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ABSTRACT

Graphene nanoribbons present diverse electronic properties ranging from semiconducting1-3 to half-metallic,4 depending on their geometry,
dimensions, and chemical composition.5,6,7 Here we present a route to control these properties via externally applied mechanical deformations.
Using state-of-the-art density functional theory calculations combined with classical elasticity theory considerations, we find a remarkable
Young’s modulus value of ∼ 7 TPa for ultranarrow graphene strips and a pronounced electromechanical response toward bending and
torsional deformations. Given the current advances in the synthesis of nanoscale graphene derivatives, our predictions can be experimentally
verified opening the way to the design and fabrication of miniature electromechanical sensors and devices based on ultranarrow graphene
nanoribbons.

The promise of graphene nanoribbons (GNRs) as ultimate
building blocks for future nanoelectromechanical systems has
been recently demonstrated experimentally for the first time.8

Since their initial successful fabrication,9 the dimensions of
GNRs have rapidly reduced from the microscale down to a
record breaking value of a few nanometers in width,
fabricated by either top-down10,11 or bottom-up12 approaches.
While the electromechanical characteristics of their cylindri-
cal counterparts, carbon nanotubes (CNTs), have attracted
great interest in recent years,13-22 similar effects in GNRs
have been hardly addressed8,23 thus far. Here, we study the
electromechanical response of GNRs by considering a large
set of hydrogen-terminated GNRs with varying lengths and
widths. The effect of uniaxial strain on the electronic
properties of infinite GNRs has been recently studied in
detail.24 To simulate the bending and torsion deformations
of a finite suspended GNR,8 we clamp the atoms in the region
close to the zigzag edges (highlighted by orange rectangles
in the upper panel of Figure 1) while applying the deforma-
tion to the atoms residing within a narrow strip along its
center-line (highlighted by a yellow rectangle in the figure).
For bending deformations, the central atomic strip is
depressed down with respect to the fixed edges parallel to
its original location in the plane of the unperturbed nanor-
ibbon (lower left panel of Figure 1). Torsional deformations
are simulated by rotating the central atomic strip around the main axis of the GNR and fixing its location with respect to

the plane of the clamped edge atoms (lower right panel of
Figure 1). The positions of the remaining atoms are relaxed* To whom correspondence should be addressed.

Figure 1. Illustration of a graphene nanoribbon-based electrome-
chanical device. Upper panel: a representative structure of the
graphene nanoribbons set studied. The notation M × N is used to
represent a GNR with M hydrogen atoms passivating each zigzag
edge and N hydrogen atoms passivating the armchair edge. The
deformations are simulated by clamping the atomic strips at the
zigzag edges (highlighted by orange rectangles) and depressing or
rotating the atoms at the center of the ribbon (highlighted by a
yellow rectangle) with respect to the fixed edges. Lower panels:
An artist view of a suspended GNR under bending (lower left panel)
and torsional (lower right panel) deformation induced by an external
tip. Side views of the deformed structures are presented for clarity
as insets.
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using spin-polarized density functional theory calculations
within the screened-exchange hybrid approximation of Heyd,
Scuseria, and Ernzerhof (HSE06),26,28,29 as implemented in
the development version of the Gaussian suit of programs,30

and the double-� polarized 6-31G** Gaussian basis set.31

This theoretical approach has been recently shown to describe
the physical properties of graphene-based materials with
exceptional success.2,5,32-36

To understand the mechanical response of GNRs under
an externally applied stress, macroscopic elasticity theory
concepts are here adopted. We quantify the bending defor-
mation by defining the depression depth, d, as the distance
of the central atomic strip from the original plane of the
unconstrained nanoribbon (see lower right panel of Fig-
ure 2). Similarly, the torsional angle is defined as the angle
between the plane of the central atomic strip and the plane
defined by the clamped edge atoms (see lower right panel
of Figure 4). In Figure 2, the change in total energy as a
function of the depression depth within the linear response
regime is presented for the full set of GNRs studied. The
marks represent calculated values while the lines are para-
bolic fits, from which the bending force constants are
extracted.

