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ABSTRACT: We present insights into the lead−molecule
coupling scheme in molecular electronics junctions. Using a
“site-to-state” transformation that provides direct access to the
coupling matrix elements between the molecular states and the
eigenstate manifold of each lead, we find coupling bands whose
character depends on the geometry and dimensionality of the
lead. We use a standard tight-binding model to elucidate the
origin of the coupling bands and explain their nature via simple
“particle-in-a-box” type considerations. We further show that
these coupling bands can shed light on the charge transport
behavior of the junction. The picture presented in this study is
not limited to the case of molecular electronics junctions and is
relevant to any scenario where a finite molecular entity is
coupled to a (semi)infinite system.

■ INTRODUCTION

Interfaces between finite molecular entities and extended
surfaces are ubiquitous in the field of surface science. Such
junctions are of key importance for several new technologies
based on organic−inorganic interfaces including fuel cells,1,2

photovoltaic cells,3−5 and molecular electronics.6−9 Here, the
nature of the interaction between the molecule and the surface
plays an important role in determining the functionality,
efficiency, and physical characteristics of the device.10−14

In molecular electronics, typically a single molecule (or a
small group of ones) bridges the gap between two semi-infinite
metallic leads. Hence, the function of the whole device is
strongly affected by the exact details of the molecule−lead
coupling scheme. Indeed, in recent years it has been shown that
the interface between the molecule and the lead is at least as
important in determining the transport characteristics of the
junction as the electronic properties of the molecular bridge
itself.13−21 Therefore, gaining understanding of the electronic
coupling between the molecular core and the contacting leads
in such junctions is of fundamental importance for deciphering
their transport characteristics and designing structures with
desired functionality.
When modeling molecular electronics junctions,21−23 usually

one of the two following equivalent perspectives of the system
is adopted: either an atomistic24−26 or an energy27,28

representation. In the atomistic representation, the real-space
structure of the junction is explicitly considered and the
position and identity of all atoms in the model junction
uniquely define the corresponding Hamiltonian. This allows
one to explore the effects of specific chemical modifications and

junction geometry on the transport characteristics and on the
function of the suggested device. Nevertheless, if one wishes to
explore the nature of the coupling between the eigenstates of
the various sections of the system, an energy representation is
required. In the energy representation, the junction is formally
divided into three sections including the left and right lead
regions and the molecule, each region being represented by its
corresponding manifold of eigenstates. The states of the
molecule are directly coupled to each of the two-lead manifolds,
and the interlead couplings are usually neglected. Here, the
exact structure and chemical nature of the junction are typically
taken into account only implicitly, via a phenomenological
model chosen to represent the various energy manifolds and
the corresponding coupling matrix elements in the model
Hamiltonian.
Because the atomistic and energy perspectives are, in a sense,

complementary, they do not provide an obvious route for
understanding how chemical interactions translate to coupling
between molecular and lead states. Recently, we demonstrated
how a simple unitary transformation that we denoted as the
“site-to-state” transformation can interconnect these two views,
making them rigorously equivalent.29 Here, we use this
transformation in order to gain fundamental insights into the
molecule−lead coupling scheme in single-molecule junctions
described by an atomistic Hamiltonian. Specifically, we observe
the appearance of coupling bands and study the effect of
electrode dimensionality and geometry on their nature.
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Furthermore, we demonstrate how this concept can shed light
on the charge transport behavior of the junction and provide
intuition as to the physical processes underlying electron
dynamics in open quantum systems.

■ MODEL

We choose a simple tight-binding (TB) Hamiltonian,
represented in real space. This allows us to focus on the
basic concepts while avoiding complications arising from more
involved electronic structure methods. It should be emphasized,
however, that the analysis is, in principle, valid for any single-
particle Hamiltonian description of the system. The junction is
formally divided into the left (L) and right (R) lead sections
and the molecule (M) region (see Figure 1) such that the
Hamiltonian matrix representation of the system is of the
following form:

̂ =

̂ ̂ ̂

̂ ̂ ̂

̂ ̂ ̂

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
H

H V

V H V

V H

0

0

L L M

M L M M R

R M R

,

, ,

, (1)

