 

as the shortest distance from atom 𝑗𝑗 to the surface normal, 𝐧𝐧𝑖𝑖, at the position of atom 𝑖𝑖: 

 �
𝜌𝜌𝑖𝑖𝑖𝑖2 = 𝑟𝑟𝑖𝑖𝑖𝑖2 − �𝐫𝐫𝑖𝑖𝑖𝑖 ∙ 𝐧𝐧𝑖𝑖�
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𝜌𝜌𝑖𝑖𝑖𝑖2 = 𝑟𝑟𝑖𝑖𝑖𝑖2 − �𝐫𝐫𝑖𝑖𝑖𝑖 ∙ 𝐧𝐧𝑖𝑖�
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The electrostatic term, which appears only in the homogeneous h-BN ILP, is given by a shielded monopolar 

Coulomb expression of the form: 

 𝑉𝑉Coul�𝑟𝑟𝑖𝑖𝑖𝑖� = 𝑘𝑘𝑞𝑞𝑖𝑖𝑞𝑞𝑖𝑖 �𝑟𝑟𝑖𝑖𝑖𝑖3 + 𝜆𝜆𝑖𝑖𝑖𝑖−3
3� . (S6) 

Here, 𝑘𝑘 = 14.399645 eV ∙ Å ∙ C−2 is Coulomb’s constant, while 𝑞𝑞𝑖𝑖 and 𝑞𝑞𝑖𝑖 are the effective charges of 

atoms 𝑖𝑖 and 𝑗𝑗 (residing in different layers) given in units of the absolute value of the electron charge, 𝑒𝑒, 

and 𝜆𝜆𝑖𝑖𝑖𝑖 = �𝜆𝜆𝑖𝑖𝑖𝑖𝜆𝜆𝑖𝑖𝑖𝑖 is a shielding parameter used to eliminate the short-range singularity of the electrostatic 

interaction in regions where the Pauli repulsions between overlapping electron clouds dominate the 

interlayer potential. In the present study, we used the fixed effective atomic charge approximation adopting 

values of 𝑞𝑞𝐵𝐵 = 0.42𝑒𝑒 and 𝑞𝑞𝑁𝑁 = −0.42𝑒𝑒.1 

 

1.2 The Kolmogorov Crespi Potential 

The van de Waals attraction term of the KC potential has the following form:4 

 𝑉𝑉att�𝑟𝑟𝑖𝑖𝑖𝑖� = −𝐴𝐴𝑖𝑖𝑖𝑖 �
𝑧𝑧0,𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖
�
6
, (S7) 

where 𝐴𝐴𝑖𝑖𝑖𝑖 and 𝑧𝑧0,𝑖𝑖𝑖𝑖 are energy and length scale parameters, respectively. The anisotropic repulsion term 

reads: 



 

S4 
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where 𝐶𝐶𝑖𝑖𝑖𝑖, 𝜆𝜆𝑖𝑖𝑖𝑖 and 𝐶𝐶0/2/4,𝑖𝑖𝑖𝑖, 𝛿𝛿𝑖𝑖𝑖𝑖 are energy and length scale parameters of the isotropic and anisotropic 

repulsion terms, respectively.  

In the original KC potential, no continuous long-range cut-off is applied. If, as often done to reduce 

computational burden, one applies a step-like long-range cutoff, this assumption leads to a discontinuity at 

the cut-off radius, which can lead to difficulties in energy minimization and loss of energy conservation in 

dynamics simulations. To avoid these problems, we have also considered a modified version of the KC 

potential where the expressions of and in Eq. S7 and Eq. S8 are multiplied by the smooth taper cutoff 

function defined in Eq. S2. 

Below we provide two sets of refined parameters for the original (without taper function) and the modified 

(including the taper function) KC potential. 

