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We use single-molecule force spectroscopy to study the kinetics of
unfolding of the small protein ubiquitin. Upon a step increase in
the stretching force, a ubiquitin polyprotein extends in discrete
steps of 20.3 � 0.9 nm marking each unfolding event. An average
of the time course of these unfolding events was well described by
a single exponential, which is a necessary condition for a memory-
less Markovian process. Similar ensemble averages done at differ-
ent forces showed that the unfolding rate was exponentially
dependent on the stretching force. Stretching a ubiquitin polypro-
tein with a force that increased at a constant rate (force-ramp)
directly measured the distribution of unfolding forces. This distri-
bution was accurately reproduced by the simple kinetics of an
all-or-none unfolding process. Our force-clamp experiments di-
rectly demonstrate that an ensemble average of ubiquitin unfold-
ing events is well described by a two-state Markovian process that
obeys the Arrhenius equation. However, at the single-molecule
level, deviant behavior that is not well represented in the ensemble
average is readily observed. Our experiments make an important
addition to protein spectroscopy by demonstrating an unambigu-
ous method of analysis of the kinetics of protein unfolding by a
stretching force.

A mechanical force of a few tens of piconewtons is sufficient
to trigger the unfolding and extension of a protein. This

process has been studied with the recently developed technique
of single-molecule force spectroscopy. In the most typical ex-
periment, a single polyprotein is extended at a constant velocity,
while measuring force (1–5). These experiments result in a
sawtooth pattern force-extension relationship where each saw-
tooth peak corresponds to the unfolding of an individual protein
module.

Although protein unfolding is known to be dependent on the
stretching force (6), this dependency could not be measured
directly with constant-velocity experiments where the stretching
force is constantly changing in an unpredictable way. Recently,
force spectroscopy was refined by the introduction of the force-
clamp technique, which, through the use of feedback techniques,
could be used to observe the mechanical unfolding of a polypro-
tein under a relatively constant force. In those early experiments,
the thermal-mechanical drift of the cantilevers, as well as the low
positioning resolution of the piezoelectric actuators, made it
difficult to probe the kinetics of unfolding with sufficient reso-
lution (7). Our improved instrumentation (see Materials and
Methods) now makes it possible to examine the force and time
dependency of polyprotein unfolding.

Here, we study the mechanical unfolding of the protein
ubiquitin, which is a naturally occurring polyprotein of nine
identical repeats. Each ubiquitin forms an independently folded
protein of 76 amino acids with a characteristic �-� fold, and its
folding and unfolding have been studied in detail by using
chemical denaturants (8–10) Ubiquitin is involved in protein
degradation and other signaling pathways (11, 12). In our
experiments an N-C-linked ubiquitin chain (13) was stretched by
a mechanical force that was either stepped to a constant value
(force-step) or increased at a constant rate (force-ramp).
Stretching a polyubiquitin protein under force-clamp conditions
produced a staircase-like elongation of the protein where each

step increase in length marked the unfolding of a single ubiquitin
in the chain. The frequency of occurrence of the step-unfolding
events, as well as the force at which they were most likely to be
observed, was used as an indication of the kinetic properties of
ubiquitin unfolding. The stochastical behavior of protein unfold-
ing under a stretching force is implicitly assumed to lack memory
(Markovian; refs. 14 and 15) and to have rates that are expo-
nentially dependent on the pulling force. However, these as-
sumptions remained unproven. The characteristic of Markovian
processes is that their probability of occurrence is independent
of the previous history. Markovian kinetics has been especially
challenging to verify by using constant velocity experiments,
which clearly show a memory effect in the data (3, 16). In the
constant-velocity experiments, the rate of change of the pulling
force and the unfolding probability are history dependent,
resulting in an unfolding sequence that cannot be predicted. By
contrast, with the force-clamp technique, we can measure the
kinetics of unfolding at a well defined force, eliminating many of
the ambiguities in the interpretation of the constant-velocity
data.

