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Abstract

Over the last decades, the field of Machine Learning (ML) has enjoyed tremendous
success, wielding massive influence on our everyday lives with an apparent impact on
a vast variety of applications such as recommender systems, autonomous vehicles,
and machine translation. Computational Learning Theory is the very foundation for
current and future machine learning methodologies. In this thesis, we expand and
develop efficient ML methodologies in the areas of Online Learning, Generalization,
and accommodating Societal Concerns such as Fairness.

The results of this thesis have been published in five research papers, out of which four
have been published (in FORC’20, NeurIPS’20, NeurIPS’21, and AAAI’22).
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Chapter 1

Introduction

Algorithms, particularly ones that are deployed for Artificial Intelligence (AI) systems,
have a huge influence on our everyday lives. An algorithm is a set of data-based
instructions that given any input returns some output. Netflix uses algorithms to
map past show preferences into recommendations for movies we might be interested
watching next, robotic vacuum cleaners use algorithms to clean our homes efficiently,
algorithms are also responsible for more than 70 percent of US stock market trades,
and soon will make autonomous cars drive us around.

AI offers several benefits that makes it a valuable tool for nearly any modern or-
ganization. It boosts the efficiency of products and services via capabilities such
as personalized product recommendations. Services like auto translations and auto
transcriptions are making the word much more accessible than ever. Using AI, a
repetitive task can be performed automatically without humans feeling fatigued or
bored by it. Data can be analyzed much faster and on a much larger scale than
previously done by humans, enabling patterns to be found humans would never have
seen otherwise. And finally, by harvesting and interpreting data, systems can be
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trained to become more accurate than humans for crucial tasks like identifying or
treating cancerous growths.

One of the main topics of my research is Machine learning (ML), a discipline that
lies within the intersection of computer science, applied mathematics, and statistics.
In recent decades, machine learning has grown increasingly important, and emerged
as an important pillar of modern AI and data science research. ML is primarily
concerned with extracting models from data and using these models to make accurate
predictions.

Online Learning

Algorithms for online learning are especially challenging due to various constraints
the learner needs to comply with: bounded computation time, handling unlimited
amount of data, optimizing the performance throughout the entire learning phase
(regret minimization), and up to the ability of adapting to a dynamic environment
that depends on the actions of the learner (Reinforcement Learning).

Reinforcement Learning (RL) takes a step to a concerned with online learning
where the goal of the system is to both learn the environment in terms of what are
the consequences of each action and what is the ideal action in the current state.
The goal of the learner in RL setting is either to find an optimal policy efficiently
or to maximize the notion of cumulative reward. Common settings for RL problems
include the Markov Decision Process (MDP) model, and the Multi-Arm Bandits
(MAB) model.

Societal Challenges

As much as these advances improve the quality of our lives, as individuals and
as a society, they come with a cost. It has been shown that algorithms can be
exposed to adversarial attacks (e.g. against Autonomous Driving Models), risk our
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private information (e.g., in 2007 researchers were able to identify individual users
by matching the Netflix Prize data sets with film ratings on the Internet Movie
Database1).

The second main topic of my research is societal challenges in the context of AI.
One of the most important societal challenges is Fairness. Fairness emerges from
having an unjustified bias against a subgroup (of population), described by a protected
feature – race, gender, disability, etc.. When two different subgroups have a certain
level of inequality in some measure – e.g., acceptance rate for a job/college regardless
of the true ability of the candidates - we consider it discrimination (or “unfair”).
In fairness research, we try to mitigate these biases by identifying when they occur
and fix them using systematic tools. Fairness differs from other statistical biases in
machine learning since it involves and affects people.

Another societal challenge that was studied in this thesis is safety, and in particular safe
RL. Most research in reinforcement learning (RL) deals with the problem of learning
an optimal policy for some Markov decision process (MDP). Safe RL focuses on
finding the best policy that meets safety requirements. Typically, these problems are
handled by adjusting the objective to include safety requirements and then optimizing
over it, or incorporating additional safety constraints to the exploration stage. Instead,
we addresses the safety of a specific MDP policy by detecting anomalous events rather
than finding a policy that satisfies some pre-defined safety constraints (anomaly
detection).

Addressing these vulnerabilities can help society to harness the full power of machine
learning.

1Netflix prize privacy concern, retrieved from http://en.wikipedia.org/wiki/Recommender_system\
#Privacy_Concerns
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1.1 Thesis Contributions

This dissertation is focused around learning theory and societal challenges. In
Chapter 2, we concentrate on Generalization in Machine Learning, where we start
by showing how to derive Uniform Convergence guarantees for Multicalibration,
a notion for group fairness. Uniform convergence of a hypothesis class refers to
the property that the difference between the true error (risk) of each hypothesis
and its estimate (empirical risk) approaches zero as the sample size approaches
infinity. Uniform convergence is an important concept in machine learning because
it provides guarantees on the accuracy of the learned model with respect to the
true data distribution as well, which is essential for the model’s generalization
performance. In other words, if a model is learned using a hypothesis class that
exhibits uniform convergence, it is more likely to generalize well to new, unseen
data. Multicalibration of a predictor ensures that the predictor is calibrated across
different (large enough) subpopulations. Selecting a multicalibrated predictor can
prevent uncalibrated predictions for certain subgroups or populations, which can be
problematic in many real-world applications, especially when the model’s predictions
have a significant impact on people’s lives, such as in healthcare or finance. By
ensuring that the model is equally accurate for all subgroups, multicalibration can
help to avoid potential harms or biases in the model’s predictions. In a work that
was published in NeurIPS 2020 [117], we provide uniform convergence guarantees
for multicalibration. More precisely, we derive sample complexity bounds to achieve
uniform convergence for multicalibration. Our work focuses on addressing the issue
of multicalibration error by separating it from the prediction error. Decoupling the
fairness metric (multicalibration) from the accuracy (prediction error) is crucial due
to the natural tradeoff between the two, and the societal decision on what constitutes
an appropriate tradeoff, often mandated by regulators. We show the necessary sample
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complexity for Predictor Classes with Finite Graph Dimension (these results appeared
in a work which was published in [117]). We extend these results, showing how to use
the same techniques to obtain Uniform Convergence for another notion commonly
used in practice, F-Score. In addition, we improve the lower bounds and show a
dependence on the size of the class (for finite predictor classes) and on the Graph
dimension for infinite predictors.

Chapter 3 is devoted to results for the Online Learning regime. The first two
sections (Sections 3.1 and 3.2), are in the MAB setting, a particular setting of
RL. In general, MAB models decision-making problems in which an agent must
choose between multiple actions or options, each with an unknown reward or payoff.
The goal is to maximize the cumulative reward over a given time horizon, while
simultaneously exploring the different actions to learn about their reward distributions.
In Dueling bandits [133], the realization of the rewards is no longer the feedback. As
an alternative, the learner chooses a pair of arms and the observed feedback is the
winning arm between their “duel”, the arm with the larger reward in the current
round. The problem is motivated by web search optimization, where each action
models a possible search result, and we are only given feedback regarding the preferred
result. We refer the reader to [19] and [123] for surveys on dueling bandits. In Section
3.1, we generalize the dueling bandit setting to accommodate noisy comparisons of
disjoint pairs of k-sized teams (subsets of arms) from a universe of n arms (players).
These results were published in [42]. The problem is not only a generalization of an
existing model in ML, but is also deeply connected to tournament solutions, that
originated from social choice. Our framework formalizes a societal issue- learning
about the “winning” team in team sports, where players cannot play for the same
team simultaneously.

In Section 3.2, we accommodate another societal approach in MAB. We formalize
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and address the dissatisfaction of users from a MAB-based recommender system,
that may depart (and never come back). While naive approaches cannot handle this
setting, we provide an efficient learning algorithm that achieves Õ(

√
T ) regret, where

T is the number of users. These results were published in [17].

In Section 3.3, the last part of the chapter, we assume a Markov model (a more
general setting than MAB in RL), but there our goal is to find a characterization of
a given policy that captures popular trajectories rather than finding the best policy.
In most research in Safe RL, the focus is on finding the best policy that meets safety
requirements. Typically, these problems are handled by adjusting the objective to
include safety requirements and then optimizing over it, or incorporating additional
safety constraints to the exploration stage. Anomaly Detection is the problem of
identifying patterns in data that do not correspond to what is expected, i.e., anomalies.
Anomaly Detection addresses a variety of applications: cyber-security, fraud detection,
failure detection, etc. (see [32] for survey). This work takes an anomaly detection
approach for safe RL and has implications for safety and explainability, both are
societal challenges. As such, the model suggests a solution that is based on popular
behavior and depends on society’s needs rather than just satisfying pre-defined safety
constraints. The results of this work appear in [41].

Finally, in Chapter 4 we present the results which have pure societal motivation. In
particular, we address the problem of candidate screening in the multi-test setting,
considering both Bernoulli and Gaussian models. We inspect the problem from a
classic ML viewpoint (loss minimization), then we characterize the optimal policy
when employees constitute a single group, demonstrating some interesting trade-
offs. Subsequently, we address the multi-group setting, demonstrating fundamental
impossibility results as well as optimal fairness solutions based on dynamic and
group-depended decision rule. These results were published in [39].
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Chapter 2

Generalization in ML

Introduction

Characterizing learnability is a fundamental problem in learning theory. For example,
we already know that for supervised classification learnability is equivalent to uniform
convergence. In addition, given a learnable problem and ‘enough’ data, any empirical
risk minimization (ERM) algorithm would return an accurate predictor. There are
many other interesting aspects of generalization. For example, in the following
work we showed uniform convergence for multiclaibration of predictor classes with
finite graph dimension. Multicalibration is a generalized notion of Calibration that
provides a comprehensive methodology to address group fairness, where calibration is
a common notion for ML tasks.

Sample Complexity of Uniform Convergence for Multicalibration In a work
that was published in NeurIPS 2020 [117], we address the multicalibration error and
decouple it from the prediction error. The importance of decoupling the fairness metric
(multicalibration) and the accuracy (prediction error) is due to the inherent trade-off
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between the two, and the societal decision regarding the “right tradeoff” (as imposed
many times by regulators). Our work gives sample complexity bounds for uniform
convergence guarantees of multicalibration error, which implies that regardless of
the accuracy, we can guarantee that the empirical and (true) multicalibration errors
are close. Our results are the first to apply for not only realizable settings, but also
for agnostic settings. Agnostic and realizable are terms that describe different types
of settings for a learning problem. In the realizable setting, we assume that there
exists a function that perfectly fits the data, with no errors on the true distribution,
and in particular, no errors on the training set, and the goal is to find it. In
the agnostic setting, the learning algorithm does not make any assumptions about
the relationship between the hypothesis class and the data distribution and only
competes with the best predictor in the class, and the goal is to find a function
that minimizes the generalization error, which is the error rate on unseen data. In
general, this setting is more challenging because the algorithm cannot rely on prior
knowledge. Moreover, realizable settings are less common in practice because the
realizability assumption is often not realistic in real-world problems, especially in
societal-related problems. Our results are also not restricted to a specific type of
algorithm (such as deferentially private), and improve over previous multicalibration
sample complexity bounds. Finally, they imply uniform convergence guarantees for
the classical calibration error as well (i.e., not as a fairness notion). Our sample
bounds guarantee uniform convergence for both finite predictor classes (logarithmic
in the size of the predictor class) and infinite predictor classes, for which the bound
depends on the graph dimension of the class, a measure of the class complexity and
in particular an extension of the VC dimension for multiclass predictions. Finally, we
derive a lower bound on the sample size required.
Our approach has the advantage of providing fairness “for free”. Namely, whenever
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the learner finds (e.g., by ERM) several predictors that minimize other desired
constraints of her choice, she can simply select the predictor with the lowest estimated
multicalibration error and improve fairness. As a result, an important tool of
generalization from ML can now be paired together with one of the (current) major
fairness notions.

In this thesis we also extend these results, showing how to use the same techniques
to obtain Uniform Convergence for another notion commonly used in practice, F-
Score. In addition, we improve the lower bounds and show a dependence on the
size of the class (for finite predictor classes) and on the Graph dimension for infinite
predictors.

2.1 Uniform Convergence for Multicalibration

2.1.1 Introduction

Data driven algorithms influence our everyday lives. While they introduce significant
achievements in face recognition, to recommender systems and machine translation,
they come at a price. When deployed for predicting outcomes that concern individuals,
such as repaying a loan, surviving surgery, or skipping bail, predictive systems
are prone to accuracy disparities between different social groups that often induce
discriminatory results. These significant societal issues arise due to a variety of reasons:
problematic analysis, unrepresentative data and even inherited biases against certain
social groups due to historical prejudices. At a high level, there are two separate
notions of fairness: individual fairness and group fairness. Individual fairness is aimed
to guarantee fair prediction to each given individual, while group fairness aggregates
statistics of certain subpopulations, and compares them. There is a variety of fairness
notions for group fairness, such as demographic parity, equalized odds, equalized
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opportunity, and more (see [12]). Our main focus would be on multicalibration criteria
for group fairness [66]. Multicalibration of a predictor is defined as follows. There is
a prespecified set of subpopulations of interest. The predictor returns a value for each
individual (which can be interpreted as a probability). The multicalibration requires
that for any “large” subpopulation, and for any value which is predicted “frequently”
on that subpopulation, the predicted value and average realized values would be close
on this subpopulation. Note that calibration addresses the relationship between the
predicted and average realized values, and is generally unrelated to the prediction
quality. For example, if a population is half positive and half negative, a predictor
that predicts for every individual a value of 0.5 is perfectly calibrated but has poor
accuracy. The work of [66] proposes a specific algorithm to find a multicalibrated
predictor and derived its sample complexity. The work of [92] related the calibration
error to the prediction loss, specifically, it bounds the calibration error as a function
of the difference between the predictor loss and the Bayes optimal prediction loss.
Their bound implies that in a realizable setting, where the Bayes optimal hypothesis
is in the class, using ERM yields a vanishing calibration error, but in an agnostic
setting this does not hold. With the motivation of fairness in mind, it is important to
differentiate between the prediction loss and the calibration error. In many situations,
the society (through regulators) might sacrifice prediction loss to improve fairness,
and the right trade-off between them may be task dependent. On the other hand,
calibration imposes self-consistency, namely, that predicted values and the average
realized values should be similar for any protected group. In particular, there is no
reason to prefer un-calibrated predictors over calibrated ones, assuming they have
the same prediction loss. An important concept in this regard is uniform convergence.
We would like to guarantee that the multicalibration error on the sample and the true
multicalibration error are similar. This will allow society to rule-out un-calibrated
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predictors when optimizing over accuracy and other objectives that might depend on
the context and the regulator.
Our main results in this work are sample bounds that guarantee uniform convergence
of a given class of predictors. We start by deriving a sample bound for the case of a
finite hypothesis class, and derive a sample complexity bound which is logarithmic in
the size of the hypothesis class. Later, for an infinite hypothesis class, we derive a
sample bound that depends on the graph dimension of the class (which is an extension
of the VC dimension for multiclass predictions). Finally, we derive a lower bound on
the sample size required.
Technically, an important challenge in deriving the uniform convergence bounds is that
the multicalibration error depends, not only on the correct labeling but also on the
predictions by the hypothesis, similar in spirit to the internal regret notion in online
learning. We remark that these techniques are suitable to reproduce generalization
bounds for other complex measures such as F-score.