 

1.3 Fitting procedure 

In the expressions presented above, the ILP parameters 𝛼𝛼𝑖𝑖𝑖𝑖,𝛽𝛽𝑖𝑖𝑖𝑖, 𝛾𝛾𝑖𝑖𝑖𝑖, 𝜀𝜀𝑖𝑖𝑖𝑖,𝐶𝐶𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑖𝑖𝑖𝑖, 𝑠𝑠𝑅𝑅,𝑖𝑖𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖eff,𝐶𝐶6,𝑖𝑖𝑖𝑖,𝑅𝑅cut,𝑖𝑖𝑖𝑖, 𝜆𝜆𝑖𝑖𝑖𝑖  

and the KC parameters 𝑧𝑧0,𝑖𝑖𝑖𝑖,𝐴𝐴𝑖𝑖𝑖𝑖 , 𝛿𝛿𝑖𝑖𝑖𝑖 ,𝐶𝐶𝑖𝑖𝑖𝑖 ,𝐶𝐶0,𝑖𝑖𝑖𝑖,𝐶𝐶2,𝑖𝑖𝑖𝑖,𝐶𝐶4,𝑖𝑖𝑖𝑖, 𝜆𝜆𝑖𝑖𝑖𝑖 serve as fitting parameters. Here, we provide 

two refined sets of parameters for the registry dependent ILP for homogeneous interfaces of graphene and 

hexagonal boron nitride (h-BN), as well as their heterojunctions and two sets of refined parameters for the 

KC potential with or without the taper function for graphene based systems. The force-field has been 

benchmarked against density functional theory calculations of several dimer systems within the Heyd-

Scuseria-Ernzerhof hybrid density functional approximation,6-8 corrected for many-body dispersion effects 

(see section 2 below).9, 10 Unlike the previous parametrizations,1, 2 where the parameters were fitted 

manually focusing on achieving good agreement only in the long-range interaction regime, in the present 

parametrization the parameters were fitted using an automatic interior-point technique, as implemented in 

MATLAB,11, 12 which improved the agreement with the reference DFT data across the entire interaction 

region. 

Our training set included three periodic structures (graphene/graphene, graphene/h-BN and h-BN/h-BN) 
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and 10 finite structures (Benzene dimer, Borazine dimer, B12N12H12 dimer, Coronene dimer, 

Benzene/Coronene, Borazine/B12N12H12, Benzene/Borazine, Benzene/B12N12H12, Borazine/Coronene and 

Coronene/B12N12H12). The reference data consisted of binding energy curves (Figure S1-S3) and sliding 

energy surfaces (Figure S4-S5) of all systems. The latter were computed fixing the equilibrium interlayer 

distance to that of the optimal stacking mode of the corresponding periodic structures. For the case of 

heterogeneous graphene/h-BN junctions we considered two binding energy curves calculated at the optimal 

(C-) and worst (A-) stacking modes.2 

 

Table S1: List of ILP parameter values for graphene and h-BN based systems. The training set includes all 

the binding energy curves and all the sliding potential surfaces mentioned in the text. A value of 𝑅𝑅cut =

16 Å is used throughout. 
 

βij (Å) αij γij (Å) εij (meV) Cij (meV) dij sR,ij reff,ij (Å) C6,ij (eV•Å6) λij (Å-1) 

C-C 3.2058 7.5111 1.2353 1.53E-05 37.5304 15.4999 0.7954 3.6814 25.7145 -- 

B-B 3.1437 9.8251 1.9364 2.7848 14.4960 15.1993 0.7834 3.6829 49.4980 0.70 

N-N 3.4432 7.0845 1.7473 2.9140 46.5086 15.0204 0.8008 3.5518 14.8102 0.69 

H-H 3.9745 6.5380 1.0806 0.6701 0.8334 15.0224 0.7491 2.7672 1.6160 -- 

C-B 3.3037 10.5441 2.9267 16.7200 0.3572 15.3053 0.7002 3.0973 30.1629 -- 

C-N 3.2536 8.8259 1.0595 18.3447 21.9136 15.0000 0.7235 3.0131 19.0631 -- 

B-N 3.2953 7.2243 2.8727 1.3715 0.4347 14.5946 0.8044 3.7657 24.6700 0.694982 

C-H 2.6429 12.9141 1.0203 0.9750 25.3410 15.2229 0.8116 3.8873 5.6875 -- 

B-H 2.7187 9.2146 3.2731 14.0157 14.7605 15.0848 0.7768 3.6409 7.9642 -- 

N-H 2.7535 8.2267 3.1064 0.8074 0.3944 15.0332 0.7451 2.7336 3.8462 -- 

 