Bond rupture under a stretching force has been modeled as an
all-or-none Markovian process showing exponential dwell-time
distributions and unbinding rates that were exponentially de-
pendent on the stretching force (17–21). A similar bond-rupture-
like process has been used to describe the force-driven unfolding
of proteins (1, 2) and RNA hairpins (22). Whereas the forced
unfolding of RNA hairpins was shown to be exponentially
dependent on the pulling force (22), this assumption remained
speculative in the case of proteins. Here, we demonstrate that the
force-driven unfolding of a protein can be described as a
Markovian process that depends exponentially on the stretching
force. These experiments advance force spectroscopy of proteins
by providing a direct and well defined approach to studying the
kinetics of protein unfolding at the single-molecule level.

Our experiments also demonstrate the advantages of exam-
ining unfolding kinetics at the single-molecule level. We show
that, although an ensemble average of the single-molecule
measurements is well described by a simple two-state model, we
observe unfolding events that clearly follow a variant unfolding
pathway and that, due to their low frequency of occurrence, are
not represented in the ensemble. For example, a protein at room
temperature is a very dynamic structure, with a fluctuating bond
structure (23). Therefore, their unfolding kinetics might be
dependent on their actual conformation when force is applied,
leading to either a simple two-state unfolding or to more rare
intermediate unfolding states. Similarly, the kinetics of unfolding
RNA (24) and the work done on unfolding RNA (25) were
shown to vary on each repetition due to thermal fluctuations in
the conformation of the RNA structures.
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Materials and Methods
Force-Clamp Atomic Force Microscopy. Our custom built atomic
force microscope was constructed as described (26). We used a
modified Digital Instruments (Veeco Instruments, Santa Bar-
bara, CA) detector head (AFM-689) and a three-dimensional
piezoelectric translator ‘‘Picocube’’; P-363.3CD from Physik
Instrumente (Karlsruhe, Germany). The actuator has a displace-
ment range of 6,500 nm in the z axis, with a bandwidth limited
by an unloaded resonant frequency of �10 kHz, which is
somewhat reduced by an aluminum pedestal where the protein
sample is placed. Subnanometer resolution results from a fast
capacitive sensing of the actuator’s position. Our previous
force-clamp set-up used a piezoelectric actuator, P841.10, also
from Physik Instrumente, equipped with a strain-gage detector
of position (7). In those experiments, our positioning accuracy
and noise was of several nanometers. By contrast, through the
use of a picocube actuator, we have now improved our mea-
surements of protein length to a peak-to-peak noise of �0.5 nm,
resulting in a significant improvement in our recordings and also
in the accuracy of the force-clamp electronics. It is now possible
to select ‘‘good’’ low-drift cantilevers that can hold a constant
force for many seconds (26). One approach to verify the lack of
drift in the system is to test whether the length of a polyprotein
remains constant after fully unfolding. We monitored the un-
folded length over time to measure the amount of combined drift
in the system. It is not rare to find cantilevers where the overall
drift in the system (unfolded protein plus cantilever plus piezo-
electric actuator) is �2 nm over 10 s or more. Under force-clamp
conditions, the force signal had a SD that was bandwidth
dependent. A force signal filtered at �150 Hz, had a SD � 2.5
pN. For data acquisition and control, we used National Instru-
ments (Austin, TX) boards PCI-6052E and PCI-6703. We wrote
all our software in IGOR PRO (WaveMetrics, Lake Oswego, OR),
and it is available upon request. The force feedback was built by
using analog electronics based around a standard proportional,
integral, and differential (PID) amplifier whose output was fed
to the piezoelectric positioner. The PID amplifier was driven by
an error amplifier that compared a force set-point with the actual
force measured. Our analog force-clamp apparatus was typically
able to complete a force step in �10 ms and occasionally in �4
ms. The slew-rate of the system depended on the pulling force
and varied between �5,000 nm�s and up to 100,000 nm�s. The
atomic force microscope could be operated in force-step mode,
which is used to stretch proteins at a constant force, and
force-ramp mode, which is used to stretch proteins at a force that
increases linearly with time (F � a�t, where a, the ramp rate, was
typically set to 300 pN�s.

Single Protein Recordings. Polyubiquitin chains were cloned and
expressed as described (13, 26). Single proteins were picked up
by pressing the cantilever onto the sample at 200–800 pN for 2–5
s. The sample was retracted from the cantilever either stepwise
to the pulling force (force-step mode) or continuously ramped to
the final pulling force (force-ramp mode). The probability of
picking up a protein was kept low to reduce the spurious
interactions with the cantilever. A single ubiquitin polyprotein
was identified as such whenever we observed an uninterrupted
staircase composed of several �20-nm steps. Such staircases had
a variable number of steps ranging from n � 2 to 9.