The following simple relation describes the dependence
of the bending force constant of a macroscopic rectangular
rod on its dimensions37

where w is the width of the rod, t is the thickness of the rod,
l is the length of the rod, and Y is its Young’s modulus. We
now fit the bending force constants calculated via the para-
bolic curves in Figure 2 to this simple relation. The length
of the sample is taken to be the minimum distance between

fixed edge atoms on the opposing clamped edges of the GNR.
The width is taken as the minimum distance between
hydrogen atoms passivating opposite armchair edges. For
the thickness, we assume a typical value of t ) 0.75 Å for
the graphene sheet.38 In Figure 3, the dependence of the
bending force constant on the inverse cube of the length (left
panel) and on the width (right panel) of the ribbon are
presented. We find excellent correlation between our calcu-
lated values and predictions from elasticity theory. The
Young’s modulus of GNRs can be extracted from the slopes
of the linear curves. An impressive large value of ∼7 TPa
is obtained, exceeding the measured value for micrometer
scale suspended graphene sheets39 and the highest value
calculated for CNTs with similar thickness parameters.38

A similar analysis can be performed for torsional deforma-
tions. In Figure 4, the change in total energy as a function
of the torsional angle within the linear response regime is
presented for the full set of GNRs studied. As before, the
marks represent calculated values and the lines are parabolic
fits. While, similar to the case of bending deformations,
excellent parabolic fits are obtained, classical theory of
elasticity fails to predict the behavior of the torsional force
constant with the dimensions of the system and hence it is
impossible to extract the shear modulus of GNRs from these
calculations. Several factors may limit the validity of the
classical theory for the description of torsional deformations
in the considered molecular systems. The poorly defined
thickness leading to extremely large surface-to-volume ratios
combined with the overall nanoscopic dimensions of the
systems suggest that the equations should be quantized in
order to predict the correct behavior. Furthermore, the effect
of elongation during the twisting process may introduce
considerable deviations from the pure torsional equations.
Therefore, it is impressive that for the case of bending
deformations the effect of these factors is small and very
good agreement between the behavior of a macroscopic rod
and that of a nanoscale atomic sheet is obtained.

Having explored the mechanical properties of suspended
GNRs, we now turn to evaluate their electromechanical
responses. For this purpose, we consider large bending and

Figure 2. Total energy changes of the 03 × N (upper left panel),
04 × N (upper right panel), and 05 × N (lower left panel) suspended
graphene nanoribbons due to an externally applied bending stress.
Marks represent calculated results. Lines are parabolic fits indicating
that all systems are within the linear response regime. Lower right
panel: the depression depth is defined as the distance between the
lowered central atomic strip and the original plane of the uncon-
strained GNR.

Kb ) 16Yw(t
l)

3
(1)

Figure 3. The dependence of the bending force constant on the
inverse cube of the length at constant width (left panel) and of the
width at constant length (right panel) of the GNRs studied. A
Young’s modulus value of ∼7 TPa is calculated from the slopes
of the linear curves by the use of eq 1.
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torsional deformations, well beyond the linear response
regime. Remarkably, we find that most of the studied systems
can sustain extreme mechanical deformations while retaining
their elastic nature. The HOMO-LUMO gap, which is the
difference between the highest-occupied and lowest-unoc-
cupied molecular orbital energies, is used to evaluate the
influence of the mechanical deformations on the electronic
properties of the system. In Figure 5, the energy gap as a
function of the depression depth is presented for the full set
of GNRs studied. High sensitivity of the energy gap upon
the depression depth is found. For most of the systems
studied, the gap energy changes by ∼0.5 eV upon a
depression of 1 nm. As expected, the smaller the system
dimensions, the higher the sensitivity upon similar stress
conditions. Interestingly, the 03 × N and the narrower 04 ×
N group members show an initial decrease in the energy gap

upon bending while the 05 × N group presents an initial
increase. This resembles the case of CNTs, where strain-
induced bandgap dependence was attributed to Brillouin zone
deformations upon the development of mechanical stresses
in the system.40 If we regard the finite GNRs as unrolled
segments of zigzag CNTs and follow the theory of Yang
and Han,40 we expect to see minor bandgap changes due to
bending. Nevertheless, because of the doubly clamped
geometry, the bending is not pure and includes a considerable
stretching component. In the case of (n,0) zigzag CNTs, the
sign of the bandgap change upon uniaxial stretching is40