 

The fitting procedure involved two steps. First, we fitted the parameters for the three periodic structures, 

using both the binding energy curves and the sliding potential surfaces. This provided us with the C-C, B-

B, N-N, C-B, C-N, and B-N sets of parameters. Next, we fixed these parameters and fitted the remaining 
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H-H, C-H, B-H, and N-H parameter sets using the reference data corresponding to the finite dimers. In this 

final stage we introduced a weighting factor proportional to the dimer size to increase the importance of 

the larger dimers during the fitting procedure. The resulting ILP parameters are presented in Table S1. 

 

Table S2: List of ILP parameter values for graphene and h-BN based systems. The training set is the same 

as that of Table S1 apart for the exclusion of the binding energy curve calculated at the A-stacking mode 

of the graphene/h-BN junction. A value of 𝑅𝑅cut = 16 Å is used throughout. 
 

βij (Å) αij γij (Å) εij (meV) Cij (meV) dij sR,ij reff,ij (Å) C6,ij (eV•Å6) λij (Å-1) 

C-C 3.2058 7.5111 1.2353 1.53E-05 37.5304 15.4999 0.7954 3.6814 25.7145 -- 

B-B 3.1437 9.8251 1.9364 2.7848 14.4960 15.1993 0.7834 3.6829 49.4980 0.70 

N-N 3.4432 7.0845 1.7473 2.9140 46.5086 15.0204 0.8008 3.5518 14.8102 0.69 

H-H 3.4994  6.5011  1.4887  0.0044  2.1538  15.2527  0.7090  2.6454  1.3485  -- 

C-B 3.0957  11.4129  3.5402  0.0067  0.0021  15.4960  0.7727  3.3415  31.1639  -- 

C-N 3.2371  8.3963  1.5489  18.2309  31.8545  15.0000  0.8100  3.7858  18.8623  -- 

B-N 3.2953  7.2243  2.8727  1.3715  0.4347  14.5946  0.8044  3.7657  24.6700  0.694982 

C-H 2.6478  10.7335  5.9574  37.2437  0.7124  15.2182  0.7126  2.6665  5.8883  -- 

B-H 2.6498  9.8478  2.9422  0.3973  22.1276  15.4635  0.8498  3.4991  6.4569  -- 

N-H 2.8599  8.5956  5.6698  0.0080  0.0039  15.1037  0.8499  3.4995  3.1446  -- 

 

The training set for the parameters presented in Table S1 included the binding energy curve of the 

energetically least favorable A-stacked graphene/h-BN junction. As a consequence, for the heterojunction 

we observe a somewhat larger deviation of the ILP results from the reference sliding energy potential 

compared to that obtained in the homogeneous cases (see Figure S4 and Figure S5). In Table S2 we present 

a second set of ILP parameters that was obtained excluding the A-stacked graphene/h-BN binding energy 

curve from the training set, which improves the agreement with the reference DFT data. Specifically, for 

commensurate heterojunctions we suggest using Table S2 parameters when calculating tribological 

properties at the equilibrium interlayer distance, whereas Table S1 parameters should be used for 
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calculations in the sub-equilibrium regime. For incommensurate graphene/h-BN heterojunctions the two 

parameter sets provide similar results at equilibrium interlayer distance (see Figure S7) and can be both 

used.  

The corresponding two sets of refined KC potential parameters without and with the taper function are 

given in Table S3 and Table S4, respectively. 

 

Table S3: List of KC parameter values for graphene-based systems (original KC, without taper function). 

The training set includes all the binding energy curves of graphene-based systems and the sliding potential 

surface of periodic bilayer graphene. 
 

z0,ij (Å) C0,ij (meV) C2,ij (meV) C4,ij (meV) Cij (meV) δij (Å) λij (Å-1) Aij (meV) 

C-C 3.3288 21.8472 12.0602 4.7111 6.6789E-04 0.77181 3.1439 12.6603 

C-H 3.1565 37.4005 8.3911E-03 55.0618 5.18E-05 0.44373 2.5088 11.4791 

H-H 2.2188 4.53E-05 4.87E-05 2.02774 1.19395 0.89685 0.238105 9.22E-05 

 

Table S4: List of KC parameter values for graphene-based systems (modified KC, with taper function). 