We stress that in contrast to previous works that either attained specific efficient
algorithms for finding calibrated predictors [66] or provided tight connections between
calibration error and prediction loss (mainly in the realizable case) [93], we take a
different approach. We concentrate on the statistical aspects of generalization bounds
rather than algorithmic ones, and similar to much of the generalization literature in
machine learning derive generalization bounds over calibration error for any predictor
class with a finite size or a finite graph dimension.

Nevertheless, our work does have algorithmic implications. For example, similarly to
running ERM, running empirical multicalibration risk minimization over a hypothesis
class with bounded complexity H and “large enough” training set, would output a
nearly-multicalibrated predictor, assuming one exists. We guarantee that the empirical
and true errors of this predictor would be similar, and derive the required sample size
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either as a function of the logarithm of the size of the predictor class or of its finite
graph dimension. Our bounds improve over previous sample complexity bounds and
also apply in more general settings (e.g., agnostic learning). So while multicalibration
uniform convergence is not formally necessary for learning multicalibrated predictors,
the advantage of our approach is that the learner remains with the freedom to choose
any optimization objectives or algorithms, and would still get a good estimation of
the calibration error. To the best of our knowledge, this also introduces the first
uniform convergence results w.r.t. calibration as a general notion (i.e., even not as a
fairness notion).

Related work: Calibration has been extensively studied in machine learning, statis-
tics and economics [57, 22, 56], and as a notion of fairness dates back to the 1960s
[37]. More recently, the machine learning community adapted calibration as an
anti-discrimination tool and studied it and the relationship between it and other
fairness criteria [35, 44, 83, 109, 95]. There is a variety of fairness criteria, other than
calibration, which address societal concerns that arise in machine learning. Fairness
notions have two major categories. Individual-fairness, that are based on similar-
ity metric between individuals and require that similar individuals will be treated
similarly [47]. Group-fairness, such as demographic-parity and equalized-odds, are
defined with respect to statistics of subpopulations [12]. Generalization and uniform
convergence are well-explored topics in machine learning, and usually assume some
sort of hypotheses class complexity measures, such as VC-dimension, Rademacher
complexity, Graph-dimension and Natarajan-dimension [16, 45, 118]. In this work
we build on these classic measures to derive our bounds. Generalization of fairness
criteria is a topic that receives great attention recently. The works of [82, 132] define
metric notions that are based on [47] and derive generalization guarantees. Other
works relax the assumption of a known fairness metric and derive generalization
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with respect to Individual Fairness based on oracle queries that simulate human
judgments [59, 14, 71]. Bounds for alternative fairness notions, such as equalized-odds,
gerrymandering, multi-accuracy, and envy-free appear in [130, 79, 81, 11]. We remark
that this work does not provide generalization bounds for margin classifiers in the
context of fairness, and we leave it for future work.

Multicalibration is a group-fairness notion that requires calibration to hold simultane-
ously on multiple subpopulations [66]. They proposed a polynomial-time differentially-
private algorithm that learns a multicalibrated predictor from samples in agnostic
setup. A byproduct of their choice of Differently Private algorithm is that their
algorithm and analysis is limited to a finite domain. Our work provides generalization
uniform convergence bounds that are independent of the algorithm that generates
them, and also improve their sample bounds. The work of [93] bounds the calibration
error by the square-root of the gap between its expected loss and the Bayes-optimal
loss, for a broad class of loss functions. While in realizable settings this gap is vanish-
ing, in agnostic settings this gap can be substantial. Our results do not depend on
the hypothesis’ loss to bound the calibration error, which allows us to give guarantees
in the agnostic settings as well.

2.1.2 Model and Preliminaries

Let X be any finite or countable domain (i.e., X is a population and each domain
point encodes an individual) and let {0, 1} be the set of possible outcomes. Let D
be a probability distribution over X × {0, 1}, i.e., a joint distribution over domain
points and their outcomes. Intuitively, given pairs (xi, yi), we assume that outcomes
yi ∈ {0, 1} are the realizations of underlying random sampling from independent
Bernoulli distributions with (unknown) parameters p∗(xi) ∈ [0, 1]. The goal of the
learner is to predict the (unknown) parameters p∗(xi), given a domain point xi. Let
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Y ⊆ [0, 1] be the set of possible predictions values. A predictor (hypothesis) h is
a function that maps domain points from X to prediction values v ∈ Y. A set of
predictors h : X → Y is a predictor class and denoted by H. Let Γ = {U1, ..., U|Γ|}

be a finite collection of subpopulations (possibly overlapping) from the domain X
(technically, Γ is a collection of subsets of X ). Throughout this chapter, we will
distinguish between the case where Y is a finite subset of [0, 1] and the case where
Y = [0, 1] (continuous). Both cases depart from the classical binary settings where
Y = {0, 1}, as predictors can return any prediction value v ∈ Y (e.g., v = 0.3). We
define Λ to be a partition of Y into a finite number of subsets, that would have
different representations in the continuous and finite cases. For the continuous case
where Y = [0, 1], we would partition Y into a finite set of intervals using a partition
parameter λ ∈ (0, 1] that would determinate the lengths of the intervals. Namely,
Λλ := {{Ij}

1
λ

−1
j=0 }, where Ij = [jλ, (j + 1)λ). When Y is finite, Λ would be a set of

singletons: Λ = {{v} : v ∈ Y} and h(x) ∈ I = {v} is equivalent to h(x) = v.

Definition 2.1 (Calibration error). The calibration error of predictor h ∈ H w.r.t. a
subpopulation U ∈ Γ and an interval I ⊆ [0, 1], denoted by c(h, U, I) is the difference
between the expectations of y and h(x), conditioned on domain points from U that h
maps to values in I. I.e.,

c(h, U, I) := E
D

[y | x ∈ U, h(x) ∈ I]− E
D

[h(x) | x ∈ U, h(x) ∈ I]

Notice that for the case where Y is finite, we can rewrite the expected calibration
error as

c(h, U, I = {v}) = E
D

[y | x ∈ U, h(x) = v]− v

Since calibration error of predictors is a measure with respect to a specific pair of
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subpopulation U and an interval I, we would like to have a notion that captures
“well-calibrated” predictors on “large enough” subpopulations and “significant enough”
intervals I that h maps domain points (individuals) to, as formalized in the following
definition.

Definition 2.2 (Category). A category is a pair (U, I) of a subpopulation U ∈ Γ and
an interval I ∈ Λ. We say that a category (U, I) is interesting according to predictor
h and parameters γ, ψ ∈ (0, 1], if PrD[x ∈ U ] ≥ γ and PrD [h(x) ∈ I | x ∈ U ] ≥ ψ.

We focus on predictors with calibration error of at most α for any interesting cate-
gory.

Definition 2.3 ((α, γ, ψ)–multicalibrated predictor). A predictor h ∈ H is (α, γ, ψ)–
multicalibrated, if for every interesting category (U, I) according to h, γ and ψ, the
absolute value of the calibration error of h w.r.t. the category (U, I) is at most α, i.e.,∣∣∣c(h, U, I)

∣∣∣ ≤ α.

We define empirical versions for calibration error and (α, γ, ψ)–multicalibrated pre-
dictor.

Definition 2.4 (Empirical Calibration error). Let (U, I) be a category and let Sm =
{(x1, y1), ..., (xm, ym)} be a training set of m samples drawn i.i.d. from D. The
empirical calibration error of a predictor h ∈ H w.r.t. (U, I) and S is:

ĉ(h, U, I, S) :=
m∑
i=1

I [xi ∈ U, h(xi) ∈ I]∑m
j=1 I [xj ∈ U, h(xj) ∈ I]yi −

m∑
i=1

I [xi ∈ U, h(xi) ∈ I]∑m
j=1 I [xj ∈ U, h(xj) ∈ I]h(xi),

where I [·] is the indicator function.

Notice that when Y is finite, since h(x) ∈ {v} is equivalent to h(x) = v, we can re-write
the empirical calibration error as: ĉ(h, U, I = {v}, S) := ∑m

i=1
I[xi∈U,h(xi)=v]∑m

j=1 I[xj∈U,h(xj)=v]yi −

v.
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Definition 2.5 ((α, γ, ψ)–Empirically multicalibrated predictor). A predictor h ∈ H
is (α, γ, ψ)–empirically multicalibrated on a sample S of i.i.d examples from D, if for
every interesting category (U, I) according to h, γ and ψ, we have

∣∣∣ĉ(h, U, I, S)
∣∣∣ ≤ α.

We assume that the predictors are taken from some predictor class H. Our main goal
is to derive sample bounds for the empirical calibration error to “generalize well” for
every h ∈ H and every interesting category. We formalize it as follows.

Definition 2.6 (Multicalibration Uniform Convergence). A predictor class H ⊆
YX has the multicalibration uniform convergence property (w.r.t. collection Γ) if
there exist a function mmc

H (ϵ, δ, γ, ψ) ∈ N, for ϵ, δ, γ, ψ ∈ (0, 1], such that for every
distribution D over X × {0, 1}, if Sm = {(x1, y1), · · · , (xm, ym)} is a training set
of m ≥ mmc

H (ϵ, δ, γ, ψ) examples drawn i.i.d. from D, then for every h ∈ H and
every interesting category (U, I) according to h, γ and ψ, the difference between the
calibration error and the empirical calibration error is at most ϵ with probability of at
least 1− δ, i.e., PrD[|ĉ(h, U, I, Sm)− c(h, U, I)| ≤ ϵ] > 1− δ.

We emphasize that the property of multicalibration uniform convergence w.r.t. a
predictor class H is neither a necessary nor sufficient for having multicalibrated
predictors h ∈ H. Namely, having uniform convergence property implies only that
the empirical and true errors are similar, but does not imply that they are small.
In addition, having a predictor with zero multicalibration error (realizability) does
not imply anything about the generalization multicalibration error. For example, if
H contains all the possible predictors, there will clearly be a zero empirical error
predictor who’s true multicalibration error is very high.
When H is an infinite predictor class, we can achieve generalization by assuming a
finite complexity measure. VC-dimension (the definition appears in Section 2.1.6)
measures the complexity of binary hypothesis classes. In this work, we rephrase
the generalization problem of multicalibration in terms of multiple generalization
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problems of binary hypothesis classes with finite VC-dimension, and derive sample
complexity bounds for it. So our goal is to approximate the (true) calibration error by
estimating it on a large sample. Namely, we would like have a property which indicates
that a large-enough sample will result a good approximation of the calibration-error
for any hypothesis h ∈ H and any interesting category (U, I) according to h. Our
technique for achieving this property uses known results about binary classification.
We mention the definitions of “risk function”, “empirical-risk function” and “uniform
convergence for statistical learning” (the latter appears in Section 2.1.6). For this
purpose, h : X → {0, 1} would denote a binary hypothesis, ℓ : Y × {0, 1} → R+,
denotes a loss function and D stays a distribution over X × {0, 1}.

Definition 2.7 (Risk function, Empirical risk). The risk function, denoted by LD, is
the expected loss of a hypothesis h w.r.t D, i.e., LD(h) := E(x,y)∼D[ℓ(h(x), y)]. Given
a random sample S = ((xi, yi))mi=1 of m examples drawn i.i.d. from D, the empirical
risk is the average loss of h over the sample S i.e., LS(h) := 1

m

∑m
i=1 ℓ(h(xi), yi).

Note that the definitions of uniform convergence for statistical learning and the
multicalibration uniform convergence are distinct. A major difference is that while
the notion of uniform convergence for statistical learning imposes a requirement on
the risk, which is defined using an expectation over a fixed underlying distribution
D, the notion of multicalibration uniform convergence imposes a requirement on the
calibration error, in which the expectation is over a conditional distribution that
depends on the predictor. When the prediction range, Y , is discrete, we consider the
standard multiclass complexity notions– Graph-dimension and Natarjan dimension,
which are define as follows.

Definition 2.8 (Graph Dimension). Let H ⊆ YX be a hypothesis class from domain
X to a finite set Y and let S ⊆ X . We say that H G-shatters S if there exists a
function f : S → Y such that for every T ⊆ S there exists a hypothesis h ∈ H such
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that ∀x ∈ S : h(x) = f(x) ⇐⇒ x ∈ T . The graph dimension of H, denoted dG(H),
is the maximal cardinality of a set that is G-shattered by H.

Definition 2.9 (Natarajan Dimension). Let H ⊆ YX be a hypothesis class from
domain X to a finite set Y and let S ⊆ X . We say that H N-shatters S if there
exists functions f0, f1 : S → Y such that for every x ⊆ S it holds that f0(x) ̸= f1(x),
and for every T ⊆ S there exists a hypothesis h ∈ H such that ∀x ∈ T : h(x) =
f0(x), and ∀x ∈ S \ T, h(x) = f1(x). The graph dimension of H, denoted dG(H), is
the maximal cardinality of a set that is N-shattered by H.

Our Contributions

Within [117], we derived two upper bounds. The first one (in Theorem 2.10) is for
finite predictor classes, in which we discretize Y = [0, 1] into Λλ and derive a bound
which depends logarithmicly on λ−1. The second one (Theorem 2.11) is for infinite
predictor classes with discrete prediction values set Y and finite graph-dimension.
We also complemented the upper bounds with a lower bound result in Theorem 2.12.
In this thesis we improve the lower bound, making it...[CONTINUE FROM HERE[]]

Theorem 2.10. Let H ⊆ YX be a finite predictor class. Then, H has the uniform
multicalibration convergence property with mmc

H (ϵ, δ, γ, ψ) = O
(

1
ϵ2γψ

log (|Γ||H|/δλ)
)
.

Theorem 2.11. LetH ⊆ YX be an infinite predictor class from domain X to a discrete
prediction set Y with finite graph-dimension dG(H) ≤ d, then H has the uniform multi-
calibration convergence property with mmc

H (ϵ, δ, γ, ψ) = O
(

1
ϵ2ψ2γ

(d+ log (|Γ||Y|/δ))
)
.

Theorem 2.12. Let H be a finite predictor class or an infinite predictor class with
finite graph-dimension dG(H) ≤ d. Then, H has multicalibration uniform convergence
with m(ϵ, δ, ψ, γ) = Ω( 1

ψγϵ2
ln(1/δ)) samples.
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Relation to prior work

Rewriting the sample bound of [66] using our parameters, they have a sample
complexity of O

(
1

ϵ3ψ3/2γ3/2 log( |Γ|
ϵγδ

)
)
. Comparing the bounds, the most important

difference is the dependency on ϵ, the generalization error. They have a dependency of
ϵ−3, while we have of ϵ−2, which is tight due to our lower bound. For the dependency
on γ, they have γ−3/2, while we have γ−1, which is also tight. For the dependency on
ψ, they have ψ−3/2, while we have ψ−1 for a finite hypothesis class (which is tight
due to our lower bound) and ψ−2 for an infinite hypothesis class. Finally, recall
that the bound of [66] applies only to their algorithm and since it is a differentially
private algorithm, it requires the domain X to be finite, while our results apply to
continuous domains as well. Note that having (α, γ, ψ)– empirically multicalibrated
predictor on large random sample, guarantees that, with high probability, it is also
(α+ ϵ, γ, ψ)–mutlicalibrated with respect to the underlying distribution, where ϵ is
the generalization error that depends on the sample size.