Results and Discussion
Ubiquitin Unfolds with Markovian Kinetics. Fig. 1A shows four
typical recordings of ubiquitin unfolding in response to a step
increase in force. The Upper traces show the stepwise increase in
the length of the polyprotein as each ubiquitin in the chain
unfolds. The Lower traces show the time course of the force,
which is punctuated by transient deviations that are due to the

finite response time of the feedback in response to each unfold-
ing event. The unfolding of ubiquitin results in a step increase in
length of 20.3 � 0.9 nm (n � 821) measured between 100–200
pN. A single ubiquitin polyprotein was easily identified as a clean
staircase of steps of �20 nm each. All of the recordings included
in this report showed this characteristic fingerprint. Although in
all of the examples shown in Fig. 1 A the polyubiquitin chains
were subjected to a step-increase in force of similar magnitude,
the time evolution of the elongation was different in all cases.
This result shows the stochastic nature of the unfolding events
triggered by a constant force. The time course of unfolding of an
ensemble of ubiquitin chains was obtained by simple summation
of several recordings such as those shown in Fig. 1 A. A nor-
malized sum of five stepwise elongation recordings obtained by
stepping the force to 120 pN is shown in Fig. 1B. The average
time course of these ubiquitin unfolding events can be readily
described by a single exponential (Levenberg–Marquardt fit,
solid line in Fig. 1B), with a time constant � � 0.53 s. An
exponential time course is consistent with a memory-free Mark-
ovian process where the probability of unfolding at any given
time is independent of the previous history. However, the
exponential behavior of the ensemble average is a necessary but
not sufficient condition for Markovian kinetics.

The Unfolding Rates Depend Exponentially on the Pulling Force. Over
the past century, a variety of models for the acceleration of
mechanical failure by an applied stress have been developed.
These models have been variously based on the empirical

Fig. 1. Exponential unfolding of ubiquitin at a constant stretching force. (A)
Typical length vs. time recordings (black traces) for single ubiquitin chains
stretched at a constant force of �120 pN (red traces). Under a constant
stretching force, the ubiquitin chain elongates in steps of �20 nm, marking
the unfolding of individual ubiquitins. (B) Average time course of unfolding
obtained by summation and normalization of five recordings, including those
shown in A. The unfolding time course is well described by a single exponential
(blue trace) with a time constant of � � 0.53 s.
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observations of Arrhenius, the Eyring chemical reaction rate
theory, and the Kramers Brownian diffusion rate theory. The
basic form of these theories proposes that the time to failure, tf,
is given by tf � A exp{(�E � W)�kBT} where A is a constant,
�E is the activation energy of the rupture process, T is the
absolute temperature, and W represents any type of additional
work done on the system. W can be the result of an electric field,
a mechanical force, or a chemical reaction. The principal feature
of these models is that the magnitude of an applied stress reduces
exponentially the time to failure. George Bell was the first to
apply a ‘‘time to failure’’ model to the problem of the rupture of
a bond under a mechanical stretching force (17). He predicted
that protein–protein bonds, such as those that occur between the
cell-adhesion proteins of neighboring cells, would rupture at a
rate that would increase exponentially with the stretching force:

��F� � ��0�exp�F�x�kBT�, [1]

where F is the stretching force and �x is the distance to the
transition state beyond which the bond will fail (17). Several
authors have since examined the consequences of these predic-
tions and confirmed that the rate of bond rupture is indeed
exponentially dependent on a stretching force (18, 27). Other
consequences of this theory, such as a predicted exponential
dependency on the pulling rate (19, 20), also were studied
experimentally at the single bond level (18, 21, 27, 28).

The process that leads to the mechanical unfolding of a protein
is thought to share many of the same mechanisms as those
involved in the mechanical rupture of a protein–protein bond.
Indeed, the single-bond rupture model has also been used to
describe the all-or-none mechanical unfolding of protein chains
(2, 29). However, the principal assumption of this model, that the
unfolding rate is exponentially dependent on the stretching
force, has never been tested experimentally. Because we can
monitor the unfolding time course of a polyubiquitin protein
stretched by a constant force, we can examine the way in which
the unfolding time constant is affected by the stretching force.