Here, ĤI is the Hamiltonian matrix block of the Ith section of
the system and V̂I,J represents the interactions between sections
I and J, where I, J = (L, M, R). In the tight-binding model the
interactions are short-ranged and therefore V̂I,J is a sparse
matrix, such that we can safely neglect the direct coupling
between the leads: V̂L,R = V̂R,L = 0.
In order to study the molecule−lead coupling scheme, we

transform the real-space site based TB Hamiltonian of eq 1 to
the energy representation, in the basis of the eigenstates of the
isolated system sections (see Figure 1). To this end, we utilize a
site-to-state transformation,29 where one first separately obtains
the diagonal representations of the Hamiltonian blocks

corresponding to the individual sections of the system ̃Ĥ I =
ÛI

†ĤIÛI and their related unitary transformation matrices ÛI.
This is followed by the construction of a block-diagonal global
unitary transformation matrix of the form
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that transforms the full real-space Hamiltonian matrix
representation of eq 1 in the following manner:
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Here, ̃ĤL, ̃ĤR, and ̃ĤM are diagonal square matrices containing
the eigenenergies of the isolated left and right leads and

molecular sections on their diagonals, respectively, and ̃ ̂V I,J 
ÛI

†V̂I,JÛJ contains the coupling matrix elements between the
eigenstate manifolds of sections I ≠ J. Note that the fact that we
have neglected the direct coupling between the leads in the
real-space representation is reflected in the energy representa-
tion, as well.
We seek the coupling matrix elements between the bridge

molecular orbitals (MOs) and the states of the finite-lead
models. These elements are stored, by definition, in the

columns (or rows) of the off-diagonal blocks ̃ ̂V L,M and ̃ ̂V R,M of
the transformed Hamiltonian matrix. As presented in Figure 2,

the matrix ̃ ̂V L,M is of the size of NL × NM, where NI is the
number of states in section I, and each of the NM columns
represents the coupling of a specific state of the molecule to the
left lead state manifold. For a nearest-neighbor tight-binding
model simple expressions can be obtained for these interstate
coupling terms. To this end, we realize that in the site
representation the coupling matrix V̂L,M has only one
nonvanishing element, being the hopping term between the

Figure 1. Schematic representation of the site-to-state transformation of a two-lead junction model. Left: Real-space representation of a system with
one-dimensional (upper left panel), two-dimensional (middle left panel), and three-dimensional (lower left panel) lead models. Yellow, red, and blue
spheres represent sites belonging to the lead, molecule, and coupling regions, respectively. Right: Scheme of the state representation of the junction,
where the manifold of eigenstates of the molecule couples separately to the manifolds of eigenstates of the left and right leads. The dashed red lines
represent the coupling of the highest occupied molecular orbital of the molecule to the left lead state manifold.

Figure 2. Coupling matrix elements between the molecular bridge
MOs and the finite lead model states, as stored in the columns of the

off-diagonal block ̃ ̂V L,M of the transformed Hamiltonian matrix. Red
and green lines schematically represent the coupling matrix elements
of the highest occupied MO (HOMO) and lowest unoccupied MO
(LUMO) levels of a four-site “chain-bridge” molecule, respectively.
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molecule’s edge atom and the lead atom to which it is directly
coupled. We mark this term as βl,m, where l and m denote the
left lead and molecule coupled sites, respectively. Hence, the
coupling between state i of the left lead and state j of the
molecule is given by

β̂ = †V C C( ) ( )L M i j
L

i l l m m j
M

, , , , , (4)

where Cl,i
L is the weight (expansion coefficient) of the lead MO i

at the lead atomic site l and, similarly, Cm,j
M is the weight of the

molecule MO j at site m of the molecule. As can be seen, in this
simple case, the variation of the coupling between a given
molecular state and the various lead states depends solely on
the weight of the corresponding lead MOs at the coupling lead
site. Hence, these variations reflect an electronic property of the
lead. For more general Hamiltonian representations, such as
those obtained when using nonorthogonal basis set expansions,
the expression for the state couplings will be slightly more
involved, such that its dependence on the identity of the
molecule and lead states will be dictated by the nature of the
real-space coupling model.
Finally, it should be noted that the site-to-state trans-

formation used here is mathematically valid regardless of the
molecule−lead coupling strength. Nevertheless, the division of
the system into various sections is physically motivated only
when the different parts are sufficiently weakly coupled such
that each MO of the full system is mainly localized on one of
these sections. In this case, the basis of eigenstates of the
isolated system sections provides a suitable representation of
the problem.