2.1.3 Predictor Classes with Finite Graph Dimension

fThroughout this section we assume that the predictions set Y is discrete. This
assumption allows us to analyze the multicalibration generalization of possibly infinite
hypothesis classes with finite known multiclass complexity measures such as the
graph-dimension. (We discuss the case of Y = [0, 1] at the end of the section.) Recall
that in this setup, the prediction-intervals set, Λ, contains singleton intervals with
values taken from Y , namely, Λ = {{v} | v ∈ Y}. Thus, if a prediction, h(x) is in the
interval {v}, it means the prediction value is exactly v, i.e., h(x) ∈ {v} ⇔ h(x) = v.
As we have mentioned earlier, part of our technique is to reduce multicalibration
generalization to the generalization analysis of multiple binary hypothesis classes to
get sample complexity bounds. The Fundamental Theorem of Statistical Learning
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(see Theorem 2.33, Section 2.1.6) provides tight sample complexity bounds for uniform
convergence for binary hypothesis classes. A direct corollary of this theorem indicates
that by using “large enough” sample, the difference between the true probability
to receive a positive outcome and the estimated proportion of positive outcomes, is
small, with high probability.

Corollary 2.13. Let H ⊆ {0, 1}X be a binary hypothesis class with V Cdim(H) ≤
d. Then, there exists a constant C ∈ R such that for any distribution D, and
parameters ϵ, δ ∈ (0, 1), if S = {xi, yi}mi=1 is a sample of m i.i.d. examples from
D, and m ≥ C((d + log(1/δ))/ϵ2) then with probability at least 1 − δ, ∀h ∈ H :∣∣∣ 1
m

∑m
i=1 h(xi)− Prx∼D[h(x) = 1]

∣∣∣ < ϵ.

Before we move on, we want to emphasize the main technical challenge in deriving
generalization bounds for infinite predictor classes. Unlike PAC learning, in multi-
calibration learning the distribution over the domain is dependent on the predictors
class. Each pair of h ∈ H, v ∈ Y induce a distribution over the domain points x such
that h(x) = v. As the number of predictors in the class is infinite, we cannot apply a
simple union bound over the various induced distributions. This is a main challenge
in our proof. In order to utilize the existing theory about binary hypothesis classes
we have to represent the calibration error in terms of binary predictors. For this
purpose, we define the notion of “binary predictor class”, Hv ⊆ {0, 1}X , that depends
on the original predictor class H and on a given prediction value v ∈ Y . Each binary
predictor hv ∈ Hv corresponds to a predictor h ∈ H and value v ∈ Y and predicts 1
on domain points x if h predicts v on them (and 0 otherwise).

Definition 2.14 (Binary Predictor). Let h ∈ H be a predictor and let v ∈ Y be
a prediction value. The binary predictor of h and v, denoted hv(x), is the binary
function that receives x ∈ X and outputs 1 iff h(x) = v, i.e., hv(x) = I [h(x) = v].
The binary predictor class w.r.t. the original predictor class H and value v ∈ Y,
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denoted by Hv, is defined as Hv = {hv : h ∈ H}.

The definition of binary predictors alone is not sufficient since it ignores the outcomes
y ∈ {0, 1}. Thus, we define true positive function, ϕhv ∈ ΦHv , that corresponds to
a binary predictor hv, such that given a pair (x ∈ X , y ∈ {0, 1}), it outputs 1 iff
hv(x) = 1 and y = 1.

Definition 2.15 (True positive function). Let Hv ⊆ {0, 1}X be a binary predictor
class and let hv ∈ Hv be a binary predictor. Then, the true positive function w.r.t.
hv is ϕhv(x, y) := I [hv(x) = 1, y = 1]. The true positive class of Hv, is defined
ΦHv := {ϕhv : hv ∈ Hv}.

Using the above definitions we can re-write the calibration error as follows. Let
Iv = {v} be a singleton interval. Then, the calibration error and the empirical
calibration errors take the following forms:

c(h, U, Iv) = E
D

[y | x ∈ U, h(x) = v]− v = Pr
(x,y)∼D

[y = 1 | x ∈ U, h(x) = v]− v.

ĉ(h, U, Iv, S) =
m∑
i=1

I [xi ∈ U, h(xi) = v]∑m
j=1 I [xj ∈ U, h(xj) = v]yi − v

=
∑m
i=1 I [xi ∈ U, h(xi) = v, yi = 1]∑m

j=1 I [xj ∈ U, h(xj) = v] − v.

The probability term in the calibration error notion is conditional on the subpopu-
lation U ∈ Γ and on the prediction value h(x). Thus, different subpopulations and
different predictors induce different distributions on the domain X . To understand
the challenge, consider the collection of conditional distributions induced by h ∈ H
and an interesting category (U, I). Since H is infinite, we have an infinite collection of
distributions, and guaranteeing uniform convergence for such a family of distributions

21



is challenging. In order to use the fundamental theorem of learning (Theorem 2.33),
we circumvent this difficulty by re-writing the calibration error as follows.

c(h, U, Iv) = Pr
(x,y)∼D

[y = 1 | x ∈ U, h(x) = v]− v = Pr [y = 1, h(x) = v | x ∈ U ]
Pr [h(x) = v | x ∈ U ] − v.

Later , we will separately approximate the numerator and denominator.
Finally, we use the definitions of binary predictor, hv, and true positive functions ϕhv ,
to represent the calibration error in terms of binary functions. Thus, the calibration
error and the empirical calibration error take the following forms:

c(h, U, Iv) = Pr [y = 1, h(x) = v | x ∈ U ]
Pr [h(x) = v | x ∈ U ] − v = Pr [ϕhv(x, y) = 1 | x ∈ U ]

Pr [hv(x) = 1 | x ∈ U ] − v,

ĉ(h, U, Iv, S) =
∑m
i=1 I [xi ∈ U, h(xi) = v, yi = 1]∑m

j=1 I [xj ∈ U, h(xj) = v] − v

=
∑m
i=1 I [xi ∈ U, ϕhv(xi, yi) = 1]∑m
j=1 I [xj ∈ U, hv(xj) = 1] − v.

Since the calibration error as written above depends on binary predictors, if we
can prove that the complexity of the hypothesis classes containing them has finite
VC-dimension, then we will be able to approximate for each term separately. Recall
that in this section we are dealing with multiclass predictors, which means that we
must use multiclass complexity notion. We analyze the generalization of calibration
by assuming that the predictor class H has a finite graph-dimension. The following
lemma states that a finite graph dimension of H implies finite VC-dimension of the
binary prediction classesHv for any v ∈ Y . This result guarantees good approximation
for the denominator term, Pr [hv(x) = 1 | x ∈ U ], in the calibration error. We remark
that while the following lemma is also a direct corollary when considering graph
dimension as a special case of Psi-dimension [16], for completeness,
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Lemma 2.16. Let H ⊆ YX be a predictor class such that dG(H) ≤ d. Then, for any
v ∈ Y, V Cdim(Hv) ≤ d.

In addition to the complexity bound of the binary predictor classes Hv, we would like
to derive a bound on the VC-dimension of the prediction-outcome classes ΦHv which
would enable a good approximation of the numerator term, Pr [ϕhv(x, y) = 1 | x ∈ U ]
in the calibration error. This bound is achieved by using the following lemma that
indicates that the VC-dimension of ΦHv is bounded by the VC-dimension of Hv.

Lemma 2.17. Let Hv ⊆ {0, 1}X be a binary predictor class with V Cdim(Hv) ≤ d,
and let ΦHv be the true positive class w.r.t. Hv. Then, V Cdim(ΦHv) ≤ d.

The fact that the VC-dimensions of Hv and ΦHv are bounded enables to utilize
the existing theory and derive sampling bounds for accurate approximations for
the numerator and the denominator of the calibration error with high probability,
respectively. Lemma 2.18 formalizes these ideas.

Lemma 2.18. Let H ⊆ YX be a predictor class with dG(H) ≤ d. Let v ∈ Y be a
prediction value and let U ⊂ X be a subpopulation. Then, there exist a constant
C ∈ R such that for any distribution D over X × {0, 1} and ϵ, δ ∈ (0, 1), if DU is
the induced distribution on U × {0, 1} and S = {xi, yi}mi=1 is a random sample of size
m ≥ C d+log(1/δ)

ϵ2
drawn i.i.d. according to DU , then with probability at least 1− δ for

every h ∈ H:
∣∣∣∣∣ 1
m

m∑
i=1

I [h(xi) = v]− Pr
DU

[h(x) = v]
∣∣∣∣∣ ≤ ϵ, and∣∣∣∣∣ 1

m

m∑
i=1

I [h(xi) = v, y = 1]− Pr
DU

[h(x) = 1, y = 1]
∣∣∣∣∣ ≤ ϵ.

Having an accurate approximation of the denominator and numerator terms of the
calibration error does not automatically implies good approximation for it. For
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example, any approximation error in the numerator is scaled by 1 divided by the
denominator’s value. The following lemma tells us how accurate the approximations of
the numerator and the denominator should be in order to achieve good approximation
of the entire fraction, given a lower bound on the true value of the denominator.

Lemma 2.19. Let p1, p2, p̃1, p̃2, ϵ, ψ ∈ [0, 1] such that p1, ψ ≤ p2 and |p1 − p̃1| ,

|p2 − p̃2| ≤ ψϵ/3. |p1/p2 − p̃1/p̃2| ≤ ϵ.

Since multicalibration uniform convergence requires empirical calibration errors of
interesting categories to be close to their respective (true) calibration errors, a
necessary condition is to have a large sample from every large subpopulation U ∈ Γ.
The following lemma indicates the sufficient sample size to achieve a large subsample
from every large subpopulation with high probability.

Lemma 2.20. Let γ ∈ (0, 1) and let Γγ = {U ∈ Γ | Prx∼D[x ∈ U ] ≥ γ} be the
collection of subpopulations from Γ that has probability at least γ according to D.
Let δ ∈ (0, 1) and let S = {(xi, yi)}mi=1 be a random sample of m i.i.d. examples
from D. Then, with probability at least 1 − δ, if m ≥ 8

γ
log (|Γ|/δ), it holds that

∀U ∈ Γγ : |S ∩ U | > γm
2 .

The following theorem combines all the intuition described above and prove an upper
bound on the sample size needed to achieve multicalibration uniform convergence.
It assumes that the predictor class H has a finite graph-dimension, dG(H) and uses
Lemma 2.16 and Lemma 2.17 to derive an upper bound on the VC-dimension of
Hv and ΦHv . Then, it uses Lemma 2.18 to bound the sample complexity for “good”
approximation of the numerator and the denominator of the calibration error.

Theorem 2.11. LetH ⊆ YX be an infinite predictor class from domain X to a discrete
prediction set Y with finite graph-dimension dG(H) ≤ d, then H has the uniform multi-
calibration convergence property with mmc

H (ϵ, δ, γ, ψ) = O
(

1
ϵ2ψ2γ

(d+ log (|Γ||Y|/δ))
)
.
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The proof of Theorem 2.11 uses the relative Chernoff bound (Lemma 2.30) to show
that with probability at least 1− δ/2, every subpopulation U ∈ Γ with PrD[U ] ≥ γ,
has a sub-sample of size at least γm

2 , namely |S ∩ U | ≥ γm
2 . Then, it uses Lemmas

2.16 and 2.17 to show that for every v ∈ Y, V Cdim(ΦHv) ≤ V Cdim(Hv) ≤ dG(H).
It proceeds by applying Lemma 2.18 to show that, with probability at least 1− δ/2,
for every prediction value v ∈ Y and every subpopulation U ∈ Γ, if |S ∩ U | ≥
γm
2 , then:

∣∣∣∣∣Pr [ϕhv(x, y) = 1 | x ∈ U ]− 1
|S∩U |

∑m
i=1 I [xi ∈ U, ϕhv(xi, yi) = 1]

∣∣∣∣∣ ≤ ψϵ
3 , and∣∣∣∣∣Pr [hv(x) = 1 | x ∈ U ]− 1

|S∩U |
∑m
j=1 I [xj ∈ U, hv(xj) = 1]

∣∣∣∣∣ ≤ ψϵ
3 .

Finally, it concludes the proof of Theorem 2.11 using Lemma 2.19.

The following corollary indicates that having (α, γ, ψ)– empirically multicalibrated
predictor on a large random sample guarantees a (α+ϵ, γ, ψ)–mutlicalibrated predictor
with respect to the underlying distribution with high probability, where ϵ is a
generalization error that depends on the sample size. It follows immediately from
Theorem 2.11.

Corollary 2.21. Let H ⊆ YX be a predictor class with dG(H) ≤ d and let D be a
distribution over X×{0, 1}. Let S be a random sample of m examples drawn i.i.d. from
D and let h ∈ H be (α, γ, ψ)– empirically multicalibrated predictor on S. Then, there
exists a constant C > 0 such that for any ϵ, δ ∈ (0, 1), if m ≥ C

ϵ2ψ2γ
(d+ log (|Γ||Y|/δ)),

then with probability at least 1−δ, h is (α+ϵ, γ, ψ)–multicalibrated w.r.t. the underlying
distribution D.

Finite versus continuous Y: We have presented all the results for the infinite
predictor class using a finite prediction-interval set Λ = {{v}|v ∈ Y}. We can extend
our results to the continuous Y = [0, 1] in a straightforward way. We can simply
round the predictions to a value jλ, and there are 1/λ such values. This will result
in an increase in the calibration error of at most λ. (Note that in the finite predictor
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class case, we have a more refine analysis that does not increase the calibration error
by λ.) The main issue with this approach is that the graph-dimension depends on
the parameter λ through the induced values jλ. Since we select λ and the points jλ,
the magnitude of graph-dimension depends not only on the predictor class but also
on parameters which are in our control, and therefore harder to interpret. For this
reason we preferred to present our results for the finite Y case, and remark that one
can extend them to the continuous Y = [0, 1] case.

2.1.4 Lower Bounds

We prove a lower bound for the required number of samples to get multicalibration
uniform convergence. The proof is done by considering a predictor class with a single
predictor that maps γψ fraction of the population to 1/2 + ϵ. We show that this class
has multicalibration uniform convergence property for 1/2 + ϵ and then show how to
use this property to distinguish between biased coins, which yield a lower bound of
Ω( 1

ψγϵ2
ln(1/δ)) on the sample complexity.

Theorem 2.12. Let H be a finite predictor class or an infinite predictor class with
finite graph-dimension dG(H) ≤ d. Then, H has multicalibration uniform convergence
with m(ϵ, δ, ψ, γ) = Ω( 1

ψγϵ2
ln(1/δ)) samples.

Theorem 2.22. Let H be an infinite predictor class with finite graph-dimension,
dN(H) = d. Then, for every ψ ≤ 1/2, H has (ϵ, ψ, γ, δ)−multicalibration uniform
convergence with m = Ω(d) samples.

Theorem 2.23. Let H be a finite predictor class or an infinite predictor class. Then,
for every ψ ≤ 1/2, H has (ϵ, ψ, γ, δ)−multicalibration uniform convergence with
m = Ω(log |Γ|) samples.
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2.1.5 F-Score Uniform Convergence

Given a binary classification task, F-score is a measure used in data science for the
accuracy of a predictor. The F-score is a function of the precision and recall of
the predictor, where precision is the number of true positive results divided by the
amount of all (including mislabeled) positive samples, and recall is the number of
true positive samples divided by the amount of all (truly) positive samples.

Formally, we define the following error measurements: true positive rate, precision, and
recall. We then use these measurements in the formal definition of the F−scores.