The training set includes all the binding energy curves of graphene-based systems and the sliding potential 

surface of periodic bilayer graphene. A value of 𝑅𝑅cut = 16 Å is used throughout. 

 
z0,ij (Å) C0,ij (meV) C2,ij (meV) C4,ij (meV) Cij (meV) δij (Å) λij (Å-1) Aij (meV) 

C-C 3.4161 20.0216 10.90556 4.27566 1.0011E-02 0.84471 2.9361 14.3133 

C-H 2.8491 72.5572 1.01642E-02 65.9233 8.79625E-05 0.33492 3.0403 14.7533 

H-H 2.1875 3.9158E-05 5.0896E-05 3.6658 1.5374 0.96336 0.42499 1.5707E-04 
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2. Implementation of the ILP and KC Potentials within the LAMMPS Package and Benchmark Tests 

We have implemented the ILP and KC potential within the LAMMPS package for molecular dynamics 

simulations (Full details regarding the implementation are given in 

https://lammps.sandia.gov/doc/pair_ilp_graphene_hbn.html and 

https://lammps.sandia.gov/doc/pair_kolmogorov_crespi_full.html).13 In the next sections, we report the 

results of a set of benchmark calculations used to check the agreement between our implementation of the 

ILP and KC potential and the reference DFT data. 

 

2.1 Binding Energy Curves 

Figure S1 presents the binding energy curves calculated for the laterally periodic bilayer structures, using 

the two sets of parameters reported in Table S1 and Table S2. The refined parameters proposed herein 

provide a satisfactory agreement with the reference binding energy curve within the long-range, near-

equilibrium, and sub-equilibrium interlayer separation regimes. This improves upon our previous 

parameterizations, which shows large deviations in the sub-equilibrium region.1, 2 However, we note that 

the reliability of the reference DFT calculations in the sub-equilibrium region, which is relevant for high 

pressure and tribological calculations, remains unclear. Hence, our fitting procedure mainly demonstrates 

the ability to obtain good agreement with reference data across the entire interlayer separation range. 

Nevertheless, in order to obtain reliable sub-equilibrium ILP results accurate reference data for this region 

should be provided. 

An improved agreement with the reference data is also found for the finite homogenous (Figure S2) and 

heterogeneous (Figure S3) dimers, with the exception of Borazine. This is due to the weighting technique 

adopted during the fitting procedure, which gives less importance to the smaller systems (see Section 1). 

 

https://lammps.sandia.gov/doc/pair_ilp_graphene_hbn.html
https://lammps.sandia.gov/doc/pair_kolmogorov_crespi_full.html
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Figure S1: Binding energy curves of the laterally periodic bilayer structures of (a) graphene/graphene, (b) 
h-BN/h-BN, (c),(e) C-stack graphene/h-BN, (d),(f) A-stack graphene/h-BN. The results presented in panels 
(c) and (d) are calculated with the first set parameters (Table S1) and those presented in panels (e) and (f) 
are calculated with the second set parameters (Table S2). The reported energies are measured relative to 
the infinitely separated bilayer value and are normalized by the total number of atoms per unit-cell. The 
insets provide a zoom-in on the equilibrium interlayer separation region. 
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Figure S2: Binding energy curves calculated for the finite homogenous dimers of (a) Borazine, (b) 
Borazine/B12N12H12, (c) B12N12H12, (d) Benzene, (e) Benzene/Coronene, and (f) Coronene. The reported 
energies are measured relative to the infinitely separated dimer value and are normalized by the total 
number of atoms per unit-cell. The insets provide a zoom-in on the equilibrium interlayer separation region. 
Here, the parameters presented in Table S1 are used. Similar results are obtained when using the 
parameters of Table S2. 