Fig. 2A shows ensemble averages of unfolding time courses
obtained at F � 100, 120, and 140 pN. At each stretching force,
we added several traces and then normalized the resulting trace
as shown before in Fig. 1. The normalized records were fitted
[Levenberg–Marquardt (30)] with a single exponential function
(continuous line in Fig. 2 A) with time constants �(100 pN) �
2.77 s; �(120 pN) � 0.54 s; �(140 pN) � 0.13 s. It is evident from
Fig. 2 A that the rate of polyubiquitin unfolding is strongly
dependent on the stretching force. The linear relationship
observed in a semilogarithmic plot of the unfolding rate � � 1��
as a function of the pulling force (red squares; Fig. 2B) directly
demonstrates that the unfolding rate of polyubiquitin is expo-
nentially dependent on the pulling force. Our resolution is
limited to a range of only �130 pN. For forces bigger than 200
pN, the unfolding rate is too fast to be well resolved with the
current feedback instrumentation, given that most events will
occur within a short time after the force step (�100 ms). For
stretching forces below �70 pN, the unfolding rate drops sig-
nificantly and becomes harder to define a baseline. Improve-
ments in the feedback response time as well as decreases in
cantilever drift should significantly expand the range of our
measurements. A Levenberg–Marquardt (30) fit of Eq. 1 to the
data of Fig. 2B (solid line) gives �0 � 0.015 s�1 and a distance
to transition state of �x � 0.17 nm.

A Simple Two-State Model for Ubiquitin Unfolding. Given that we
have demonstrated that ubiquitin unfolding is consistent with
simple Markovian kinetics and that its unfolding rate is expo-
nentially dependent on the pulling force, we are well justified to
use a simple two-state kinetic model for ubiquitin unfolding.
Given a two-state model with folded (F) and unfolded (U)

conformations, we make the simplifying assumption that the
refolding rate is negligible over the time of the experiment, and
then we calculate the probability of unfolding, Pu, from the
following differential equation (19, 20, 31):

dPu � ��t��	1 � Pu�t�
dt, [2]

where �(t) represents the unfolding rate. To change variables
from time to force we assume that the stretching force is
changing linearly with time as F � a�t, where a is the pulling rate
measured in pN�s. By changing variables from time to force in
Eq. 2 and then integrating, we obtain the probability of unfolding
as a function of a stretching force:

Pu�F� � 1 � e�
�0kBT

a�x �e
F�x

kBT�1�. [3]

Hence, this simple model predicts that the unfolding probability
is a sigmoidal function of the applied force. We calculate the
probability density from Eq. 3:

dPu

dF
�

�0

a
�e

F�x
kBT�e�

�0kBT
a�x �e

F�x

kBT�1�. [4]

The probability density predicts the shape of a histogram of the
accumulated forces at which ubiquitin is observed to unfold,
when pulling the protein with a force that increases at a constant
rate (19, 20).

Fig. 2. The unfolding rate depends exponentially on the stretching force. (A)
Three averaged and normalized ubiquitin unfolding time courses (black
traces) obtained at different stretching forces. The blue lines correspond to
single exponential fits with time constants of � � 0.13 s at 140 pN, 0.54 s at 120
pN, and 2.77s at 100 pN, respectively. (B) Logarithmic plot of the unfolding
rate, � � 1�� (red squares), as a function of the stretching force F. A Leven-
berg—Marquardt fit of Eq. 1 to the data (continuous line) gives values of �0 �
0.015 s�1, �x � 0.17 nm. The dashed line corresponds to Eq. 1 evaluated with
�0 � 0.0375 s�1 and �x � 0.14 nm.
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Measurement of Ubiquitin Unfolding Probability and Its Probability
Density. Force-clamp measurements of protein unfolding have
the very significant advantage that the feedback can be con-
trolled with any type of waveform, which will then be applied as
a force to the single protein. To implement the assumptions of
our simple two-state model for unfolding, we apply a stretching
force that increases linearly with time: the force-ramp method
described before by Oberhauser et al. (7). In our experiments, we
fixed the pulling rate to a � 300 pN�s. Typical results of these
experiment are shown in Fig. 3A. The Upper trace shows the
extension vs. time trace whereas the Lower trace shows the force
vs. time trace with a ramp rate of a � 300 pN�s. As before, every
ubiquitin unfolding event is marked by a step increase in the
length of the polyprotein by �20 nm and a short imbalance of the
feedback that is visible as a brief spike in the force trace (see Fig.
3A). After picking up a single protein, the force increased
linearly with time to a maximum typically set to 500 pN. Most
proteins break off before reaching this maximum. When the
polyprotein breaks off, we lose control of the feedback and the
force cannot be increased linearly anymore. Simultaneous with
the loss of the feedback, we observe that the piezoelectric
positioner will rapidly move several micrometers until it reaches
its maximum range. These events are easy to recognize as a
discontinuity in both the length and force traces observed toward
the end of the recordings. Most ubiquitin unfolding events were
observed to occur in a small range of pulling forces between 50
and 200 pN (Fig. 3A).