Error measurements Let h be a predictor, and let D be a distribution over X ×Y .
Then, the true positive (TP) of h is defined as

TP (h) := Pr
(x,y)∼D

[h(x) = y = 1],

The precision and recall of a predictor h are defined as

precision(h) = TP (h)
E(x,y)∼D[h(x) = 1] recall(h) = TP (h)

E(x,y)∼D[y] .

For convince, whenever it is clear from the context we write Pr[·], instead of
Pr(x,y)∼D[·].

Moving on to the definitions of Fβ-Score and F1 scores.

Definition 2.24. Let h ∈ {0, 1}X be a predictor, D denote be a distribution over
X × Y, and let β ≥ 0 be a parameter. The Fβ score of h is

Fβ(h) = (1 + β2) precision(h) · recall(h)
β2 · precision(h)) + recall(h) = (1 + β2) Pr[h(x) = y = 1]

β2 Pr[y = 1] + Pr[h(x) = 1] .
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F1 score is the balanced Fβ-score, i.e.,

F1(h) = 2
precision−1(h) + recall−1(h)

= 2 Pr[h(x) = y = 1]
Pr[y = 1] + Pr[h(x) = 1] = 2 Pr[h(x) = y = 1]

2 Pr[h(x) = y = 1] + Pr[h(x) ̸= y] .

Next, we adjust the definition of Fβ to subpopulations.

Definition 2.25. Let h ∈ {0, 1}X be a predictor, D denote be a distribution over
X × Y, and let β ≥ 0 be a parameter. The Fβ score of predictor h and subpopulation
U ∈ Γ is

Fβ(h, U) = (1 + β2) Pr[h(x) = y = 1, x ∈ U ]
β2 Pr[y = 1, x ∈ U ] + Pr[h(x) = 1, x ∈ U ] .

We remark that the F1 score is the balanced F−score, i.e.,

F1(h, U) = 2 Pr[h(x) = y = 1, x ∈ U ]
Pr[y = 1|x ∈ U ] + Pr[h(x) = 1, x ∈ U ]

= 2 Pr[h(x) = y = 1, x ∈ U ]
2 Pr[h(x) = y = 1, x ∈ U ] + Pr[h(x) ̸= y, x ∈ U ] .

Similarly, we define the empirical F−score of a subpopulation.

Definition 2.26. Let h ∈ {0, 1}X be a predictor, D denote be a distribution over
X × Y, and let β ≥ 0 be a parameter. The empirical Fβ score of predictor h and
subpopulation U ∈ Γ is

F̂β(h, U, S) := (1 + β2)
∑m
i=1 I [xi ∈ U, h(xi) = yi = 1]

β2∑m
i=1 I [xi ∈ U, yi = 1] +∑m

i=1 I [xi ∈ U, h(xi) = 1] .

Next, we define Uniform Convergence for F-Score.

Definition 2.27 (F-Score Uniform Convergence). A predictor class H ⊆ {0, 1}X has
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the F-Score uniform convergence property (w.r.t. collection Γ) if there exist a function
mF

H(ϵ, δ, γ, β) ∈ N, for ϵ, δ, γ,∈ (0, 1], β ≥ 0, such that for every distribution D over
X × {0, 1}, if Sm = {(x1, y1), · · · , (xm, ym)} is a training set of m ≥ mF

H(ϵ, δ, γ, β)
examples drawn i.i.d. from D, then for every h ∈ H and every subpopulation U s.t.
Pr[x ∈ U ] ≥ γ, the difference between the F-score and the empirical F-score is at
most ϵ with probability of at least 1− δ, i.e.,

Pr
D

[|Fβ(h, U)− F̂β(h, U, S)| ≤ ϵ] > 1− δ.

We finish the section with a theorem that states the sample complexity required for
F-score uniform convergence for subpopulations set, Γ. The proof follows from the
the same techniques we have applied in Section 2.1.3.

Theorem 2.28. Let H ⊆ {0, 1}X be an infinite predictor class from domain X to a dis-
crete prediction set Y with finite graph-dimension dG(H) ≤ d, then H has the uniform
multicalibration convergence property with mF

H(ϵ, δ, γ, ψ) = O
(

1
ϵ2γ

(d+ log (|Γ|/δ))
)
.
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2.1.6 Useful Definitions & Theorems

Throughout this chapter, we used the following standard Chernoff bounds.

Lemma 2.29 (Absolute Chernoff Bound). Let X1, ..., Xn be i.i.d. binary random vari-
ables with E[Xi] = µ for all i ∈ [n]. Then, for any ϵ > 0: Pr

[∣∣∣ 1
n

∑n
i=1 Xi − µ

∣∣∣ ≥ ϵ
]
≤

2 exp(−2ϵ2n).

Lemma 2.30 (Relative Chernoff Bound). Let X1, ..., Xn be i.i.d. binary random
variables and let X denote their sum. Then, for any ϵ ∈ (0, 1):Pr [X ≤ (1− ϵ)E[X]] ≤
exp(−ϵ2 E[X]/2).

Next, the definition of Vapnik–Chervonenkis dimension, following by Uniform con-
vergence for statistical learning and the Fundamental Theorem of Statistical Learn-
ing.

Definition 2.31. [VC-dimension] Let H ⊆ {0, 1}X be a hypothesis class. A subset
S = {x1, ..., x|S|} ⊆ X is shattered by H if:

∣∣∣{(h(x1), ..., h(x|S|)
)

: h ∈ H
}∣∣∣ = 2|S|.

The VC-dimension of H, denoted V Cdim(H), is the maximal cardinality of a subset
S ⊆ X shattered by H.

Definition 2.32 (Uniform convergence for statistical learning). Let H ⊆ YX be a
hypothesis class. We say that H has the uniform convergence property w.r.t. loss
function ℓ if there exists a function msl

H(ϵ, δ) ∈ N such that for every ϵ, δ ∈ (0, 1) and
for every probability distribution D over X × {0, 1}, if S is a sample of m ≥ msl

H(ϵ, δ)
examples drawn i.i.d. from to D, then, with probability of at least 1 − δ, for every
h ∈ H, the difference between the risk and the empirical risk is at most ϵ. Namely,
with probability 1− δ, ∀h ∈ H : |LS(h)− LD(h)| ≤ ϵ.

Theorem 2.33. [The Fundamental Theorem of Statistical Learning] Let H ⊆ {0, 1}X

be a binary hypothesis class with V Cdim(H) = d and let the loss function, ℓ, be the
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0− 1 loss. Then, H has the uniform convergence property with sample complexity
mUC

H (ϵ, δ) = Θ
(

1
ϵ2

(d+ log(1/δ))
)
.

2.1.7 Proofs for Finite Graph Dimension Classes (Section 2.1.3)

Proof. (Proof of Lemma 2.16)
Let us assume that V Cdim(Hv) > d and let S be a sample of size d + 1 such that
Hv shatters S.

Let us define the function f : S → Y as:

∀x ∈ S : f(x) = v

Let T ⊆ S be an arbitrary subset of S. By assuming that Hv shatters S we know
that there exists hv ∈ Hv such that:

∀x ∈ S : hv(x) = 1 ⇐⇒ x ∈ T

This means that for the corresponding predictor h ∈ H:

∀x ∈ S : h(x) = v = f(x) ⇐⇒ x ∈ T

Thus, using our definition of f ,

∀T ⊆ S,∃h ∈ H,∀x ∈ S : h(x) = f(x) ⇐⇒ x ∈ T

Which means that S is G-shattered by H. However, since |S| > d, it is a contradiction
to the assumption that dG(H) ≤ d.
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Proof. (Proof of Lemma 2.17)
Assume that V Cdim(ΦHv) > d and let S be a sample of d + 1 domain points and
outcomes shattered by ΦHv .

Note that y = 0 implies that ∀hv ∈ Hv,∀x ∈ X : ϕhv(x, y) = 0. Thus, ∀(x, y) ∈ S :
y = 1 (otherwise S cannot be shattered).

Let Sx = {xj : (xj, yj) ∈ S}. Observe that when y = 1, ∀hv ∈ Hv,∀x ∈ X :
ϕhv(x, 1) = hv(x). Thus, the fact that S is shattered by ΦHv implies that Sx is
shattered by Hv. However, |Sx| = d + 1. Thus, we have a contradiction to the
assumption that V Cdim(ΦHv) > d.

Proof. (Proof of Lemma 2.18)
Let Hv and ΦHv be the binary prediction and binary prediction-outcome classes of H.

Using Lemmas 2.16 and 2.17, and since dG(H) ≤ d, we know that V Cdim(ΦHv) ≤
V Cdim(Hv) ≤ d.

In addition, note that:
∣∣∣∣∣ 1
m

m∑
i=1

I [h(xi) = v]− Pr
x∼DU

[h(x) = v]
∣∣∣∣∣ =

∣∣∣∣∣ 1
m

m∑
i=1

hv(xi)− Pr
x∼DU

[hv(x) = 1]
∣∣∣∣∣ ,

And
∣∣∣∣∣ 1
m

m∑
i=1

I [h(xi) = v, y = 1]− Pr
(x,y)∼DU

[h(x) = v, y = 1]
∣∣∣∣∣ =

∣∣∣∣∣ 1
m

m∑
i=1

ϕh,v(xi, y1)− Pr
(x,y)∼DU

[ϕh,v(x, y)]
∣∣∣∣∣ .

and the lemma follows directly from Corollary 2.13.

Proof. (Proof of Lemma 2.19)
Let us denote ξ := ψϵ/3

32



p1

p2
− p̃1

p̃2
≤ p1

p2
− p1 − ξ
p2 + ξ

= p1(1 + ξ/p2)
p2(1 + ξ/p2)

− p1 − ξ
p2(1 + ξ/p2)

= ξ

p2(1 + ξ/p2)

[
p1

p2
+ 1

]

Since p1, ψ ≤ p2,

ξ

p2(1 + ξ/p2)

[
p1

p2
+ 1

]
≤ ξ

p2

[
p2

ψ
+ p2

ψ

]
= 2ξ

ψ
≤ 3ξ

ψ
= ϵ.

Similarly,

p̃1

p̃2
− p1

p2
≤ p1 + ξ

p2 − ξ
− p1

p2
= p1 + ξ

p2(1− ξ/p2)
− p1(1− ξ/p2)
p2(1− ξ/p2)

= ξ

p2(1− ξ/p2)

[
1 + p1

p2

]
.

Since p1, ψ ≤ p2,

ξ

p2(1− ξ/p2)

[
1 + p1

p2

]
≤ ξ

p2(1− ξ/ψ)

[
p2

ψ
+ p2

ψ

]
= 2ξ
ψ(1− ξ/ψ) = 2ϵ

3(1− ϵ/3) ≤
2ϵ

3(1− 1/3) = ϵ

Thus, ∣∣∣∣∣p1

p2
− p̃1

p̃2

∣∣∣∣∣ ≤ ϵ

Proof. (Proof of Lemma 2.20) Let PU denote the probability of subpopulation U :

PU := Pr
x∼D

[x ∈ U ]

Using the relative Chernoff bound (Lemma 2.30) and since E[|S ∩U |] = mPU , we can
bound the probability of having a small sample size in U . Namely, if PU ≥ γ, then:

Pr
D

[
|S ∩ U | ≤ γm

2

]
≤ Pr

D

[
|S ∩ U | ≤ mPU

2

]
≤ e− mPU

8 ≤ e− γm
8
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Thus, for any U ∈ Γγ, if m ≥ 8 log( |Γ|
δ )

γ
, then, with probability of at least 1− δ

|Γ| ,

|S ∩ U | > γm

2

Finally, using the union bound, with probability at least 1− δ, for all U ∈ Γγ,

|S ∩ U | > γm

2

Proof. (Proof of Theorem 2.11)

Let S = {(x1, y1), ..., (xm, ym)} be a sample of m labeled examples drawn i.i.d.
according to D, and let SU := {(x, y) ∈ S : x ∈ U} be the samples in S that belong
to subpopulation U .

Let Γγ denote the set of all subpopulations U ∈ Γ that has probability of at least γ:

Γγ := {U ∈ Γ | Pr
x∼D

[x ∈ U ] ≥ γ}

Let us assume the following lower bound on the sample size:

m ≥
8 log

(
2|Γ|
δ

)
γ

Thus, using Lemma 2.20, we can bound the probability of having a subpopulation
U ∈ Γγ with small number of samples. Namely, we know that with probability of at
least 1− δ/2, for every U ∈ Γγ:

|SU | ≥
γm

2
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Next, we would like to show that having a large sample size in U implies accurate
approximation of the calibration error, with high probability, for any interesting
category in (U, I). For this purpose, let us define ϵ′, δ′ as:

ϵ′ := ψϵ

3

δ′ := δ

4|Γ||Y|

By using Lemma 2.18 and since dG(H) ≤ d, we know that there exists some constant
a > 0, such that, for any v ∈ Y and any U ∈ Γγ, with probability at least 1− δ′, a
random sample of m1 examples from U , where,

m1 ≥ a
d+ log(1/δ′)

ϵ′2 = 9a
d+ log(4|Γ||Y|

δ
)

ϵ2ψ2

will have,

∀h ∈ H :
∣∣∣∣∣ 1
m1

∑
x′∈SU

I [h(x′) = v]− Pr [h(x) = v | x ∈ U ]
∣∣∣∣∣ ≤ ϵ′ = ψϵ

3

By using Lemma 2.18 and since dG(H) ≤ d, we know that for any v ∈ Y and any
U ∈ Γγ, with probability at least 1 − δ′, a random sample of m2 labeled examples
from U × {0, 1}, where,

m2 ≥ a
d+ log(1/δ′)

ϵ′2 = 9a
d+ log(4|Γ||Y|

δ
)

ϵ2ψ2
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will have,

∀h ∈ H :
∣∣∣∣∣ 1
m2

∑
(x′,y′)∈SU

I [h(x′) = v, y′ = 1]− Pr [h(x) = v, y = 1 | x ∈ U ]
∣∣∣∣∣ ≤ ϵ′ = ψϵ

3

Let us define the constant a′ in a manner that sets an upper bound on both m1 and
m2:

a′ := 18a

and let m′ be that upper bound:

m′ := a′d+ log
(

|Γ||Y|
δ

)
ψ2ϵ2 ≥ max(m1,m2)

Then, by the union bound, if for all subpopulation U ∈ Γγ, |SU | ≥ m′, then, with
probability at least 1− 2|Γ||Y|δ′ = 1− δ

2 :

∀h ∈ H, ∀U ∈ Γγ,∀v ∈ Y :∣∣∣∣∣ 1
|SU |

∑
(x′,y′)∈SU

I [h(x′) = v]− Pr [h(x) = v | x ∈ U ]
∣∣∣∣∣ ≤ ψϵ

3

∀h ∈ H, ∀U ∈ Γγ,∀v ∈ Y :∣∣∣∣∣ 1
|SU |

∑
(x′,y′)∈SU

I [h(x′) = v, y′ = 1]− Pr [h(x) = v, y = 1 | x ∈ U ]
∣∣∣∣∣ ≤ ψϵ

3

Let us choose the sample size m as follows:

m := 2m′

γ
= 2a

d+ log
(

|Γ||Y|
δ

)
ψ2ϵ2γ
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Recall that with probability at least 1− δ/2, for every U ∈ Γγ:

|SU | ≥
γm

2 = m′

Thus, using the union bound once again, with probability at least 1− δ:

∀h ∈ H,∀U ∈ Γγ,∀v ∈ Y : ∣∣∣∣∣ 1
|SU |

∑
x′∈SU

I [h(x′) = v]− Pr [h(x) = v | x ∈ U ]
∣∣∣∣∣ ≤ ψϵ

3

∀h ∈ H,∀U ∈ Γγ,∀v ∈ Y : ∣∣∣∣∣ 1
|SU |

∑
(x′,y′)∈SU

I [h(x′) = v, y′ = 1]− Pr [h(x) = v, y = 1 | x ∈ U ]
∣∣∣∣∣ ≤ ψϵ

3

To conclude the theorem, we need show that having ψϵ/3 approximation to the terms
described above, implies accurate approximation to the calibration error. For this
purpose, let us denote:

p1(h, U, v) := Pr [h(x) = v, y = 1 | x ∈ U ]

p2(h, U, v) := Pr [h(x) = v | x ∈ U ]

p̃1(h, U, v) := 1
|SU |

∑
(x′,y′)∈SU

I [h(x′) = v, y′ = 1]

p̃2(h, U, v) := 1
|SU |

∑
x′∈SU

I [h(x′) = v]
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Then, with probability at least 1− δ:

∀h ∈ H, ∀U ∈ Γγ,∀v ∈ Y :
∣∣∣∣∣p̃2(h, U, v)− p2(h, U, v)

∣∣∣∣∣ ≤ ψϵ

3

∀h ∈ H, ∀U ∈ Γγ,∀v ∈ Y :
∣∣∣∣∣p̃1(h, U, v)− p1(h, U, v)

∣∣∣∣∣ ≤ ψϵ

3

Using Lemma 2.19, for all h ∈ H, U ∈ Γγ and v ∈ Y , if p2(h, U, v) ≥ ψ, then:
∣∣∣∣∣p1(h, U, v)
p2(h, U, v) −

p̃1(h, U, v)
p̃2(h, U, v)

∣∣∣∣∣ ≤ ϵ

Thus, since

c(h, U, {v}) = p1(h, U, v)
p2(h, U, v) − v

ĉ(h, U, {v}, S) = p̃1(h, U, v)
p̃2(h, U, v) − v

then with probability at least 1− δ:

∀h ∈ H, ∀U ∈ Γ,∀v ∈ Y :

Pr[x ∈ U ] ≥ γ,Pr [h(x) = v | x ∈ U ] ≥ ψ ⇒ |c(h, U, {v})− ĉ(h, U, {v}, S)| ≤ ϵ

38



2.1.8 Proofs for Lower Bounds (Section 2.1.4)

Proof. (Proof of Theorem 2.12) Let X = {x0, x1, x2}, let U = {x0, x1} and let
H = {h}, where

h(x) =


1
2 + ϵ x = x0

0 else.

Let Γ = {U, {x2}}. Let D ∈ {D1, D2} where

D1(x, y) =



(1/2 + ϵ)ψγ (x, y) = (x0, 1)

(1/2− ϵ)ψγ (x, y) = (x0, 0)

(1− ψ)γ (x, y) = (x1, 0)

1− γ (x, y) = (x2, 0)

and

D2(x, y) =



(1/2 + ϵ)ψγ (x, y) = (x0, 0)

(1/2− ϵ)ψγ (x, y) = (x0, 1)

(1− ψ)γ (x, y) = (x1, 0)

1− γ (x, y) = (x2, 0)

Now we will show a reduction to coin tossing:
Consider two biased coins. The first coin has a probability of r1 = 1/2 + ϵ for heads
and the second has a probability of r2 = 1/2− ϵ for heads. We know that in order
to distinguish between the two with confidence ≥ 1 − δ1, we need at least C

ln( 1
δ1

)
ϵ2

samples.

Since
Pr

(x,y)∼D
[x ∈ U ] = Pr

(x,y)∼D
[x ̸= x2] = γ
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the first condition for multicalibration holds. Now, we use another property of our
“tailor-maded” distribution D and single predictor h, which is {x ∈ X : h(x) =
1
2 + ϵ} = {x ∈ X : h(x) = 1

2 + ϵ, x ∈ U} = {x0}, to get the second condition:

Pr
D

[h(x) = 1/2 + ϵ|x ∈ U ] = Pr
D

[x = x0|x ∈ U ] = ψγ

γ
= ψ,

and that
Pr
D

[y = 1|h(x) = 1
2 + ϵ, x ∈ U ] = Pr

D
[y = 1|x = x0]

is either 1/2 + ϵ (if D = D1) or 1/2− ϵ (in case D = D2) (recall that D ∈ {D1, D2}).

Now, if H has the multicalibration uniform convergence property with a sample
S = (xi, yi)mi=1 of size m, and if

m∑
i=1

I[yi = 1, h(xi) = 1/2 + ϵ, xi ∈ U ]∑m
j=1 I[h(xi) = 1/2 + ϵ, xi ∈ U ] =

m∑
i=1

I[yi = 1, xi = x0]∑m
j=1 I[xi = x0] >

1
2

holds, then
Pr[y = 1|h(x) = 1

2 + ϵ, x ∈ U ] = 1
2 + ϵ

holds w.p. 1− δ1 (from the definition of multicalibration uniform convergence).

Let us assume by contradiction that we can get multicalibration uniform convergence
with m = C

ϵ2ψγ
− k

ψγ
< C

ϵ2ψγ
for some constant k = Ω(1).

Let m0 denote the random variable that represents the number of samples in S such
that xi = x0 (i.e., h(xi) = 1/2 + ϵ). Hence, E[m0] = γ · ψ ·m = C

ϵ2
− k.

From Hoeffding’s inequality,

Pr[m0 ≥ C

ϵ2 ] = Pr[m0 − (C
ϵ2 − k)︸ ︷︷ ︸
E[m0]

≥ k] ≤ e−2mk2
.
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Let δ2 be the parameter that holds e−2mk2 ≤ δ2, and let δ := δ1 + δ2. Then we get
that with probability > (1 − δ1)(1 − δ2) > 1 − δ1 − δ2 = 1 − δ we can distinguish
between the two coins with less than C

ϵ2
samples, which is a contradiction.

Proof. (Proof of Theorem 2.22)

We will show that for every ϵ < 3/8 and every δ < 1 we have that m(ϵ, δ) > d/8.
Let Y = {0, 1} and Γ = {U} = {X} = {{x1, . . . , xd}}. Notice that since dN(H) = d

and X = U is also of size d, it must be that U is a set which is N−shattered set by
H.
Let D be a distribution such that for every j ∈ [d],

D(x, y) =


1
2d (x, y) = (xj, 1)
1
2d (x, y) = (xj, 0)

Let S = (xi, yi)mi=1 be a sequence of m = d
8 i.i.d. samples from D.

Notice that since U is N−shattered by H there exists hS ∈ H, such that

hS(x) =


1 ∃i : xi = x and (xi, 1) ∈ S

0 else.

Since
Pr
D

[x ∈ U ] = 1 ≥ 1
2 ≥ γ,

and

Pr
D

[hS(x) = 0|x ∈ U ] = Pr
D

[hS(x) = 0] ≥ Pr
D

[(x, 1) /∈ S ∧ (x, 0) /∈ S] ≥ 7
8 ≥ ψ.
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So (U, {0}) is an interesting category.

We move on the calculate the multicalibration error.

First,
c(hS, U, {0}) = 1

2 ≥
3
8 .

Now, from the way we selected hS we have that for every i ∈ [d/8] we have that yi = 1
yields h(xi) = 0, which means that I[h(xi) = 0]yi = 0 for every i ∈ [d/8]. Hence,

ĉ(hS, U, {0}) = 0

Put it all together, we have that with probability 1,

|ĉ(hS, U, {0})− c(hS, U, {0})| ≥
3
8 .

Hence the sample size for uniform convergence is at least d/8.

Proof. (Proof of Theorem 2.23) Assume X = {x1, . . . , xd}, Y = {0, 1}, H = {h0, h1},
where hy is the predictor that maps all x ∈ X to y, i.e., hy(x) = y. Assume Γ = 2X ,
i.e. the collection of subpopulations is the power set of X . Notice that log |Γ| = d. In
addition, assume a distribution D such that ∀x ∈ X ,

Pr
(x,y)∼D

[xi = x, yi = 1] = Pr
(x,y)∼D

[xi = x, yi = 0] = 1
2d.

Let S = (xi, yi)mi=1 be a sequence of m = d
2 i.i.d. samples from D.

Denote
US = X \ S.

42



We have that US ∈ Γ, and since |US| ≥ d
2 ,

Pr
D

[x ∈ US] ≥ 1
2 ≥ γ.

In addition,

Pr
D

[h0(x) = 0|x ∈ US] = Pr
D

[h1(x) = 1|x ∈ US] = 1 ≥ ψ,

therefore both (US, {0}), (US, {1}) are interesting categories.

However,
ĉS(h0, US, {0}) = 0,

and
c(h0, US, {0}) = 1

2 .

Hence, w.p. 1,
|ĉ(hS, US, {0})− c(hS, US, {0})| ≥

1
2 .

As a result, the sample size for uniform convergence is at least Ω(d) = Ω(log(|Γ|).
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Chapter 3

Online Learning

Introduction

Algorithms for online learning are especially challenging due to various constraints
the learner needs to comply with: bounded computation time, handling an unlimited
amount of data, optimizing the performance throughout the entire learning phase
(regret minimization), and up to the ability to adapt to dynamic environments that
depend on the actions of the learner (Reinforcement Learning).
Reinforcement Learning (RL) is concerned with online learning where the goal of the
learner is to map signals of the current state into actions in a way that maximizes
the cumulative reward. The goal of the learner in RL setting is either to minimize
sample complexity to find an optimal policy or to minimize the regret, where regret
is the difference between the online cumulative reward and that of the best action.
Common settings for RL problems include the Markov Decision Process (MDP)
model, the Multi-Arm Bandits (MAB) model, and the Dueling Bandits model (which
I briefly describe before the relevant discussion on the matter). Next, I will give a
brief overview of my work in online learning.
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Dueling Bandits model: In Dueling bandits [133], the realization of the rewards of
the selected arm is no longer the feedback as in the case of MAB. As an alternative,
the learner chooses a pair of arms and observes the winning arm of their “duel”. We
assume that for each pair of arms i, j ∈ [n] there exists an (unknown) distinguishability
∆i,j ∈ [−1/2, 1/2] such that the probability that arm i wins in a duel against arm j

is 1/2 + ∆i,j, and that ∆j,i = 1−∆i,j. Other common assumptions for this setting
are (1) total order over the arms, and (2) Strong Stochastic Transitivity (SST) and
Strong Triangle inequality (STI), both defined w.r.t. this total order. Together they
imply that for every triplet of arms a ≻ b ≻ c it holds that max{∆a,b,∆b,c} ≤(SST )

∆a,c ≤(STI) ∆a,b + ∆b,c.

Dueling Bandits with Team Comparisons In a paper that was published in
NeurIPS 21 [42] we introduced the dueling teams problem, a new online-learning
setting in which the learner observes noisy comparisons of disjoint pairs of k-sized
teams (subsets of arms) from a universe of n players (arms). The goal of the learner
is to minimize the number of duels required to identify, with high probability, a
Condorcet winning team, i.e., a team that wins against any other disjoint team (with
probability at least 1/2). This appears naturally in sports or online games, where the
goal is to pick one of the best teams from a set of players by observing the outcomes of
matches. We formalize the model and provide several algorithms, both for stochastic
and deterministic settings. For the stochastic setting, we provided a reduction to
the classical dueling bandits setting, yielding an efficient algorithm that identifies a
Condorcet winning team within O((n+ k log(k))max(log logn,log k)

∆2 ) duels, where ∆ is a
gap parameter. Building on this, we also derive an upper bound for the regret of the
problem. For deterministic feedback, we present a gap-independent algorithm that
identifies a Condorcet winning team within O(nk log(k) + k5) duels.
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Generalizing Dueling Bandits framework (future work) We plan to use the
insights gained by our above preliminary work and derive optimal regret and sample
complexity bounds to identify the best arm for more general settings than [133]. In
particular, we plan to consider total order with either SST or STI but not both.

Modeling Attrition in Recommender Systems with Departing Bandits Tra-
ditionally, when recommender systems are formalized as multi-armed bandits, the
policy of the recommender system influences the rewards accrued, but not the length
of interaction. However, in real-world systems, dissatisfied users may depart (and
never come back). In a work that appeared in AAAI’ 22 [18], we proposed a novel
multi-armed bandit setup that captures such policy-dependent horizons. Our setup
consists of a finite set of user types, and multiple arms with Bernoulli payoffs. Each
(user type, arm) tuple corresponds to an (unknown) reward probability. Each user’s
type is initially unknown and can only be inferred through their response to recom-
mendations. Moreover, if a user is dissatisfied with their recommendation, they might
depart the system. We first address the case where all users share the same type,
demonstrating that a recent UCB-based algorithm is optimal. We then move forward
to the more challenging case, where users are divided among two types. While naive
approaches cannot handle this setting, we provide an efficient learning algorithm that
achieves Õ(

√
T ) regret, where T is the number of users.

This problem demonstrates nicely how simply taking into account the less popular
preferences of users can lead to significant improvement in the performance of the
learner.

Finding Safe Zones of Markov Decision Processes Policies 1 Given a policy, we
define a SafeZone as a subset of states, such that most of the policy’s trajectories

1Joint work with Michal Moshkovitz and Yishay Mansour, in submission.
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are confined to this subset. The quality of the SafeZone is parameterized by the
number of states and the escape probability, i.e., the probability that a random
trajectory will leave the subset. SafeZones are especially interesting when they
have a small number of states and low escape probability. We study the complexity of
finding optimal SafeZones, and show that in general, the problem is computationally
hard. For this reason, we concentrate on computing approximate SafeZones. Our
main result is a bi-criteria approximation algorithm which gives a factor of almost 2
approximation for both the escape probability and SafeZone size, using a polynomial
size sample complexity. We concluded this work with an empirical evaluation of our
algorithm.

The problem we introduced addresses anomaly detection and safe RL, and can also
be viewed through the lens of explainable RL.

Finding policies with small SafeZones (future work) An interesting direction for
future work I plan to peruse is the following. Given an upper bound over the escape
probability ρ > 0 and an MDP (known or unknown to the learner), find a policy for
the MDP with a small SafeZone and an escape probability bounded from above by
ρ. An interesting observation that came up from our empirical demonstration is that
different policies result in different sizes of SafeZones, and that the optimal policy
does not necessarily has the smallest SafeZone.

Learning the best team, attrition in recommender systems, and safety in reinforcement
learning are all related to optimization in ML systems that revolves around people. In
learning the best team, the objective is to determine the most effective combination
of team members or agents to work together to achieve a common goal. This requires
optimizing the performance of individuals in a special manner as it is impossible to
test the performance of a team of individuals against the same team with only a
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single member different.

In recommender systems, attrition refers to the loss of customers or users over
time. The goal is to optimize personalized recommendations to retain users and
improve customer satisfaction. This involves identifying user preferences (that might
contribute to attrition) and developing strategies to mitigate them.

Finally, in reinforcement learning, safety is a critical consideration when training
agents to make decisions in complex and dynamic environments. In the anomaly
detection approach we take, we prioritize the popular states of the Markov model,
thus avoiding states that could be unsafe due to their unpopularity.