 
Figure S3: Binding energy curves calculated for the finite heterogeneous dimers of (a) Benzene/Borazine, 
(b) Benzene/ B12N12H12, (c) Borazine/Coronene, and (d) Coronene/B12N12H12. The reported energies are 
measured relative to the infinitely separated dimer value and are normalized by the total number of atoms 
per unit-cell. The insets provide a zoom-in on the equilibrium interlayer separation region. Here, the 
parameters presented in Table S1 are used. Similar results are obtained when using the parameters of 
Table S2. 
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2.2 Sliding Energy Surfaces 

A major advantage of the anisotropic ILP over isotropic pairwise potentials, such as Lennard-Jones and 

Morse potentials, is its ability to simultaneously capture both the interlayer binding and sliding energy 

surfaces of layered materials junctions.1-4  

 

 
Figure S4: Sliding energy surfaces of the various periodic structures considered. The first and second rows 
present the sliding energy surface of graphene/graphene, h-BN/h-BN and graphene/h-BN bilayers 
calculated using dispersion augmented DFT and the LAMMPS implementation of the refined ILP, 
respectively. The third row presents their differences. The parameters of Table S1 are used in the ILP 
calculations. 

 

This is demonstrated in Figure S4, where the ILP sliding energy surfaces obtained using the parameters of 

Table S1 for all the periodic structures are compared to the reference DFT data. The first and second rows 

in Figure S4 present the sliding energy surfaces of graphene/graphene, h-BN/h-BN and graphene/h-BN 

calculated using DFT and LAMMPS, respectively. The differences between the ILP and reference sliding 

data are presented in the third row of Figure S4. The largest deviation of ~1.5 meV/atom occurs for the 

heterogeneous graphene/h-BN junction. This deviation can be further reduced by using the parameters of 

Table S2 leading to a maximal deviation of ~0.6 meV/atom for the graphene/h-BN heterojunction as shown 

in Figure S5. 
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Figure S5: Sliding energy surfaces of the various periodic structures considered. The first and second rows 
present the sliding energy surface of graphene/graphene, h-BN/h-BN and graphene/h-BN bilayers 
calculated using dispersion augmented DFT and the LAMMPS implementation of the refined ILP, 
respectively. The third row presents their differences. The parameters of Table S2 are used in the ILP 
calculations. 

 

2.3  Binding Energy Curves and Sliding Energy Surfaces Obtained Using the KC Potential 

Figure S6 illustrates the refined parameters (Table S3) of original KC potential (without taper function) 

benchmark tests for homogenous graphene bilayer. The refined parameters proposed herein provide a 

satisfactory agreement with the reference binding energy curve within the long-range, near-equilibrium, 

and sub-equilibrium interlayer separation regimes. This improves upon the original parameterizations for 

KC potential,4 which shows larger deviations near equilibrium. Figure S6 e-f presents the differences of the 

sliding energy surfaces of bilayer graphene, between the original and refined KC potential 

parameterizations and the DFT reference data, respectively. The corresponding largest absolute deviations 

are ~0.6 and ~0.06 meV/atom. The refined parameters (Table S4) of modified KC potential (with taper 

function) give very similar behavior. To avoid unnecessary repetition, we do not show the corresponding 

plots here. 
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Figure S6: Benchmark tests for the KC potential. Binding energy curves calculated for the finite 
homogenous dimers of (a) Benzene, (b) Benzene/Coronene, (c) Coronene and for (d) periodic bilayer 
graphene. Energies are reported relative to the infinitely separated interface value and are normalized by 
the total number of atoms per unit-cell. The insets provide a zoom-in on the equilibrium interlayer 
separation region. (e) bilayer graphene sliding energy surface difference between the LAMMPS 
implementation of the original KC potential and dispersion augmented DFT, (f) same as (e) but for refined 
KC potential. The parameters appearing in Table S3 are used herein. 