■ RESULTS

Coupling Bands. Using the formalism described above, we
start by examining a one-dimensional (1D) two-lead junction

model. Here, the leads are represented by two finite atomic
chains bridged by a third finite atomic chain, representing the
molecule that is locally coupled to both leads (see inset of
Figure 3a). Following the construction of the real-space
Hamiltonian matrix representation (with the TB parameters
given in the caption of Figure 3) we perform the site-to-state
transformation of eq 3.
In Figure 3a, we present the square absolute value of the

coupling matrix elements, given by eq 4, as a function of the
corresponding lead-state eigenenergy for the case where the
index j denotes the highest occupied MO (HOMO) of the
molecular bridge and the index i runs over the manifold of
states of the left lead (see red lines in the right panel of Figure
1). As can be seen, a clear “coupling band” is formed, with a
peak shape centered around the Fermi energy, where the
coupling is strongest. We note that when a single atomic site
locally interacts with a one-dimensional TB chain consisting of
N sites, an analytical expression for the coupling band is
obtained within the Anderson−Newns model.30 In this model,
the coupling between the sole atomic state |a⟩ and chain state
|k⟩ is given by Va,k = β(2/(N+1))1/2 sin(πk/(N + 1)),31 where β
is the hopping integral between the atomic site and the edge
chain site and the index k runs over all chain states, k = 1, 2, ...,
N. When the bridge is longer than a single site, as in Figure 3a,
a slightly modified yet very similar band forms.
In order to understand the origin of this coupling band, we

recall that according to eq 4 within the TB model the coupling
matrix elements between the bridge MOs and the lead states
are proportional to the weight of the isolated lead single-
particle wave functions at the edge site directly coupled to the
bridge (marked in blue in the insets of Figure 3). The latter,
which are given by the absolute square values of the isolated
lead MO expansion coefficients at the coupling lead site, are
plotted as plus marks in Figure 3. Then, a simple scaling by

Figure 3. Coupling bands and coupling atom molecular orbital coefficients of a one-dimensional (a) and three two-dimensional (b−d) lead model
systems. The absolute square values of the coupling matrix elements between the highest occupied MO of the bridge and the entire manifold of
states of the left lead are presented in full lines. The Fermi energy of the lead (EF) is chosen as the origin of the energy axis. The plus marks represent
the weight (absolute square value of the MO coefficient) of the various lead MOs on the edge lead atom directly coupled to the bridge. The coupling
values are given by the left y-axis, and the lead MO weights are given by the right y-axis. In all calculations the on-site energies are taken to be αL = αM
= αR = 0 eV, the intra-lead and intra-molecule hopping integrals used are βL = βM = βR = −0.2 eV, and the lead−molecule hopping terms are βL,M =
βM,R = −0.04 eV. For the 1D system the leads are represented by NL = NR = 150 atom chains, and for the 2D lead models each lead consists of five
rows of 150 atoms each, such that NL = NR = 5 × 150. In all cases, the molecular bridge consists of NM = 4 sites. The various bands are marked with
different colors that represent the perpendicular quantum number of the corresponding lead states ny (see text for details).
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|βx,m(Cm,j)M|
2 directly relates the two diagrams. From this it

becomes evident that the appearance of the coupling band in
this simple TB model can be interpreted as an explicit property
of the corresponding lead, as mentioned earlier. Furthermore,
only MOs having a significant weight on the lead site that
couples to the bridge will have a direct effect on the lifetime of
the bridge states.
Next, we consider two-dimensional (2D) lead models. In

Figure 3b, the coupling scheme of the bridge HOMO and the
left lead eigenstate manifold is plotted for the case where the
bridge is located at the center of a five-row finite-lead model. As
can be seen, the coupling matrix elements now form three
nonvanishing coupling bands, one centered on the Fermi
energy and the other two appearing at higher and lower
energies, respectively. When the bridge is shifted away from the
lead center (Figure 3c), four nonvanishing bands appear, and
when the lead is positioned near the edge of the lead model, a
fifth nonvanishing coupling band emerges. As for the 1D case,
and in agreement with eq 4, regardless of the junction geometry
all coupling bands are found to be directly proportional to the
weight of the lead MOs on the site directly coupled to the
bridge (plus marks in Figure 3).
The appearance of several coupling bands for the 2D leads

setup can be rationalized via simple particle-in-a-box arguments.
The TB MOs of the isolated 2D lead models follow the
symmetry of the wave functions of a single-particle confined to
a 2D box:32 ψnx,ny(x,y) = (2/Lx)