Fig. 3B shows several recordings of ubiquitin unfolding re-
corded under force-ramp conditions. We plot the polyprotein
length vs. the pulling force obtained from traces similar to those
shown in Fig. 3A. To reduce noise, we fitted the force trace with
a straight line that matched the slope exactly to the set ramp rate.
In the plots of Fig. 3B, we used this fit as the ordinate. The plots
of Fig. 3B demonstrate a simple method for compiling a large
number of unfolding events and the force at which they occurred.
Fig. 4 shows a histogram compiling the number of unfolding
events observed at a given force. The histogram consists of 538
ubiquitin unfolding events measured with the procedures dem-
onstrated in Fig. 3. This histogram, when normalized, corre-
sponds to the unfolding probability density, dPu�dF. Integration
and normalization of the histogram data yields the unfolding
probability Pu (continuous blue line in Fig. 4).

We used Eqs. 3 and 4 to explain our data. A least squares fit
of the unfolding probability with Eq. 3 produced an excellent fit
of the data (green line in Fig. 4) giving �0 � 0.0375 s�1, a � 103
pN�s, and �x � 0.14 nm. The probability density function (Eq.
4) calculated with these values also accurately reproduced our
data (blue dotted line, Fig. 4).

The fits of the two state model to the data of Fig. 4 do not
recover the correct ramp rate of the experiment (103 pN�s
returned by the fit vs. an actual rate of 300 pN�s). One potential
source of error is the brief loss of control that occurs during a
step-unfolding event (‘‘spikes’’ in the force traces), which tends
to decrease the pulling force (spike amplitude � 87 � 25 pN and
duration � 9.4 � 5.7 ms; see Fig. 3A). However, these brief
spikes occur only during the rapid elongation of the protein that
follows unfolding. Hence, the spikes are not likely to affect the
unfolding kinetics. It is more likely that the simple two-state
kinetic model that we use here does not fully describe the force
dependency of ubiquitin unfolding.

Kinetics of Ubiquitin Unfolding Under a Stretching Force. The results
of Figs. 2B and 4 demonstrate two types of independent exper-
iments that examine the unfolding of polyubiquitin under a
stretching force. When fitted with the two-state model described
above, both sets of measurements are consistent. For example,
using Eq. 1 together with the values of �0 and �x obtained by
fitting Eqs. 3 and 4 to the data of Fig. 4 (see above), we can
readily explain the force dependency of the rate measured in Fig.
2 (dashed blue line in Fig. 2B). It is interesting to consider that,
because the experiments of Fig. 2 were done at constant force,
the ramp rate parameter a does not play a role.

Fig. 3. Mechanical unfolding of ubiquitin chains using a force-ramp. (A)
Typical length vs. time recordings (black traces) for single ubiquitin chains
stretched with a force that increased at a constant rate, a � 300 pN�s (red
traces). (B) Length vs. force recordings obtained from data like that shown in
(A). Each step increase in length marks the force at which the unfolding event
occurred.