 

3. ILP Parameters Sensitivity Test 

In order to check the sensitivity of the friction force results reported in the main text to the choice of ILP 

parameter set, we compare in Figure S7 the length dependence of static and kinetic friction forces of the 

GNR/h-BN heterojunctions for the two sets of parameters presented in Table S1 (full red circles) and Table 

S2 (open blue squares). The two sets produce very similar results, indicating that under the simulations 

conditions used herein the friction forces are relatively insensitive to the corresponding differences between 

the interaction potentials. 
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Figure S7: Sensitivity of the friction forces of a GNR/h-BN heterojunction towards the choice of ILP 
parameter set. Shown is the length dependence of the (a) static and (b) kinetic friction forces of the GNR 
calculated using the parameters presented in Table S1 (full red circles) and in Table S2 (open blue squares). 
The static friction force was evaluated from the maxima of the friction force traces. The kinetic friction 

force was calculated as 〈𝐹𝐹𝐾𝐾〉 = 〈𝐾𝐾dr�𝑉𝑉dr𝑡𝑡 − 𝑋𝑋edge�〉, where 〈∙〉 denotes a steady-state time average. The 

statistical errors have been estimated using ten different trajectories, each averaged over a time interval of 
1 ns. 

 

4. Intra-layer Potential Sensitivity Test 

In order to check the sensitivity of the friction force results reported in the main text to the choice of intra-

layer potential we compare in Figure S8 the length dependence of static and kinetic friction forces of the 

GNR/h-BN heterojunctions obtained using the AIREBO14 and the REBO15 force-fields for graphene. Since 

the equilibrium intralayer C-C distances obtained with the AIREBO and REBO potential differ (1.3978 and 

1.42 Å, respectively), we adjust the lattice constant of the rigid h-BN substrate accordingly to get the same 

lattice mismatch of 1.8 %. The two intra-layer terms produce very similar results indicating that under the 

simulation conditions used herein the friction forces are relatively insensitive to the choice of intra-layer 

potential. We note that in all simulations presented in the main text, the AIREBO potential has been used. 
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Figure S8: Sensitivity of the friction forces of a GNR/h-BN heterojunction towards the choice of intra-layer 
potential. Shown is the length dependence of the (a) static and (b) kinetic friction forces calculated using 
the REBO (full red circles) and AIREBO (open blue squares) potentials. The statistical errors have been 
estimated as in Figure S7. 

 

 

5. Damping Coefficient Sensitivity Test 

In order to check the sensitivity of the friction force results that reported in the main text to the choice of 

damping coefficients (see Eq. 1 of the main text), we compare in Figure S9 the length dependence of static 

and kinetic friction forces of the GNR/graphene homogenous junctions obtained using three different values 

of 𝜂𝜂0  spanning two orders of magnitude around the value adopted in the main text, 𝜂𝜂0 =

0.1, 1.0, 10.0 ps−1. While in general we obtained similar qualitative trends, a somewhat increased friction 

is observed for the highest value considered. This is due to the increasing contribution of the viscous-like 

friction term of Eq. 1 of the main text. Noting that in typical experiments the pulling velocities are several 

orders of magnitude lower than those that can be practically simulated, the contribution of viscous-like 

friction in the simulation is irrelevant for the interpretation of experimental data. 
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Figure S9: Sensitivity of the friction forces of a GNR/graphene homogenous junction towards the choice 
of damping coefficients. Shown is the length dependence of the (a) static and (b) kinetic friction forces 
calculated using three values of the damping coefficients: 𝜂𝜂0 = 0.1 𝑝𝑝𝑠𝑠−1  (full blue squares) 𝜂𝜂0 =
1.0 𝑝𝑝𝑠𝑠−1 (full red circles), and 𝜂𝜂0 = 10.0 𝑝𝑝𝑠𝑠−1 (full black triangles). The statistical errors have been 
estimated as in Figure S7. 

 

6. Propagation Time-Step Sensitivity Test 

In order to check the sensitivity of the friction force results reported in the main text to the choice of 

propagation time-step we compare in Figure S10 the friction force traces of a 4.5 nm GNR sliding atop a 

graphene substrate obtained using a time-step of 1 fs (as in the main text) and 0.25 fs. We find that, despite 

the presence of light hydrogen atoms, a time-step of 1 fs is sufficient to provide converged results.16 

 

 
Figure S10: Sensitivity of the friction force traces of a 4.5 nm GNR sliding atop a graphene substrate 
towards the choice of propagation time-step. Shown is (a) the full steady-state friction force trace and (b) 
a zoom-in on the peak region obtained using a time step of 1 fs (open black squares) and 0.25 fs (full red 
circles). 
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7. Simulation Protocol at Finite Temperature 