1/2(2/Ly)
1/2sin(nxπx/Lx)sin-

(nyπy/Ly). Here, Li = (Ni + 1)ai are the dimensions of the box
along the junction’s main axis (i = x) and perpendicular to it (i

= y), Ni and ai are the corresponding number of lead sites and
intersite distances, respectively, and nx, ny are the two quantum
numbers. Within the TB model, the quantum numbers can
obtain the values nx = 1, 2, ..., Nx and ny = 1, 2, ..., Ny. For a fixed
value of ny, the weight of the various axial MOs at the lead edge
atoms facing the bridge form a band similar to that obtained in
the 1D lead case (Figure 3a). The different bands, then,
correspond to different quantum numbers ny. Because our 2D
lead model is constructed of Ny = 5 rows, we expect to find five
coupling bands in this case. Nevertheless, because the
perpendicular component of the wave function, sin(nyπy/Ly),
has nodes at the center of the lead cross-section for ny = 2, 4,
the corresponding two bands vanish, as evident in Figure 3b.33

When the bridge is connected to the second lead row (Figure
3c), ny = 3 produces a node at this position in the perpendicular
wave function and the corresponding coupling band vanishes.
For the case depicted in Figure 3d, all five bands appear and
their relative height is determined by the weight of the
perpendicular wave component on the corresponding lead-
bridge coupling site.
We can therefore classify the various coupling bands

according to the corresponding perpendicular quantum
number. The exact expression for the eigenenergies of the
different 2D lead MOs is given by the following tight-binding
expression:32,34 En = α + 2β[cos(πnx/(Nx+1)) + cos(πny/
(Ny+1))] where α is the on-site energy and β the nearest-
neighbors hopping integral, both assumed to be uniform within
the lead model. Using this expression, we associate each point
in the different diagrams of Figure 3 with the corresponding

Figure 4. Coupling bands of a TB molecular junction consisting of two 3D leads. The two panels present the couplings between the HOMO state of
the molecular bridge and the left lead state manifold for two bridge configurations (see insets). The lead dimensions are Nx × Ny × Nz = 50 × 3 ×
4,35 and the bridge consists of NM = 4 sites. The on-site energies are taken as αL = αM = αR = 0 eV, and the intra-lead, intramolecule, and lead−
molecule hopping integrals used are βL = βR = −0.2 eV, βM = −0.2 eV, and βL,M = βM,R = −0.04 eV, respectively. The bands are classified according to
the set of perpendicular quantum numbers (ny,nz), with appropriately assigned colors.

Figure 5. Coupling schemes of a tip-shaped junction model. (a) Coupling scheme of the HOMO level of the four-site tight-binding chain bridge and
the manifold of states of a tip-like five-row 2D lead model with 150, 154, and 158 sites in the external, intermediate, and central lead rows,
respectively. (b) Coupling scheme of the HOMO level of the “extended molecule”, schematically marked by the shaded rectangle, and the manifold
of states of the rectangular lead. Here, the extended molecule consists of the four molecular sites and the two adjacent lead sections each of 50, 54,
and 58 sites in the external, intermediate, and central lead rows, respectively, and the rectangular leads have five rows of 150 atoms each such that NL
= NR = 5 × 150. All tight-binding on-site energies are null, the intramolecular and intralead hopping integrals are −0.2 eV, and the lead−molecule
hopping integral is −0.04 eV.
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lead state and assign a color to it according to the value of its
perpendicular quantum number. This clearly demonstrates that
indeed each coupling band corresponds to a different value of
ny.
The same type of analysis can be applied to the case of three-