Overall, these works are all related to the optimization of systems in ML with societal
solutions. They highlight the importance of balancing individual constraints and
system objectives to achieve optimal outcomes. Additionally, they all involve the
consideration of interactions between individuals and the system, as well as the impact
of these interactions on the overall system’s performance.

3.1 Dueling Teams

3.1.1 Introduction

Multi-arm bandits (MAB) is a classical model of decision making under uncertainty.
In spite of the simplicity of the model, it already incorporates the essential tradeoff
between exploration and exploitation. In MAB, the learner performs actions and
can only observe rewards of the actions performed. One of the main tasks in MAB
is best arm identification, where the goal is to identify a near-optimal action while
minimizing the number of actions executed. The MAB model has numerous practical
applications, including online advertising, recommendation systems, clinical trials,
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and more. (See [120, 89] for more background).

One weakness of the MAB model is the assumption that real-valued rewards are
always available. In many applications, it is more natural to compare two actions and
observe which one of them is better rather than give every single action a numerical
reward. For example, recommendation systems often suggest two items and obtain
only their relative preference as feedback (e.g., by a click on one of them). This leads
very naturally to the well-known model of dueling bandits [134], where the learner
selects a pair of actions each time and observes the binary “winner” of a duel between
the two. See [28] for a survey on extensions of this model.

In this work we were interested in the case that the learner has to select two disjoint
teams for a duel, which are k-sized subsets of the actions (which we call players).
This appears naturally in sports or online games, where the goal is to pick one of
the best teams from a set of players by observing the outcomes of matches (say, to
be a school representative team, or to sponsor for tournaments). Examples include
doubles tennis, basketball, and the online game League of Legends, where each
match requires two disjoint teams of players to compete. Similar phenomena appear
in working environments, where different R&D teams compete on implementing a
project. Another example could be online advertisements where multiple products
are bundled to a display ad and a customer can click on any of two presented bundles,
e.g., some online games offer in-app bundle purchases, and the information regarding
sales of different bundles can be used to improve the bundles’ composition.

Our basic model is the following. We have a universe of n players, and at each
iteration the learner selects two disjoint teams for a duel and observes the winner.
For any two different teams, there exists an unknown stationary probability that
determines the winner of a duel between them. The requirement that teams need to
be disjoint is in accordance with the situation in games, where a single person cannot
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play for both teams. The goal of the learner is to minimize the number of duels
required to identify, with high probability, a Condorcet winning team, i.e., a team
which wins against any other disjoint team (with a probability of at least 1/2). We do
assume these probabilities are linked to a strict total order on all teams. This implies
the existence of a Condorcet winning team, yet it is typically not unique. We make
two minimal and natural assumptions on this total order on teams, namely, that it is
consistent to some total order among the players, and that the team probabilistic
comparisons hold Strong Stochastic Transitivity, a common assumption in dueling
bandit settings.

Clearly, given any total order among the players, the best team is the one containing
the top k players, which is in particular one of the Condorcet winning teams. However,
not all relations between players are deducible for the learner. In particular, even
achieving accurate estimations of the latent winning probabilities between all disjoint
teams might not suffice to separate the top k players from the rest. Consider for
example an instance with four players 1 ≻ 2 ≻ 3 ≻ 4 where k = 2 and the total order
among the teams is lexicographical, i.e., 12 ≻ 13 ≻ 14 ≻ 23 ≻ 24 ≻ 34. Then, there
exist three feasible duels, each of which is won by the team containing player 1 with
probability greater than 1/2. If all three duels are won with equal probability by the
team containing 1, the learner has no chance of detecting the team 12 as the top k

team. However, any of the teams 12, 13 and 14 is a Condorcet winning team.

Our main target is to present algorithms for which the number of duels is bounded
by a polynomial in the number of players n and team size k, although the number of
teams is exponential in k, i.e., Ω((n

k
)k) and the number of valid duels is Ω(2k( n2k )2k).

Even if one were to accept an exponential number of arms, a direct reduction to the
standard dueling bandits setting would not be feasible as not all pairs of teams are
comparable in our model. In particular, duels of the form (S ∪ {a}, S ∪ {b}), which

50



would yield a signal regarding the relation between players a and b, are forbidden.
The inherent difficulty of our endeavor comes from two limitations: (1) Not all the
relations between two single players are deducible, (see example above), and (2)
even for pairs of players with deducible relation, having Ω(2k( n2k )2k) valid duels and
the same amount of (latent) winning probabilities makes the task of deducing their
relations hard.

We start by giving a full characterization of the deducible pairwise relations between
players, namely relations that can be detected by a learner which is allowed to perform
an unlimited amount of duels. Our characterization implies that every deducible
single player relation has one of two types of witnesses, which are constant-size sets of
duels that prove their relation. We also show that, once we find a witness for one pair
of players, it can often be transferred to a witness for other pairs of players.

Building upon this characterization, we introduce a parameter ∆a,b which captures
the distinguishability of any two players a and b and takes a value of 0 whenever the
pair is not deducible. Assuming ∆ := ∆k,k+1 > 0, where k and k + 1 are kth and
(k + 1)th best players, we give a reduction to the classic dueling bandits problem.
Combining this reduction with a high-probability top-k identification algorithm for
the dueling bandits setting (e.g., [100, 112]) yields a similar sample complexity upper
bound, e.g., this yields a high-probability top-k identification algorithm for dueling
teams with O(∆−2(n+ k log(k)) max(log log n, log k)) duels.

Interestingly, it turns out that the deterministic case, i.e., when winning probabilities
are in {0, 1}, constitutes a challenging special case of our problem where ∆ can be
particularly small, or even 0. To overcome this issue we design delicate algorithms
which are independent of ∆. On a high level, a preprocessing procedure first excludes
as many bad players as possible. To do so, it runs a method for identifying pairwise
relations between players which performs only a small number of duels, but has little
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control over the pair for which the relation is uncovered. For general total orders
this implies an algorithm requiring O(nk log(k) + 2O(k)) duels. For the natural case
of additive linear orders, we present a more elaborated approach for detecting a
Condorcet winning team within the reduced instance, resulting in an algorithm that
performs O(nk log(k) + k5) duels.

We introduce our problem in Section 3.1.2, give a characterization of deducible
relations in Section 3.1.3, discuss the stochastic setting in Section 3.1.4, and the
deterministic setting in Section 3.1.5. For brevity, algorithms and (full) proofs are
relegated to Sections 3.1.6, 3.1.7, and 3.1.8. Section 5.2.1 contains a discussion and
Section 3.1.8 a characterization of additive linear total orders.

Related Work

MAB best arm or subset identification: single arm identification was initiated
in [52] and later studied in many works including [26, 78, 33]. This setting was
extended by [75] for multiple arms identification (i.e., top k arms), using a single
arm samples. Other works that address the objective of top−k identification include
[34, 137, 27].

Dueling bandits The work of [134] lay down the framework of non-parametric
bandit feedback under total order among arms, strong stochastic transitivity, and
stochastic triangle inequality assumptions and were followed by many subsequent
works (For more, see a survey, [28].) In particular, some subsequent works target the
task of identifying the top k players in this setting [100, 112].

Dueling bandits with sets of actions One line of dueling bandits extension
consider the case where the learner selects a subset of actions and observes the
outcomes of all duels between all pairs of actions in the subset [24, 122], or the winner
of the subset [115, 113]. As a consequence, these settings give the learner strictly more
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information than the dueling bandits setting. In contrast, feedback in our setting
reveals less information.

MAB with multiple actions selection : There are works in which the learner
selects a (sometimes fixed-sized) subset of actions at each iteration, and observes either
all of the individual selected arms rewards (semi-bandit feedback) or an aggregated
form of the rewards (full-bandit feedback), and the task is to detect to best arm or
the top k. These include combinatorial bandits [30], top-k [111], linear bandit and
routing [7], and more. The main difference between combinatorial bandits and our
setting is the feedback.

Comparison models: Noisy pairwise comparison models, especially for sorting and
ranking, have a long history which dates backs to the 1950’s (For more, see a survey,
[105].). Specifically, the mathematical problem Counterfeit coin was introduced in the
form of a puzzle [61]: given a pile of 12 coins, determine which coins has a different
weight (and therefore counterfeit) using balance scales while minimizing the number
of measurements. The problem was followed by numerous generalizations (see [62]).
While this problem is restricted to coins with two different weights, our setting can
be seen as a variant with multiple weights.

3.1.2 Dueling Teams: Problem Formulation

We formalize our problem as follows. Let n, k ∈ N with 1 ≤ k ≤ n
2 . We denote the set

of players by [n] := {1, . . . , n} and call any set of k distinct players a team. Moreover,
we assume the existence of an underlying strict total order among all teams, and
denote it by ≻. We also refer to ≻ as the ground truth order. In particular, for any
two teams A and B either A ≻ B holds, in which case we say that A is better than B,
or vice versa, and this relation is transitive. Additionally, we require the total order
among the teams to be consistent with a total order among players and formalize
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this in the consistency assumption at the end of this section.

In each round, the learner selects an ordered pair of two disjoint teams, A and B

to perform a duel, and receives a noisy binary feedback about which team is better.
Note that in contrast to the usual dueling bandits setting, our setting does not allow
duels of the form (A,A), as selecting teams with mutual players for a duel is not
an option. We denote the observable part of ≻ by ≻obs, i.e., A ≻obs B iff A and B

are disjoint teams and A ≻ B. Note, ≻obs is not transitive, thus not even a partial
order.

The outcome of a duel (A,B) is sampled independently from a Bernoulli random
variable with success probability PA,B, so in particular it holds that PB,A = 1− PA,B.
We assume that the probabilistic comparisons are linked to the total order among
the teams, i.e., A ≻ B implies PA,B > 1/2, and that PA,B exists for every pair of
teams (not only disjoint ones). In the stochastic setting, we denote A > B if team
A is the random winner of duel (A,B). In the deterministic setting, it holds that
PA,B ∈ {0, 1} for any teams A ̸= B. In other words, for two disjoint teams A and
B the learner can observe whether A ≻obs B or B ≻obs A by performing a single
duel.

A team A is a Condorcet winning team2 if A ≻obs B for all teams B such that
A ∩ B ̸= ∅. From our assumption on ≻ , there always exists a Condorcet winning
team, but it is not necessarily unique. The learner’s goal is to minimize the number
of duels required to identify, with high probability in the stochastic setting and with
probability 1 in the deterministic case, a Condorcet winning team.

In the following we formalize two more assumptions we impose on our model, the
former affects the linking of the probabilities to the strict total order ≻, the latter

2The name is motivated by the fact that such a team is a weak Condorcet winner for the relation ≻obs.
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restricts the total order ≻ itself.

Strong stochastic transitivity (SST): Similarly to the dueling bandits settings in
[134], we assume strong stochastic transitivity. Namely, for every triplet of different
teams A ≻ B ≻ C it holds that PA,C ≥ max{PA,B, PB,C}.

Consistency: We assume that the total order ≻ is consistent to a total order among
single players. More precisely, we say that ≻ satisfies consistency if for every two
players a, b ∈ [n] either of the following holds true:

(i) S ∪ {a} ≻ S ∪ {b} for all S ⊆ [n] \ {a, b}, |S| = k − 1.

(ii) S ∪ {b} ≻ S ∪ {a} for all S ⊆ [n] \ {a, b}, |S| = k − 1.

The consistency assumption lets us derive a relation among the single players, by
defining a ≻ b iff S ∪ {a} ≻ S ∪ {b} holds for some S. By team relation transitivity,
≻ implies a total order on [n]. Whenever we write a ≻ b for some players a, b ∈ [n]
this is short-hand notation for S ∪ {a} ≻ S ∪ {b} for all subsets S ⊆ [n] \ {a, b} of
size k − 1. For notational convenience, we assume without loss of generality that
1 ≻ 2 ≻ · · · ≻ n and write A∗

m for the set of players containing the top m players, i.e.,
A∗
m = [m]. In particular, the consistency assumption yields that A∗

k is a Condorcet
winning team.

Though the ground truth ranking induces a total order among the players, the
learner might not be able to deduce the entire order. In the following we give a
characterization of the deducible part of ≻.

3.1.3 Witnesses: A Characterization of Deducible Relations

In this section we provide a high level description of the complete characterization
of all the pairwise relations between single players that can be deduced via team
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duels. Though single players cannot be observed via team duels directly, we show a
sufficient and necessary condition for deducible relations in the form of a constant
number of winning probabilities of observable (feasible) duels. We refer to a set of
players participating in such duels as witnesses. For completeness, we point out that
a similar characterization can be done for any same-sized subsets of size less than
k.

We denote by Cobs the set of strict total orders which are compatible with the
winning probabilities of observable duels, i.e., {PA,B | A and B are disjoint teams},
and satisfy consistency. More precisely, ≻′∈ Cobs if ≻′ is a total order on all teams
that satisfies consistency and there exist probabilities P ′

A,B for all pair of teams (A,B)
such that A ≻′ B iff P ′

A,B > 1/2, and P ′
A,B = PA,B for all disjoint teams A and B.

Lastly, we define A ≻∗ B if and only if A ≻′ B for all ≻′∈ Cobs, where A and B

are not necessarily disjoint. We refer to ≻∗ as the deducible relation. For single
player relations, we define a ≻∗ b if and only if there exists S ⊆ [n] \ {a, b} such that
S ∪ {a} ≻′ S ∪ {b} for all ≻′∈ Cobs.

Next, we define two sets of potential witnesses that have a simple structure and,
in some cases, allow us to deduce single players relation: (1) A potential subsets
witnesses set, denoted by Sa,b, that contains all pairs (S, S ′) such that S and S ′

are disjoint subsets of [n] \ {a, b} and both are of size k − 1, and (2) A potential
subset-team witnesses set, denoted by Ta,b, that contains all pairs (S, T ) where S and
T are disjoint subsets of [n]\{a, b}, such that S is of size k− 1 and T is of size k (and
is therefore a team). Below, we define under which conditions a potential witnesses is
a witness.

Definition 3.1. An element (S, S ′) ∈ Sa,b is a subsets witness for a ≻ b if
PS∪{a},S′∪{b} > PS∪{b},S′∪{a}. An element (S, T ) ∈ Ta,b is a subset-team witness
for a ≻ b if PS∪{a},T > PS∪{b},T .
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We capture the set of the elements of Sa,b that are subsets witnesses for a ≻ b by S∗
a,b

and analogously, T ∗
a,b = {(S, T ) ∈ Ta,b | (S, T ) is a subset-team witness for a ≻ b}. It

might be the case that S∗
a,b ∪ T ∗

a,b is empty, in particular this holds when b ≻ a. It
is also possible that both S∗

a,b ∪ T ∗
a,b and S∗

b,a ∪ T ∗
b,a are empty, in which case we will

show that the relation between players in a and b cannot be deduced. The following
theorem implies that the other direction is also true.