The simulations at room temperature (300 K) were performed using a Langevin thermostat applied to all 

slider atoms. The equation of motion is as follows: 

𝑚𝑚𝑖𝑖�̈�𝒓𝑖𝑖 = −𝛁𝛁𝑖𝑖�𝑉𝑉inter + 𝑉𝑉intra� − ∑ 𝜂𝜂𝛼𝛼(𝑧𝑧𝑖𝑖)𝑚𝑚𝑖𝑖�̇�𝒓𝑖𝑖,𝛼𝛼𝛼𝛼=𝑥𝑥,𝑦𝑦,𝑧𝑧 + 𝐾𝐾∥(𝒓𝒓𝑖𝑖 − 𝒓𝒓stage)𝛿𝛿𝑖𝑖,𝑖𝑖edge + 𝜉𝜉𝛼𝛼𝑖𝑖 (𝑡𝑡),   (S9) 

 where 𝑚𝑚𝑖𝑖 is the mass of atom 𝑖𝑖, 𝒓𝒓𝑖𝑖 is its position, and 𝑉𝑉inter and 𝑉𝑉intra are the interlayer and intra-

layer interaction potentials, respectively. The second term in Eq. S9 represents viscous damping applied in 

all directions 𝛼𝛼 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 to all GNR atoms, the third term is the driving spring force, which is applied only 

to the three rightmost edge atoms in the lateral directions, and the last term is a random force acting on the 

ith particle in all directions (𝛼𝛼 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧), satisfying the fluctuation-dissipation theorem： 

〈𝜉𝜉𝛼𝛼𝑖𝑖 (𝑡𝑡)𝜉𝜉𝛽𝛽
𝑖𝑖(𝑡𝑡′)〉 = 2𝜂𝜂𝛼𝛼𝑚𝑚𝑖𝑖𝑘𝑘𝐵𝐵𝑇𝑇𝛿𝛿(𝑡𝑡 − 𝑡𝑡′)𝛿𝛿𝛼𝛼𝛽𝛽𝛿𝛿𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑗𝑗 = 1,2,⋯𝑁𝑁;𝛼𝛼,𝛽𝛽 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧      (S10) 

The following protocol was adopted in the simulations at finite temperature. First, the system was 

equilibrated at 300 K for 400 ps with a time step of 0.5 fs, in absence of the pulling apparatus. After 

equilibration, the friction simulations were carried out adopting the same pulling velocity and springs’ 

constant used in the zero temperature simulations (see main text).  

 

8. Theoretical Estimation of the Characteristic Stress Decay Length 

As mentioned in the main text, for commensurate contacting surfaces such as the aligned GNR/graphene 

interface the shear-induced stress distribution across the GNR can be described by a simplified one-

dimensional model.17 The characteristic stress decay length predicted by this model is given by 𝐿𝐿c =

𝐿𝐿GNR�𝐾𝐾GNR/𝐾𝐾Interface, where 𝐿𝐿GNR is the length of the GNR, 𝐾𝐾Interface is the interfacial shear stiffness 

between the GNR and the substrate and 𝐾𝐾GNR = 𝐸𝐸ℎ𝑏𝑏/𝐿𝐿GNR is the in-plane stiffness of the GNR. Here, E, 

h, and b are the Young’s modulus, the thickness, and width of the GNR, respectively. 

The interfacial shear stiffness, 𝐾𝐾Interface, has been evaluated by shifting the fully relaxed GNR rigidly over 

the graphene surface along the aligned sliding direction and fitting the deepest well obtained along the 

sliding potential energy curve to a parabola. As expected for commensurate contacts, this stiffness grows 

linearly with the GNR length (see Figure S11a). To evaluate the GNR's in-plane stiffness we adopted the 
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values 𝐸𝐸ℎ = 26.6 eV/Å2 and b = 0.726 nm.18 A fit of the data reported in Figure S11a (see red line) 

yielded 𝐾𝐾Interface/𝐿𝐿GNR = 87.66 ± 0.21 eV/nm3, giving 𝐿𝐿𝑐𝑐 ≈ 4.6948 ± 0.0056 nm, somewhat larger 

than that obtained from fitting the MD simulation results (4.14 nm). The main reason for this discrepancy 

is that the theoretical estimation is based on a one-dimensional model, while the MD simulations allow for 

atomic motions in all directions. To prove this point, we performed additional simulation while freezing the 

atomic degrees of freedom perpendicular to the pulling direction. The resulting GNR stress-distribution 

color maps of the stress profile before the first slip event are illustrated in Figure S11b and c. By fitting the 

stress profile with an exponential function, we obtained a characteristic stress decay length of 4.66 nm, in 

better agreement with the value predicted by the one-dimensional theory. 