dimensional (3D) leads. In Figure 4, we present the coupling
bands for a junction consisting of 3D lead models with two
bridge configurations (see insets). For clarity of presentation,
the corresponding MO weights are omitted. Similar to the case
of lower dimensional leads, the coupling bands are found to be
proportional to the weights of the lead MOs on the coupling
lead site and can be classified according to the set of
perpendicular quantum numbers (ny,nz), using the correspond-
ing energy expression En = α + 2β[cos(πnx/(Nx + 1)) +
cos(πny/(Ny + 1)) + cos(πnz/(Nz + 1))]. The total number of
coupling bands in this case is Ny·Nz which, for our lead model,
amounts to 12. The relative peak intensities of the coupling
bands depend on the location of the bridge with respect to the
lead surface, with vanishing bands resulting from nodes of the
perpendicular lead MOs (see left panel of Figure 4).
More Complex Molecule−Lead Interfaces. In the

systems discussed above we have used simple cubic lead
models that produced distinct coupling bands, which could be
readily associated with the different quantum numbers
characterizing the various lead states. Because the structure of
these bands was shown to be a property of the leads within the
TB model, one may expect a richer behavior if the molecule−
lead interface is more complex. To demonstrate this, we present
in Figure 5a the coupling scheme between the HOMO level of
a four-site tight-binding chain bridge and the manifold of states
of a tip-like 2D lead model. In this geometry, it is much more
difficult to assign different coupling bands to simple quantum
numbers of various subgroups of lead states. Nevertheless, the
appearance of coupling bands is still noticeable.
We note that for the same junction one could, in principle,

define an “extended molecule”, which includes the molecule
augmented by its adjacent lead sections (see the shaded
rectangle in the inset of Figure 5b), and study the coupling
between its states and the manifold of cubic lead states. Due to
the resemblance of the lead structures, this results in a simple
coupling band scheme (see Figure 5b) similar to that shown in
Figure 3. However, while mathematically valid, this would not
be useful for studying the effects of the molecule−lead coupling
scheme on the transport properties of the junction.
Furthermore, as stated earlier, since the virtual interface in
this case separates two strongly coupled sections, the physical
relevance of this representation is limited. Hence, when
performing the virtual division of the system into sections,
the location of the various interfaces should vary according to
the specific application. In transport calculations it is important
to minimize the effect of the scattering region on the electronic
properties of the semi-infinite-lead models. Therefore, an
extended molecule approach is useful. However, when studying
the coupling scheme within the scattering region, the virtual
interface of interest should be positioned between the “bare”
molecule and the full lead model.
Relation to Electronic Transport. The coupling bands

discussed previously provide a different perspective to the
overall molecule−lead coupling scheme, which, in turn, is of
key importance (along with the electronic structure of the
bridge itself) in determining the electronic transport properties
of the junction. They may thus be used to investigate the effect
of junction chemistry, geometry, and dimensionality on the

transport characteristics of the system. Here, it is important to
consider the collective effect of the full coupling band. This is
because when using finite-lead models,24,36 the individual
coupling strength between a specific bridge state and one lead
level generally depends on the lead size.34 Specifically, the
normalization requirement of the isolated lead MOs dictates a
general reduction of its weight on the lead−bridge coupling site
with increasing lead size and hence a corresponding decrease in
the individual coupling strengths (see Figure 6). Naturally, this

is compensated for by the appearance of new lead states in the
coupling band, and hence the overall lead−molecule coupling is
expected to converge for sufficiently large finite-lead models.
To demonstrate this, we use the Fermi golden rule definition

of the effective coupling between any bridge state and the full
lead manifold of states as follows:37

∑ε π δ ε ε= | | −VZ ( ) 2 ( )L R n
q

n q
L R

n q
L R

/ ,
/ 2 /

(5)

Here, Vn,q
L/R are the coupling matrix elements between a bridge

state of energy εn and a state of energy εq
L/R of the left or right

lead, and the sum runs over all states in the relevant lead
manifold. We can then define the overall effective lead−
molecule coupling as the sum of all bridge−state couplings
relevant for transport, i.e., ZL/R = ∑n ZL/R(εn) where n is an
index for the pertinent bridge energy levels. As can be seen in
the inset of Figure 6, the calculated effective lead−molecule
coupling converges rapidly with the size of the lead model, such
that tripling the lead size from 50 to 150 sites results in
reduction of the individual coupling strengths by a factor of 3,