Fig. 4. The unfolding probability of ubiquitin. Frequency histogram of
unfolding forces (ntotal � 538) measured from force-ramp experiments like
that shown in Fig. 3. We obtained the unfolding probability distribution (Pu

� ;
green line) by integrating and normalizing the frequency histogram. A fit of
the unfolding probability, Pu, with Eq. 3, gave �0 � 0.0375 s�1, a � 103 pN�s,
and �x � 0.14 nm. A plot of Eq. 4, evaluated with these parameters, resulted
in the dotted line that accurately describes the unfolding force frequency
histogram.
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That the results of these different types of force-clamp exper-
iments are self-consistent should not be a surprise. However,
what is puzzling is that the values obtained for �0, and �x are very
different from those obtained previously by us by analyzing
sawtooth pattern recordings of ubiquitin unfolding under con-
stant velocity conditions. In those experiments, we used Monte
Carlo simulations where �0 was fixed at 0.0004 s�1 [the value
obtained from chemical denaturation data (8)] and where �x �
0.25 nm was found to describe the data reasonably well (13).
These parameters are very different from those that we now
obtain from actual fits to the force-clamp data (�0 � 0.015–
0.0375 s�1 and �x � 0.14 to 0.17 nm). These discrepancies may
result from the very different experimental approaches taken to
obtain these data. For example, the sawtooth pattern data
obtained by pulling polyproteins at constant velocity is typically
analyzed with either Monte Carlo simulations (2, 29) or numer-
ical solutions of the rate equations (32). However, neither
technique can actually be used to ‘‘fit’’ data in the sense of
exploring the multidimensional space of solutions to minimize
the square of the error, as this term usually implies. Typically, a
Monte Carlo fit indicates a set of values that can describe the
data within a factor of ten or so (2, 13). Furthermore, during a
constant velocity experiment (that results in sawtooth patterns of
force), the rate of change of the pulling force varies during the
experiment in a way that depends on the length of the molecule
and on the number of modules that had already unfolded. Given
that unfolding is probabilistic, the actual conditions that lead to
any given unfolding event are dependent on the previous history
and hence cannot be anticipated. Hence, a true analytical model
of a sawtooth pattern recording cannot be formulated, much less
fitted to the data. By contrast, under force-clamp conditions, the
magnitude and the rate of change of the stretching force are
established a priori, which we can readily model with simple
two-state kinetics (see Eqs. 1–4). This approach represents an
important refinement of force spectroscopy, allowing a quanti-
tative measurement of the kinetics of protein unfolding under a
stretching force. Although much work is still required to improve
this technique, force-clamp data analyzed with analytical rep-
resentations of kinetic models is likely to represent a far more
accurate measure of the unfolding kinetics of a protein under a
stretching force.

If these considerations are correct, the force-clamp data
measure an unfolding rate at zero force (�0 � 0.015–0.0375 s�1)
that is 40- to 100-fold faster than that measured by using
chemical denaturants (�0 � 0.0004 s�1) (8). This large discrep-
ancy may result from the different reaction coordinates in these
two different experimental approaches (13, 33, 34).

Deviations from Two-State Unfolding. Fig. 5A shows the step-size
histogram of 821 single unfolding events. It is clear that the
histogram is dominated by the peak centered at 20.3 � 0.9 nm,
which corresponds to the full two-state unfolding of ubiquitin.
However, in 5% of these cases, the unfolding events were
observed to occur through one or more intermediate states that
always added up to the full 20-nm step. These intermediate
unfolding steps scattered in size between 2–18 nm and are
plotted individually in the histogram. Fig. 5B shows two examples
of the most common unfolding events observed. The recording
on the Left shows a typical 20-nm step whereas the one on the
Right shows an unfolding event broken up into two steps of 8 and
12 nm, respectively. These two smaller steps add up to a full
20-nm step, indicating that the ubiquitin modules unfold in a
three-state manner, instead of a two-state manner. Indeed,
three-state folding kinetics for ubiquitin had already been ob-
served by using chemical denaturants (9). However, given that
the reaction coordinates are very different, it is unlikely that the
mechanical unfolding intermediate observed here directly cor-
responds to that observed in the chemical unfolding studies. For