Theorem 3.2. Let a, b ∈ [n]. Then, a ≻∗ b if and only if S∗
a,b ∪ T ∗

a,b ̸= ∅.
Proof sketch. Assume that S∗

a,b ∪ T ∗
a,b ≠ ∅. We show that a ≻∗ b by using SST, the

fact that ≻ is a consistent strict total order, and an exhaustive case analysis. For the
sake of illustration we present only one case here, namely, that (S, S ′) ∈ S∗

a,b and that
both (1) S∪{a} ≻ S ′∪{b} and (2) S∪{b} ≻ S ′∪{a} hold. Assume for contradiction
that a ≻∗ b does not hold. It thus follows that there exists an order, ≻′∈ Cobs for
which b ≻′ a holds. Let P ′

A,B be the corresponding winning probabilities. Then,
using consistency of ≻′ and (1) respectively, we get S ∪ {b} ≻′ S ∪ {a} ≻′ S ′ ∪ {b}

and from SST P ′
S∪{b},S′∪{b} ≥ P ′

S∪{a},S′∪{b} > 1/2. In addition, applying consistency
again, it follows that S ∪ {b} ≻ S ′ ∪ {b} ≻ S ′ ∪ {a}. Applying SST once more we
get P ′

S∪{b},S′∪{a} ≥ P ′
S∪{b},S′∪{b} ≥ P ′

S∪{a},S′∪{b}, a contradiction to (S, S ′) ∈ S∗
a,b (since

this implies PS∪{a},S′∪{b} > PS∪{b},S′∪{a}).

For the other direction we start by defining Da as the set of duels (A,B) such
that a ∈ A. Moreover, we define a permutation π on the set of teams, which
simply exchanges the players a and b when present. We then show that a ≻ b

implies PA,B ≥ Pπ(A),π(B) for all (A,B) ∈ Da. Moreover, we show that a ≻∗ b

implies that there exists (A,B) ∈ Da with PA,B > Pπ(A),π(B) as follows. Assume
not. Then we show that the relation ≻′ defined by A ≻′ B iff π(A) ≻′ π(B) is
included in Cobs. However, a ≻∗ b implies that for any S ⊆ [n] \ {a, b} of size k − 1
it holds that S ∪ {a} ≻∗ S ∪ {b} which implies (i) S ∪ {a} ≻ S ∪ {b} as well as
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(ii) S ∪ {a} ≻′ S ∪ {b}. Applying the definitions of ≻′ and π, statement (ii) implies
S ∪ {b} = π(S ∪ {a}) ≻ π(S ∪ {b}) = S ∪ {a} and hence yields a contradiction
to (i). Finally, take some (A,B) ∈ Da with PA,B > Pπ(A),π(B). If b ∈ B, then
(A \ {a}, B \ {b}) ∈ S∗

a,b, otherwise (A \ {a}, B) ∈ T ∗
a,b.

For the sake of brevity, we introduce the set Xa,b which combines the pairs from Sa,b
and Ta,b into a set of triples. Formally, Xa,b = {(S, S ′, T ) | (S, S ′) ∈ Sa,b, (S, T ) ∈ Ta,b}.
We say that (S, S ′, T ) is a witness for a ≻ b if (S, S ′) ∈ S∗

a,b or (S, T ) ∈ T ∗
a,b.

3.1.4 Stochastic Setting

In this section we focus on algorithms identifying, with high probability, the top-k
team, which is in particular a Condorcet winning team. The main idea is to reduce
the dueling teams setting to the classic dueling bandits setting, by which we refer to
[134]. To this end we introduce our gap parameter, ∆, which intuitively captures how
easy it is to prove the relationship between the top-k and the top-(k + 1) player. We
start by defining, for any element of Xa,b, a random variable Xa,b(S, S ′, T ) combining
the outcomes of the four duels which help determining whether (S, S ′, T ) is a witness
for a ≻∗ b. Formally,

Xa,b(S, S ′, T ) =
(
1[S ∪ {a} > S ′ ∪ {b}]− 1[S ∪ {b} > S ′ ∪ {a}]

+ 1[S ∪ {a} > T ]− 1[S ∪ {b} > T ]
)
/2.

Observe that, for every (S, S ′, T ) ∈ Xa,b, we have that E[Xa,b(S, S ′, T )] > 0 if and
only if (S, S ′, T ) is a witness for a ≻ b. Moreover, if E[Xa,b(S, S ′, T )] = 0 for
every (S, S ′, T ) ∈ Xa,b then Theorem 3.2 implies that the pairwise relation between
players a, b cannot be deduced. Building upon these random variables for fixed
elements in Xa,b, we define the random variable Xa,b by picking a random triplet
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(S, S ′, T ) ∈ Xa,b and returning a realization of Xa,b(S, S ′, T ). Combining with the
probabilistic method, we obtain the following theorem, which then bring us to the
definition of a gap parameter for this problem.

Theorem 3.3. For every two players a, b ∈ [n] it holds that a ≻∗ b if and only if
E[Xa,b] > 0.

Gap parameter: We define our gap parameter by ∆ := E[Xk,k+1]. In the
following we show that our gap parameter does not just help us to distinguish
between the top k and the top k + 1 player, but also between other players in A∗

k

and players from [n] \ A∗
k. To this end, we show in Lemma 3.4 that strong stochastic

transitivity holds for E[Xa,b]. For most elements (S, S ′, T ) ∈ Xa,b it holds that
E[Xa,c(π(S), π(S ′), π(T ))] ≥ E[Xa,b(S, S ′, T )] (and analogously for Xb,c), where π is
a permutation exchanging b and c, but, surprisingly, this is not true in general. By
constructing a charging scheme, we can still show that this holds in expectation over
all elements of Xa,b, and derive a strong stochastic transitivity for distinguishabilities
w.r.t. the total order ≻ on the players.

Lemma 3.4. For a triplet of players a ≻ b ≻ c it holds that

E[Xa,c] ≥ max{E[Xa,b],E[Xb,c]}.

This also yields the following theorem, which paves the way for our reduction in what
follows.

Theorem 3.5. For any a, b ∈ [n] such that a ∈ A∗
k, b /∈ A∗

k it holds that E[Xa,b] ≥
E[Xk,k+1] = ∆. Thus, if ∆ > 0 and a team A it holds that E[Xa,b] ≥ ∆ for every
a ∈ A, b ∈ [n] \ A, then A = A∗.

The reduction: We now outline the gap-dependent algorithm for the stochastic
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setting. The results we have derived in Section 3.1.3 will allow us to deduce, with
high probability, whether a distinguishability of a given pair of players is at least
∆, and if so determine which player is the better one. Intuitively, this is done by
performing O( 1

∆2 ) team duels.

We will use E[Xa,b] as a proxy for the distinguishability between two single players,
a, b, taking advantage of the fact that if their relation is deducible, then E[Xa,b] ̸= 0
and in this case E[Xa,b] > 0 iff a ≻ b. Similar the to dueling bandits setting, even
though |E[Xa,b]| < ∆ for some pairs of players, identifying A∗

k with high probability
is possible.

Since we cannot directly sample Xa,b, we will instead sample uniformly at random a
triplet of sets, (S, S ′, T ) from Xa,b. Using (S, S ′)(∈ Sa,b) and (S, T )(∈ Ta,b), we can
then perform all the duels required for an unbiased sample of Xa,b(S, S ′, T ), which is
by itself a sampling of Xa,b. Given any dueling teams instance, we define a dueling
bandits instance as follows: for every two players a, b ∈ [n],

Pa,b = 1/2 + E[Xa,b]. (3.1)

Where Pa,b is the probability that a wins in a (singles) duel against b. Clearly,
1−Pa,b = Pb,a. In addition, Theorem 3.3 implies that a is better than b in this dueling
bandits instance iff a ≻∗ b. So whenever a dueling bandits algorithm is asking for a
duel query, (a, b), we can make an independent unbiased sample of Xa,b by returning
a random sampling of Xa,b(S, S ′, T ) + 1/2 (i.e., Xa,b is a Bernoulli random variable
with bias E[Xa,b(S, S ′, T )] + 1/2.). In cases where the realization of Xa,b is 0 and the
algorithm does not consider ties as a valid duel feedback, we can randomly assign a
duel winner. We formalize this idea in the sub-procedure singlesDuel, that simulates
a duel for classical dueling bandits settings using team duels. Notice that, by Lemma
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3.4, the probabilities Pa,b defined in (3.1) satisfy SST with respect to the total order
among the players induced by the ground truth order ≻. In addition, the feedback
of each single player duel we perform is time-invariant, thus all the non-parametric
assumptions for dueling bandits settings apply here. The reduction allows us to
identify the top k players using any dueling bandit algorithm with the same goal that
works for total order on arms that satisfy SST, and a gap between the top k and
k + 1 arms as assumptions. Formally,

Theorem 3.6. Given any dueling teams instance with n and k (namely, PA,B for
every two teams that hold strict total order, SST, and consistency), we have that
the dueling bandit instance defined by (3.1) satisfies SST with respect to the ground
truth order among players ≻ and for any two players a ≻ b it holds that Pa,b ≥ 1/2.
Moreover, Pk,k+1 = 1/2 + ∆.

Using the above theorem we can use any dueling bandit algorithm for top k iden-
tification to solve our problem. [100] provide an algorithm that returns the top k

players with probability exceeding 1 − (log n)−c0 with sample complexity at most
c1(n+ k log k)max (log logn,log k)

∆2
k,k+1

in expectation, where c0 and c1 are universal positive
constants and ∆k,k+1 is the distinguishability between the k and the k+1 best players
(see Algorithm 2 and Theorem 1 in [100]).

[112] show an algorithm that returns the top k players with probability at least
1 − δ with sample complexity O(∑i∈[n](∆−2

i (log(n/δ) + log log ∆−1
i )), where ∆i =

1i≻k+1 · ∆i,k+1 + 1k≻i · ∆k,i and k, k + 1 are the top k and the top k + 1 players,
respectively (see Algorithm 5 and Theorem 8 in [112])3.

These algorithms, together with Theorem 3.3 allow us to derive the following theo-
rem.

3We remark that [112] also assume Stochastic triangle inequality which we do not, however it is only
used to derive a lower bound.
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Theorem 3.7. There exists an algorithm that returns A∗
k with probability exceeding 1−

(log n)−c0 with sample complexity at most c1(n+k log k)max (log logn,log k)
∆2 in expectation,

where c0 and c1 are universal positive constants.

In addition, there exists an algorithm that returns A∗
k with probability at least 1− δ

with sample complexity O(∑i∈[n](∆−2
i (log(n/δ) + log log ∆−1

i )), where ∆i = 1i≻k+1 ·

E[X]i,k+1 + 1k≻i · E[X]k,i and i denotes the top i players, thus ∆i ≥ ∆ for every
i ∈ [n].

3.1.5 Deterministic Setting

In the previous section we showed the existence of algorithms that identify the top k
team with a number of duels that depends on ∆. But what if ∆ is very small or even
0? One reason for that can be that all relevant probabilities are close to 1/2. More
precisely, P{k}∪S,{k+1}∪S′ , P{k+1}∪S,{k}∪S′ , P{k+1}∪S,T , and P{k}∪S,T are very close to 1/2
for all (S, S ′, T ) ∈ X ∗

k,k+1. This might also occur in classic dueling bandits settings,
when the target is to separate the top k players from the rest (e.g., [100, 112]). As a
result, a gap between the top k and k + 1 players is often a parameter of the sample
complexity in such settings. For these cases, our approach presented in the stochastic
section very much resembles the current literature.

The other, more interesting reason for ∆ to be small is when there exist only a small
number of witnesses. This is in particular the case when the probability matrix
contains only few distinct values, as for example when feedback is deterministic,
i.e., PA,B ∈ {0, 1}. Note that in this setting, (S, T ) ∈ Ta,b is a witness if and
only if S ∪ {a} ≻obs T ≻obs S ∪ {b}, and (S, S ′) ∈ Sa,b is a witness if and only if
S∪{a} ≻obs S ′∪{b} and S ′∪{a} ≻obs S∪{b}. This follows as for any other potential
witness (S, S ′, T ) ∈ Xa,b it holds that E[Xa,b(S, S ′, T )] = 0. It is possible to come up
with deterministic instances where up to (2k − 1)2 pairs do not have any witness to
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distinguish them. To overcome this issue, we design algorithms for the deterministic
case that are independent of ∆ within this section. In the Section 3.1.8 we show that
these results can be extended to a slightly stochastic environment.

The limitation of the set of witnesses makes the problem of identifying a Condorcet
winning team in the deterministic setting surprisingly nontrivial. For general total
orders, a crucial difficulty lies in efficiently proving that a given team is indeed
Condorcet winning. However, we are still able to get the following result:

Theorem 3.8. For deterministic feedback, there exists an algorithm that performs
O(kn log(k) + k2 log(k)25k) duels and outputs a Condorcet winning team.

For the natural special case of additive total orders we obtain a stronger result. A total
order ≻ is additive total, if there exist values for the players denoted by v(a), a ∈ [n]
such that A ≻ B iff ∑a∈A v(a) > ∑

b∈B v(b). We present an algorithm that identifies a
Condorcet winning team after polynomial many duels and also outputs a proof.

Theorem 3.9. For deterministic feedback and additive total orders, there exists an
algorithm that finds a Condorcet winning team within O(kn log(k) + k5) duels.

Both algorithms rely on the same preprocessing procedure called ReducePlayers which
reduces the number of players from n to O(k). At the heart of this procedure is a
subroutine called Uncover. After describing Uncover and ReducePlayers, we prove The-
orem 3.8. Towards proving Theorem 3.9, we introduce two more subroutines, namely
NewCut and Compare, which are crucial for identifying and proving a Condorcet
winning team within the smaller instance. Finally, Algorithm CondorcetWinning
combines all components and proves Theorem 3.9.

The Uncover Subroutine Given two disjoint teams A ≻ B, the Uncover subroutine
finds a pair of players a ∈ A and b ∈ B and a subsets witness for their relation,
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i.e., an element from S∗
a,b. To understand the idea of the subroutine, consider some

arbitrary ordering of the elements in A and B, respectively, i.e., A = {a1, . . . , ak}

and B = {b1, . . . , bk}. Then, iteratively exchange the elements a1 and b1, a2 and
b2, resulting in sets A0 = A,B0 = B,A1 = {b1, a2, . . . , ak}, B1 = {a1, b2, . . . , bk},
A2 = {b1, b2, a3, . . . , ak}, and so on. Since A0 ≻ B0 but A0 = Bk ≻ Ak = B0 holds,
there needs to be some earliest point in time i ≤ k for which Bi ≻ Ai is true. This
implies ai ≻ bi as ({a1, . . . ai−1, bi+1, . . . bk}, {b1, . . . , bi−1, ai+1, . . . , ak}) is a witness
for this relation.

While the above sketched subroutine is simple, it performs k duels in the worst case.
We refine this idea by a binary search approach, decreasing the number of duels to
log(k). In Section 3.1.8 we give a slightly stronger version of Lemma 3.10, which
allows us to divide A and B into two subsets each. Under some requirements, we can
then control from which of the subsets the pairwise relation is revealed.

Lemma 3.10. Let A and B be two disjoint teams with A ≻ B. After performing
O(log(k)) duels, Uncover returns (a, b) with a ∈ A, b ∈ B and (S, S ′) ∈ S∗

a,b.

Reducing the Number of Players to O(k) The fact that we can eliminate a subset
of the players and still find (and prove) a Condorcet winning team is due to the
following observation.

Observation 3.11. Let X ⊆ [n] such that A∗
2k ⊆ X. Let Â ⊆ X be a team such that

Â ≻ A for all teams A ⊆ X \ Â. Then, Â is a Condorcet winning team.