Figure 6. Coupling scheme of the HOMO level of a four-site tight-
binding chain bridge and the manifold of states of a one-dimensional
lead model. The black and red curves represent a system with lead size
of NL = NR = 50 and NL = NR = 150 atoms chains, respectively. In all
cases, the on-site energies are taken to be αL = αM = αR = 0 eV and the
intralead, intramolecule, and lead−molecule hopping integrals used are
βL = βR = −0.2 eV, βM = −0.2 eV, and βL,M = βM,R = −0.04 eV,
respectively. Inset: The overall lead−molecule effective coupling as a
function of the lead size, computed using eq 5 over the HOMO and
LUMO molecular states. Here, since the eigenvalue spectrum of the
finite-lead models is discrete, we broaden the δ functions appearing in
eq 5 by convolving them with a Gaussian of width 0.013 eV regardless
of the lead model size. This value corresponds to the typical eigenvalue
spacing near the Fermi energy of the 100-site lead model with the
same TB parameters and to the driving rate for which the Landauer
steady state current is recovered in the driven Liouville von Neumann
calculation (see eq 6) using 150-site lead models.
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and hence the overall lead−molecule effective coupling remains
unaffected.
We expect the steady-state current flowing through the

bridge to be proportional to its effective coupling to the leads.
To validate this, we examine the three system configurations
depicted in the insets of Figure 3b−d, consisting of 2D lead
structures bridged by an atomic chain. First, we calculate the
transport properties of these three junction configurations using
our recently suggested driven Liouville von Neumann
approach29 that was shown to accurately describe electron
dynamics in metal−molecule−metal junctions under the
influence of time-dependent driving forces.37 Here, the time-
dependent bond current between sites n and n + 1 is calculated
via In,n+1(t) = (2βe/ℏ) Im[ρn,n+1(t)], where e is the electron
charge, ℏ is the reduced Planck constant, β is the hopping
matrix element between the two sites, and ρn,n+1(t) is the
instantaneous off-diagonal element of the density matrix
representing the relevant site coherences.29,38 The dynamics
of the density matrix ρ̂(t) of the system, whose electronic
properties are given by the Hamiltonian Ĥ, is calculated via the
driven Liouville von Neumann equation:
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ρ ρ ρ ρ

̂ = −
ℏ

̂ ̂

− Γ

̂ − ̂ ̂ ̂

̂ ̂ ̂

̂ ̂ ̂ − ̂

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

t
t

i
H t

t t t

t t

t t t

d
d

( ) [ , ( )]

( )
1
2

( ) ( )

1
2

( ) 0
1
2

( )

( )
1
2

( ) ( )

L L L M L R

M L M R

R L R M R R

0
, ,

, ,

, ,
0

(6)

The first term on the right-hand side of eq 6 provides the
standard unitary dynamics whereas the second term introduces
source and sink terms that impose the appropriate boundary
conditions, effectively opening the finite closed model system.
The sink term consists of the various ρ̂i,j(t) density matrix
blocks corresponding to the left (L), molecule (M), and right
(R) sections of the system. The source term includes the target
density matrix diagonal blocks, ρ̂L/R

0 , encoding the equilibrium
Fermi−Dirac distribution with the corresponding chemical
potential and electronic temperature of each lead. The driving
rate, Γ, can be deduced from the typical time scale for electron
reflection from the boundaries of the finite model system and
fine-tuned to reproduce the Landauer steady-state current
values.29

In Figure 7, we present the time-dependent bond current at
the bridge center of the three junctions depicted in Figure 3b−
d. In all calculations we use a driving rate of Γ = 0.0075 fs−1

chosen to reproduce the Landauer steady-state currents for
these systems. As can be seen, the specific junction geometry
has considerable influence on the resulting steady-state
currents. The steady-state current obtained when the bridging
molecule is at (Figure 3b) or immediately off (Figure 3c) the
center of the lead is similar (but not identical): 1.55 and 1.57
μA, respectively. However, the current obtained when the
bridging molecule is at the edge of the lead (Figure 3d) is
appreciably larger, 2.03 μA.
Next, we use eq 5 to calculate the effective coupling of the

bridge to the leads using a Gaussian broadening of σ = 0.0049
eV for the discrete lead eigenspectrum, for all three systems
considered. This broadening was chosen to relate to the earlier-