the histogram of Fig. 5A, we have considered only steps that are
either 20 nm or that clearly add up to 20 nm. Some of the events
showing a 20-nm step broken up into intermediates are likely to
correspond to spurious molecules that are picked up in parallel
with a ubiquitin chain. When these molecules are stretched,
detachment or even unfolding of the second molecule would
result in an interruption of the elongation due to an unfolding
event. We expect such spurious events to occur at random.
Indeed, there is a wide distribution of substeps. However, we can
also distinguish two peaks centered at 8.1 � 0.7 nm and 12.4 �
1.0 nm. It is unlikely that these well marked peaks result from the
random pick-up and rupture of spurious molecules, and there-
fore they may well be an indication that ubiquitin unfolds by
means of an intermediate state. At a stretching force of 100 pN,
the 8- and 12-nm steps correspond to the unraveling of 28 aa and
39 aa, respectively. Interestingly, these two step sizes coincide
with two well defined structural clusters packing against each
other in the ubiquitin fold (Fig. 5A Inset). The first cluster
(green) includes � strands I and II, the � helix, and the turn
connecting the � helix and � strand III. The second cluster (blue)
includes � strands III and IV. Sequential unraveling of these
clusters would produce elongations of 11.7 nm and 8.4 nm,
respectively, which would explain our data. This sequential
unfolding of ubiquitin is similar to the unfolding of BSA (35).

It is well known that a protein structure at room temperature
is very dynamic, with noncovalent bonds breaking and forming
constantly due to the bombardment of the surrounding water
molecules (23). Therefore, the exact protein unfolding path-
way might depend upon the actual conformation of a protein
at the time when a stretching force is applied. This uncertainty
will lead to either a simple two-state unfolding or to more rare
unfolding trajectories, as observed here. Our experiments
again demonstrate the advantages and necessity of examining
unfolding kinetics at the single-molecule level, as illustrated
for enzymatic reactions by Lu et al. (36) and Zhuang et al. (37),

Fig. 5. Step-size analysis of the mechanical unfolding of ubiquitins. (A) A
frequency histogram of the unfolding length step sizes shows one predomi-
nant peak at 20.3 � 0.9 nm and two smaller peaks at 8.1 � 0.7 nm and 12.4 �
1.0 nm (ntotal � 821). (Inset) Color-coded cartoon representation of the struc-
ture of ubiquitin (1UBI). The blue- and green-colored regions match structural
features in the ubiquitin fold and would account for an intermediate unfold-
ing step of either 8 or 12 nm (see Deviations from Two-State Unfolding).
(B) The most typical examples of length vs. time recordings of ubiquitin
unfolding.
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and the mechanical unfolding�folding of RNA hairpins by
Liphardt et al. (22).

Although a simple two-state kinetic model is adequate to
describe most of our data, it is possible to anticipate a number
of ways in which this simple model does not fully describe the
unfolding pathway of ubiquitin. The most obvious deficiency is
that the folded and unfolded states in reality correspond to a
much larger number of conformations. This finding is particu-
larly true of the unfolded state where ubiquitin folding trajec-
tories observed at a low stretching force do not show discrete
folding steps but rather a continuous process akin to that of
polymer collapse (26). Evidently, a simple two-state kinetic
model cannot describe these folding trajectories.

Another likely limitation of a Markovian model is that the lack
of memory is likely to be true as long as the times between
unfolding events are sufficiently long for having reached thermal
equilibrium. At short times, comparable with the relaxation time
of the protein, memory effects should appear. Structural mem-
ory loss is due to the Brownian motion of the protein. Defor-
mations of the structure triggered by a stretching force, but that
fall short of unfolding, will persist for a short time and then will
be erased by the Brownian motion of the protein. Recent
single-molecule experiments have given increasingly longer es-
timates of the relaxation times for proteins, up to 25 �s (38). Our
own measurements show that unfolding events in a fibronectin

module can show a strong correlation within 20 ms (L. Li, H.
Huang, C. Badilla-Fernandez, and J.M.F., unpublished work).
Hence, a rigorous examination of structural memory in ubiquitin
unfolding is likely to show deviations from Markovian behavior
when probed in time scales shorter than those reported here. We
anticipate that a new class of kinetic models will be necessary to
explain the more complex picture that emerges from probing
protein unfolding at the single-molecule level.

Conclusion
Using an improved force-clamp technique, we have directly
demonstrated at the single-protein level that ubiquitin unfolding
is well described by a simple two-state kinetic model and that the
unfolding rate closely follows the Arrhenius equation. Our
experiments also show the power of single-molecule techniques
by capturing lower probability events that deviate from simple
two-state kinetics. Although such events are sufficiently rare as
not to bias the ensemble averages, they are revealing of the
diversity of pathways available to a protein undergoing forced
unfolding. We anticipate that the techniques demonstrated in
this work will be useful to examine the folding�unfolding kinetics
of a wide range of proteins at the single-molecule level.
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