 

 
Figure S11: Estimation of the characteristic stress decay length. (a) The interfacial shear stiffness for the 
aligned homogeneous GNR/graphene junction as a function of the GNR length. The open black squares 
are simulation results and the red line is a linear fit. The sudden jumps in the simulation results are due to 
edge effects corresponding to a change in the local stacking of the leading edge atoms of the relaxed GNR 
relative to the graphene substrate. (b) Color maps showing the stress distribution along the GNR as a 
function of time for the aligned GNR/graphene junction. Here, all atoms within the GNR are constrained 
to move only along the pulling direction. (c) Open red circles show a cross section of the color map 
appearing in panel (b) at the onset of global sliding (dashed black line in panel (b)). The blue curve in 
panel (c) is an exponential fit with a characteristic stress decay length of 4.66 nm.  

 

9. Stacking Mode of the Leading GNR Edge Atoms for Heterogeneous GNR/h-BN Junctions 

To explain the sharp jumps between two distinct values of static friction observed in GNR/h-BN 

heterojunctions with increasing ribbon length (Figure 2b in the main text), we show in Figure S12 the 

stacking mode of the leading edge of the ribbon for LGNR=37.76 nm and LGNR=48.08 nm, respectively, at 

the onset of a sliding event. We find that when the GNR exhibits even (odd) number of buckles, its leading 
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edge atoms (marked in red) are positioned in an energetically (un)favorable stacking mode. 

 

 
Figure S12: Stacking modes of the GNR leading edge atoms atop an h-BN substrate obtained for a ribbon 
length of (a) 37.76 nm and (b) 48.08 nm at the onset of a sliding event. Mauve, blue, yellow, and grey 
spheres represent boron, nitrogen, carbon, and hydrogen atoms, respectively. The leading edge atoms of 
the GNR are marked in red. 

 

10. Evolution of Potential Energy During Sliding at 45 degrees 

To explain the origin of the rotation of GNRs from a pulling direction of 45 degrees (with respect to the 

armchair axis) to 60 degrees, we calculated the potential energy as a function of sliding distance during the 

motion of 4.5 and 27.5 nm long GNRs on graphene and h-BN (see Figure S13). Panels a-d of Figure S13 

clearly demonstrate that upon rotation from the pulling direction of 45 degrees to a 60 degrees orientation 

the potential energy experienced by the GNR drops. To further elucidate this point, we carried out additional 

geometry optimizations for the 27.5 nm long GNR deposited on graphene or h-BN at different misaligned 

rotation angles relative to the substrate. Panels e-f of Figure S13 show that both homogenous and 

heterogeneous junctions, have lower energy at the aligned interfaces, corresponding to multiples of 60 

degrees. We note that a similar effect has been previously demonstrated to be at the origin of the angular 

reorientation of graphene nano-flakes sliding over graphite.19, 20 
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Figure S13. Frictional motion of GNRs pulled along a direction of 45°with respect to the armchair 
direction of graphene ((a) and (c)) and h-BN ((b) and (d)) substrates. Both the total potential energy (left 
axis, red) and the average angle (right axis, blue) are presented as a function of sliding distance for 
𝐿𝐿𝐺𝐺𝑁𝑁𝑅𝑅 = 4.5 𝑛𝑛𝑚𝑚 (panels (a) and (b)) and 27.5 𝑛𝑛𝑚𝑚 (panels (c) and (d)). The total potential energy (left 
axis) and interfacial energy (right axis) of the longer GNR on graphene and h-BN with different rotation 
angles are presented in panels (e) and (f), respectively. 
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