stated driving rate, Γ, via σ = ℏΓ (we note that a more rigorous
way to extract state-dependent broadening factors has been
recently suggested in ref 39). The resulting effective couplings
of the three configurations are 6.87, 6.94, and 9.01 meV, for
configurations 3b, 3c, and 3d, respectively, where in eq 5 we
sum over the bridge states residing within the relevant Fermi
transport window, determined by the bias voltage and lead
electronic temperature. Indeed, this order matches the ordering
of the steady-state currents. This is shown explicitly in the inset
of Figure 7, where the steady-state current, plotted against the
calculated effective coupling, exhibits a monotonic behavior.
This demonstrates that the molecule−lead coupling scheme
can serve as a tool for rationalizing the transport characteristics
of molecular electronic systems and for designing junctions
with desired functionality.

Choice of Finite-Lead Models. As discussed previously,
within our TB model the appearance of coupling bands results
from the electronic structure of the leads. Before concluding,
then, we should examine whether the choice of the finite-lead
model often used in practice is sufficient to reflect the correct
molecule−lead coupling and therefore transport characteristics.
This is of particular importance when using a closed system
approach, namely, one based on microcanonical calcula-
tions,24,25,40−42 to study the coupling scheme and transport
characteristics with finite model systems. Specifically, in
addition to the choice of lead material, geometry, and level of
underlying electronic structure theory, it is important to verify
that the electronic properties of the finite lead converge to

Figure 7. Current as a function of time for the system configurations
depicted in Figure 3b−d, under a bias voltage of Vb = 0.3 V, electronic
lead temperatures of TL = TR = 0 K, and a driving rate of Γ = 0.0075
fs−1. In all calculations the on-site energies are taken to be αL = αM =
αR = 0 eV and the hopping integrals used are βL = βM = βR = −0.2 eV
and βL,M = βM,R = −0.04 eV. Colored × marks designate the
corresponding steady-state currents calculated via the Landauer
formalism (for more details see ref 29). A time step of 1.0 fs is used
throughout the simulations. Inset: steady-state current vs the effective
coupling calculated using only the HOMO and LUMO levels that
reside within the Fermi transport window. Green, red, and black plus
signs designate the steady-state currents obtained for the config-
urations depicted in Figure 3b−d, respectively, using the same
parameters as in the main panel. Blue, brown, and violet plus signs
designate the steady-state currents obtained for the configurations
depicted in Figure 3b−d, respectively, but with increased lead−
molecule hopping integrals of βLM = βMR = −0.08 eV.
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those of its semi-infinite counterpart.34,43 To this end, one has
to choose sufficiently large lead sections so as to obtain a
reliable description of the density of states within the Fermi
transport window in the vicinity of the Fermi energy and a
converged effective molecule−lead coupling strength. Most
importantly, the appropriate lead model size depends on the
electronic character of the molecular bridge itself and can vary if
transport is dominated by resonant or tunneling regimes. Here,
the site-to-state transformation may provide valuable informa-
tion regarding the electronic structure and coupling scheme of
the junction that, in turn, can be used to determine the required
lead model size.
To demonstrate this, we refer to the work of Ercan and

Anderson,44 where it has been reported that the appearance of
a quasi-steady-state (QSS) in microcanonical transport
calculations24,25 of closed systems strongly depends on the
choice of finite lead model dimensions and the molecular
bridge length. In this study, it was numerically demonstrated
that for junctions consisting of 2D and 3D lead models bridged
by an atomic chain, a QSS is obtained only when the bridge has
an odd number of sites. For an even atomic chain bridge, no

apparent QSS was observed for the same finite lead model size.
Nevertheless, in the limit of (semi)infinite-lead models, the
microcanonical approach converges to the full open system
description and should produce the correct steady-state current.
Hence, one would expect to obtain a clear QSS for sufficiently
large, yet finite, lead models also for an even atomic chain
bridge.
To verify this, we present in Figure 8a the dependence of the

early current dynamics on the finite lead model size in a
microcanonical simulation of a junction consisting of a four-site
bridge and 2D leads. For lead models that consist of five atomic
rows, each 30 atoms long, we reproduce the results of Ercan
and Anderson44 (black curve in Figure 8a). As the length of the
lead is increased to 120 and 240 sites (red and green curves in
Figure 8a, respectively); however, an apparent quasi-steady-
state develops for the even bridge chain as well. This suggests
that a larger finite-lead model with a higher DOS within the
Fermi transport window in the vicinity of the Fermi energy is
required to provide a reliable description of the current
dynamics in the microcanonical calculation of the even bridge
chain, as compared to the odd chain. Reducing the value of the