sgn(∆Egap) ) sgn(2p + 1), where n ) 3q + p, q being an
integer number, and p ) 0,(1. Therefore, the bandgap of
metallic CNTs (p ) 0) is expected to increase upon uniaxial
stretching. This is the case for the 05 × N group, which can
be regarded as an unrolled (6,0) CNT and in the limit of
nf∞ becomes nearly metallic.2,35 When regarding the 04 ×
N systems as unrolled (5,0) CNTs, which are characterized
by p ) -1, it is expected that the energy gap will decrease
upon deformations that involve bond stretching, as is the
case for the 04 × 14 and 04 × 20 nanoribbons. Interestingly,
deviations from this role occur for the 04 × 28 and the 03
× N group members, which correspond to an unrolled (4,0)
CNT with p ) 1. Such deviations are expected because the
systems under consideration are of extremely small dimen-
sions, where the relevance of the band-structure theory, upon
which the Yang-Han theory is based, is limited. Further-
more, the Born-Von Kármán boundary conditions in the
circumferential direction of CNTs, taken into account in the
Yang-Han theory, are replaced by particle-in-a-box like
boundary conditions in GNRs, which may change the overall
behavior of the bandgap-strain relationship. Another inter-
esting prediction made by the Yang-Han theory of CNTs
electromechanical response is periodic oscillations of the
bandgap with the applied strain, as the shifted Fermi points
cross different allowed sub-bands. Evidence of such oscil-
lations can be seen in the upper- and lower-left panels of
Figure 5. Because of the relatively small dimensions of the
GNRs studied, only a partial period is obtained within the
deformation depth range studied. This resembles recent
measurements made on CNTs, where the period of the
bandgap oscillations was found to increase with decreasing
diameter.41

A very similar picture arises for the case of torsional
deformations. Figure 6 presents the dependence of the energy
gap on the torsional angle, up to a value of φ ) 90°. As for
the case of bending, energy gap changes of up to 0.5 eV are
obtained upon torsion of the smaller systems studied. The
sensitivity reduces as the dimensions of the systems are
increased, and the general trend of increase (decrease) in
the energy gap of the 03 × N, 04 × N (05 × N) upon the
appearance of stresses in the system remains. Remnants of
the energy gap oscillations can be seen for the 05 × 14
nanoribbon in the lower left panel of the figure.

In summary, we have studied the electromechanical
properties of suspended graphene nanoribbons under bending
and torsional deformations. High sensitivity of the electronic
properties to applied stresses was found, suggesting their

Figure 4. Total energy changes of the 03 × N (upper left panel),
04 × N (upper right panel), and 05 × N (lower left panel) suspended
graphene nanoribbons due to an externally applied torsional stress.
Marks represent calculated results. Lines are parabolic fits indicating
that all systems are within the linear response regime. Lower right
panel: the torsional angle is defined as the angle between the rotated
central atomic strip and the original plane of the unconstrained
GNR.

Figure 5. HOMO-LUMO gap changes of the 03 × N (upper left
panel), 04 × N (upper right panel), and 05 × N (lower left panel)
suspended graphene nanoribbons due to an externally applied
bending stress. Lower right panel: a side view of a nanoribbon under
bending deformation.
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potential use as building blocks in nanoelectromechanical
devices. Classical elasticity theory adequately describes the
mechanical behavior of the systems under bending deforma-
tions. The calculated Young’s modulus of 7 TPa marks
ultranarrow GNRs as one of the strongest existing materials.
While the systems we study are probably too small to be
manipulated by an external tip, as illustrated in Figure 1,
the results of our calculations present important trends that
are expected to hold for larger systems as well. An alternative
platform to induce bending deformations on molecular
graphene derivatives,12 such as those studied herein, while
measuring their transport properties would be the use of
mechanically controllable break junctions.42,43 In such a setup,
a graphene ribbon bridging the gap of a predesigned
molecular scale junction may be subject to delicate bending
deformations via the careful manipulation of the underlying
surface. With this respect, an interesting experimental
challenge would be to induce in a similar manner torsional
deformations of graphene nanoribbons.
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