Figure 8. (a) Current as a function of time, calculated at the center of a four-site atomic chain bridging two 2D leads, modeled by finite-lead sections
of increasing size using the microcanonical approach. Black, red, and green curves represent results calculated for 2D lead models with five rows
consisting of 30, 120, and 240 sites each, respectively. The TB parameters of Ercan and Anderson44 are adopted, with on-site energies of αL = αM =
αR = 0 eV and uniform nearest-neighbors hopping integrals of βL = βM = βR = βL,M = βM,R = −11.0 eV throughout the junction. The inset represents
results obtained using the driven Liouville von Neumann, eq 6, with driving rates of Γ = 4.0, 3.5, and 3.0 fs−1 for the black, red, and green curves,
respectively. (b) Same as panel a, but with 2D lead models of three rows consisting of 30 or 240 atoms each and uniform hopping integrals of βL =
βM = βR = βL,M = βM,R = −0.8 eV throughout the junction. The driving rates used in the inset are Γ = 0.025 and 0.0125 fs−1 for the black and green
curves, respectively. All results were obtained under a bias voltage of Vb = 0.2 V. Green × marks represent the steady-state currents obtained using
the Landauer formalism for each case.

Figure 9. Schematic illustration of the level diagram of a junction consisting of two 2D leads and a molecular chain bridge with odd (a) and even (b)
numbers of sites.
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hopping integral decreases the lead bandwidth and hence
increases its overall DOS. As a result (see Figure 8b) a fairly
stable QSS appears in the even bridge case already for the 30-
site-long lead models (black curve), with considerable improve-
ment upon extending the lead lengths to 240 sites. It should be
noted that, for all cases presented in Figure 8, even when a
microcanonical QSS could not be reached, the driven Liouville
von Neumann eq 6,29 with appropriate driving rates, produces a
stable steady state whose value corresponds well to the
Landauer result45 (see insets of Figure 8).
To rationalize the difference in convergence of the

microcanonical QSS behavior with respect to the lead size for
even and odd numbers of bridge chain sites, we schematically
plot the level diagram of the junction for the two cases in
Figure 9. For the odd bridge case (Figure 9a) there is a
molecular level situated at the center of the Fermi transport
window46 leading to resonant transport that requires a fair
density of lead states at the Fermi energy in order to mimic the
infinite-lead case. For the even bridge case (Figure 9b) a
molecular HOMO−LUMO gap of 0.25 eV opens around the
lead Fermi energy for the chosen parameters. Here, transport is
governed by off-resonance transmission throughout the Fermi
transport window. This, in turn, requires a much higher density
of lead states to capture the low current dynamics and therefore
is more demanding of the finite-lead model.47 This example
thus demonstrates that a site-to-state transformation, which
provides direct access to the electronic structure of the
molecular bridge, the leads, and the nature of their coupling,
is an effective tool in designing finite-lead models that will
produce converged transport results.

■ SUMMARY AND CONCLUSIONS
The interface between a molecule and the surface of a semi-
infinite lead plays a decisive role in determining the transport
properties of molecular electronic devices. By transforming
between an atomistic view of the junction and a state
representation, where the couplings between the eigenstates
of the various isolated sections of the full system are obtained
explicitly, we were able to gain a fundamental understanding of
the overall coupling scheme and to evaluate its effect on the
time-dependent current passing through the system. We found
coupling bands that correspond to the lead molecular orbitals
weight at the lead−molecule coupling site and depend on the
dimension and shape of the lead and the overall junction
geometry. Finally, we have demonstrated the sensitivity of
computational transport methodologies that avoid the use of
semi-infinite leads to the choice of finite lead model size and
showed how the transformation from the real-space to the
energy representation of the junction may help rationalizing
this choice. Specifically, we demonstrated how this concept can
shed light on the charge transport behavior of the junction and
provide intuition as to the physical processes underlying
electron dynamics in open quantum systems.
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