The procedure ReducePlayers reduces the set of players [n] to some subset X ⊆ [n]
guaranteeing that A∗

2k ⊆ X and |X| < 6k. The algorithm maintains a dominance
graph D = (V,E) on the set of players. More precisely, the nodes of D are the players,
i.e., V = [n], and there exists an arc from node a to node b if the algorithm has proven
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that a ≻ b. The set V<2k is the subset of the players having an indegree smaller
than 2k in D. The high level idea of the algorithm is the following: It starts with
the empty dominance graph D = ([n], ∅). The algorithm then iteratively identifies
pairwise relations of the players with help of Uncover and adds the corresponding arcs
to the graph. By adding more and more arcs to D, the set of nodes V<2k shrinks more
and more while A∗

<2k ⊆ V<2k is always guaranteed. At some point, the algorithm
cannot identify any more pairwise relations and returns V<2k. How does the algorithm
identify pairwise relations? At any point it tries to find a matching between 2k
players, say {(a1, b1), . . . , (ak, bk)} with the constraint that, for all i ∈ [k], none of
the arcs (ai, bi) or (bi, ai) is present within the graph D yet. The algorithm ends
when it cannot find such a matching anymore. We show that this only happens after
|V<2k| < 6k.

Lemma 3.12. Given the set of players [n], ReducePlayers returns X ⊆ [n] with
|X| ≤ 6k − 2 and A∗

2k ⊆ X. ReducePlayers performs O(nk log(k)) duels and runs in
time O(n2k2).

Proof Sketch (of Theorem 3.8). Let D be the dominance graph at the end of
ReducePlayers. Then, the learner selects a k-sized subset of V<2k, call it Â, with
the property that there is no arc from some node in V<2k \ Â towards some node
in Â. Then, the learner tests Â against all possible teams containing players from
V<2k \ Â, which are O(25k) many. If Â wins all of these duels, then Â is a Condorcet
winning team by Observation 3.11. However, if there exists A ≻ Â, then, by the
choice of Â, there does not exist any arc from A towards Â. Hence, by calling the
subroutine Uncover for two arbitrary orderings of A and Â, the learner will identify
one additional arc. This procedure can be repeated O(k2) many times and hence
shows Theorem 3.8.
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Subroutines NewCut and Compare The NewCut subroutine takes as input a
subset of the players X ⊆ [n], a pair a, b ∈ X, and a witness proving that a ≻ b, i.e.,
(S, T ) ∈ S∗

ab ∪ T ∗
ab. That means, T can be either of size k − 1 or k, and S and T are

not required to be subsets of X. The subroutine outputs a partition of X into two
non-empty sets U and L with U ▷ L, which is short-hand notation for u ≻ ℓ for any
u ∈ U and ℓ ∈ L. The main idea of the algorithm is to make use of the transitivity
among witnesses which we established in Lemma 3.4. More precisely, whenever the
algorithm has found a witness showing that some player in X is better than b, it
stores this witness in a list W . Iteratively applying the transfer function used in the
proof of Lemma 3.4 to all witnesses in W and elements in X makes sure that after
termination of the algorithm U ▷ L holds, where U is defined by all players u for
which the algorithm found a witness for u ≻ b and L = X \ U .

Lemma 3.13. Let X ⊆ [n], a, b ∈ X and (S, T ) ∈ S∗
a,b∪T ∗

a,b. Then, NewCut(X, (a, b), (S, T ))
returns a partition of X into U and L such that U ▷L, a ∈ U and b ∈ L. The number
of duels performed by NewCut and its running time can be bounded by O(|X|2).

From now on we assume additive linear orders. The compare subroutine is crucial for
obtaining upper bounds for differences of values of subsets of players. It is used in
the following situation. Let (a, b) be a pair of players and (S, S ′) ∈ S∗

a,b be a witness
for a ≻ b. Then, it can be easily shown that v(a) − v(b) > |v(S) − v(S ′)|. We will
be interested in the question whether a similar relation holds for two subsets of S
and S ′, namely, C ⊆ S and D ⊆ S ′ of equal size. The compare subroutine checks
whether such a relation holds by performing two additional duels. If it returns True,
then v(a)− v(b) > |v(C)− v(D)|. Otherwise, there can be found a pair c ∈ C and
d ∈ D and a witness for their relation by one call to the Uncover subroutine. This
observation is formalized Lemma 3.14.

Lemma 3.14. Let a ≻ b be two players, (S, S ′) ∈ S∗
a,b and C ⊆ S,D ⊆ S ′ with |C| =
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Figure 3.1: Illustration of the proof technique of algorithm CondorcetWinning1. In the left
illustration, the solid black line indicates that all players left to it were proven to be better
than all players right to it. The dashed line marked with “k” indicates that the sets to its
left contain k players in total. However, this line does not indicate proven relations, e.g., a
player from X can be better than a player from Y . The right figure illustrates the proof for
X ∪ U1 ∪ U2 being Condorcet winning.

|D|. If Compare((a, b), (S, S ′), (C,D)) returns True, then v(a)−v(b) > |v(C)−v(D)|.
Otherwise, one call to Uncover returns c ∈ C and d ∈ D together with a witness for
their relation.

Algorithm CondorcetWinning The algorithm maintains a partition of the players
into a weak ordering, i.e., T = {T1, . . . , Tℓ} with T1 ▷ T2 ▷ · · · ▷ Tℓ. We introduce the
short-hand notation T≤j = ⋃

m∈[j] Tm and T<j = ⋃
m∈[j−1] Tm. After the application of

the preprocessing procedure ReducePlayers, this partition consists of one set, namely
T = {T1}, where |T1| ∈ O(k) and A∗

2k ⊆ T1. At any point in the execution of the
algorithm, we are especially interested in two indices, namely ik ∈ [ℓ] such that
|T<ik | < k < |T≤ik | and similarly i2k ∈ [ℓ] such that |T<i2k

| < 2k < |T≤i2k
|. 4 Observe

that all players from T<ik are guaranteed to be among the top-k players. On the
other hand, among the players from Tik some belong to A∗

k and others do not. The
main idea of the algorithm is then the following: Take a prefix of T of size k, i.e.,
this team contains the set of players T<ik and is a subset of the players in T≤ik , and

4In case one of these indices does not exist, this implies that we have either identified the set A∗
k or A∗

2k.
In the first case we have found a Condorcet winning team and in the second case Observation 3.11 implies
that we can find one by performing one additional duel. For the sake of brevity we disregard this case from
now on.
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either prove that this prefix is a Condorcet Winning team, or refine the partition T
and repeat the process.

We provide two different algorithms, namely CondorcetWinning1 for the case ik = i2k

and CondorcetWinning2 when ik ̸= i2k. Unsurprisingly, the latter case requires a
strictly less sophisticated approach, which is why we focus on CondorcetWinning1 in
the following.

The algorithm starts by partitioning the set T<ik into two sets U1 and U2, where U1 is
a prefix of T<ik of size |T≤ik | − 2k. It partitions the set Tik into five sets X, Y,W1,W2,

and Z. In particular it is known that (U1 ∪ U2) ▷ (X ∪ Y ∪W1 ∪W2 ∪ Z) but no
relation among any pair in Tik is known. Regarding the sizes of the sets it holds that
|Ui| = |Wi| for i ∈ {1, 2}, |X| = |Y | = k − |U1| − |U2| and |U1| = |Z|. The main aim
of the algorithm will be to define 0 < ϵ1 < ϵ2 and prove that the following statements
are true:

(i) |v(X)− v(Y )| < ϵ1

(ii) |v(a)− v(b)| < ϵ2 for all a ∈ Y ∪W1 ∪W2 and b ∈ Z, and

(iii) there exist u1, . . . , u|Z|+1 ∈ U1 ∪ U2 as well as w1, . . . , w|Z|+1 ∈ W1 ∪W2 such
that

(a) v(u1)− v(w1) ≥ ϵ1 and

(b) v(ui)− v(wi) ≥ ϵ2 for all i ∈ {2, . . . , |Z|+ 1}.

With these three statements we can show that U1 ∪ U2 ∪X is a Condorcet winning
team. More precisely, one can show that v(U1 ∪ U2 ∪X)− v(W1 ∪W2 ∪ Y ) > |Z| · ϵ2

and v(W1 ∪W2 ∪ Y ) − v(B∗) > −|Z| · ϵ2, where B∗ is the best response towards
U1 ∪ U2 ∪X. See Figure 3.1 for an illustration of the argument.

It remains to sketch how the algorithm defines ϵ1, ϵ2 and proves (i) − (iii). For
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simplicity assume U1 ▷ U2. The algorithm then attempts to do the following steps:
(1) Find a witness for players ū ∈ U2 and w̄ ∈ W2, using Uncover. (2) Use Compare,
to prove that |v(X) − v(Y )| < v(ū) − v(w̄) and |v(a) − v(b)| < v(ū) − v(w̄) holds
for all players a ∈ W1 ∪W2 ∪ Y and b ∈ Z. (3) Repeat step (2) by replacing w̄

with any player of W1. If one of the steps (1)-(3) fails, we show that the partition
T can be refined. Otherwise, we show that (i) − (iii) hold for ϵ1 = v(ū) − v(w∗

1)
and ϵ2 = v(ū)− v(w∗

2), where w∗
1 and w∗

2 are the best and second best players from
W1 ∪ {w̄}, respectively. The following Lemma concludes the proof sketch of Theorem
3.9.

Lemma 3.15. After performing O(k5) many duels, CondorcetWinning1 has identified
a Condorcet winning team. CondorcetWinning2 identifies a Condorcet winning team
after O(k2 log(k)) duels.
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3.1.6 Extended Version and Proofs of Section 3.1.3

Within the main text, we covered two different types of witnesses for single players
relations. In this section, we show that whenever a relation between single players
can be proven from observable duels in our setting, there exists at least one type of
witness for it. For the convince of the reader, we recall the definitions mentioned
in the main text in a comprehensive manner, provide more explanations and some
examples.

Possible Witnesses For two players a and b we define Sa,b as the set of pairs of
disjoint k − 1 sized subsets of players from [n] \ {a, b}, i.e.,

Sa,b = {(S, S ′) | S, S ′ ⊆ [n] \ {a, b}, S ∩ S ′ = ∅, |S| = |S ′| = k − 1},

and Ta,b as the set of disjoint k− 1 sized subset S and a team T pair from [n] \ {a, b},
i.e.,

Ta,b = {(S, T ) | S, T ⊆ [n] \ {a, b}, S ∩ T = ∅, |S| = k − 1, |T | = k}.

Definition 3.16 (Witnesses and Witnesses sets). A witness for a ≻ b is one of the
following types:

(i) Subsets: A pair of disjoint subsets (S, S ′) ∈ Sa,b such that

P{a}∪S,{b}∪S′ > P{b}∪S≻{a}∪S′ .

We denote the set of all subsets witnesses for a ≻ b by S∗
a,b.

(ii) Subset-Team: (S, T ) ∈ Ta,b, such that

P{a}∪S,T > P{b}∪S,T .
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We denote the set of all subset-team witnesses for a ≻ b by T ∗
a,b.

In case we find a witness, we can use it to compare players as follows.

Lemma 3.17. If there exists a pair (S, S ′) ∈ S∗
a,b, or a pair (S, T ) ∈ T ∗

a,b, then a ≻ b.

Proof. First, consider the existence of (S, S ′) ∈ S∗
a,b.

Hence
(∗) PS∪{a},S′∪{b} > PS∪{b},S′∪{a}

Assume for contradiction that b ≻ a. Consistency implies S ∪ {b} ≻ S ∪ {a} and
S ′ ∪ {b} ≻ S ′ ∪ {a}.

Adding up the two implications from the witness definition and SST, we have

PS∪{a},S′∪{b} >(∗) PS∪{b},S′∪{a} >b≻a PS∪{a},S′∪{a} >b≻a PS∪{a},S′∪{b},

Which is a contradiction.

Now, consider the existence of (S, T ) ∈ T ∗
a,b. We have that

(∗∗) PS∪{a},T > PS∪{b},T

Assume for contradiction that b ≻ a. Consistency implies S ∪ {b} ≻ S ∪ {a}.

PS∪{b},T >b≻a PS∪{a},T >(∗∗) PS∪{b},T ,

Which is a contradiction.

Note that while the above lemma implies a sufficient condition for a ≻ b, there is no
guarantee that for every a ≻ b there exists a witness that proves it, as it requires
disjoint subsets. For example, consider a lexicographical order among teams with
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n = 4, k = 2 with uniform noise, e.g. when PA,B = 0.6 for all teams A ≻ B. It follows
from consistency and 12 ≻ 23 that 2 ≻ 3, but there is no witness for that. Moreover,
even if we execute each of the 3 possible duels enough to estimate correctly that
P12,34 = P13,24 = P14,23 = 0.6 there is no way to distinguish between the second and
third best players. In what follows we formalize this intuition, showing that if single
players relation is provable then one of the aforementioned witnesses types exists for
it.

Next, we recall the Observable relation and the set Cobs.

Observable relation Let ≻obs denote the relation between every two disjoint teams,
i.e.,

A ≻obs B ⇐⇒ A ≻ B, |A| = |B| = k, A ∩B = ∅, A,B ⊆ [n].

Namely the relation ≻obs is deducible from valid duels 5.

In what follows, we elaborate more on the definition of Cobs by defining first a set for
Compatible winning probabilities.

Compatible winning probabilities Let Pobs be the set of all tuples (P ′,≻′), where
P ′ are the winning probability matrices for teams, i.e., P ′ = (P ′

A,B)A ̸=B,|A|=|B|=k,A,B∈[n] ∈

[0, 1](
n
k) × [0, 1](

n
k), and ≻′ is a total order on the teams such that:

1. For every pair of disjoint teams (A,B) the winning probability matrix P ′ has
the same winning probability as the ground truth P , i.e., A ∩ B = ∅ implies
P ′
A,B = PA,B.

2. It holds that P ′
A,B = 1/2 iff A = B.

3. P ′
A,B > 1/2 if and only if A ≻′ B.

5Notice that technically, ≻obs is not defined on pairs of different teams which are not disjoint, and therefore
not even a partial order on teams (e.g., we have that {a, b} ≻obs {c, d} ≻obs {a, e} but {a, b} ⊁obs {a, e} as
they share a player and the duel ({a, b}, {a, e}) is not observable.).
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4. P ′ satisfies SST w.r.t. ≻′.

Namely, Pobs contains all tuples (P ′,≻′) that do not contradict the winning probabili-
ties the learner can observe and our assumptions.

Compatible relations Let Cobs be the set of all total orders ≻′ for which there
exists (P ′,≻′) ∈ Pobs. Notice that by the definition of Pobs, we know that ≻′ satisfy
consistency and in particular it holds that A ≻′ B for every disjoint teams (A,B)
with A ≻obs B. Namely, Cobs is the sets of all possible total orders that could explain
the results of the observable duels.

We remark that it follows directly from the definition of Pobs that (P,≻) ∈ Pobs, where
P is the ground truth winning probability matrix and ≻ the ground truth total order.
Because of this, it also holds that ≻ is in Cobs. To illustrate that ≻ is typically not
the only total order in Cobs, we provide the following example.

Example 3.18. For n = 5, k = 2, consider the lexicographic order , i.e., {1, 2} ≻
{1, 3} ≻ {1, 4} ≻ {1, 5} ≻ {2, 3} ≻ {2, 4} ≻ {2, 5} ≻ {3, 4} ≻ {3, 5} ≻ {4, 5} and
assume PA,B = 0.6 iff A ≻ B (equivalently PA,B = 0.4 iff B ≻ A). Then, we have
that

A ≻obs B ⇐⇒


1 ∈ A, or

1 /∈ A ∪B, 2 ∈ A.

While ≻∈ Cobs, there are other consistent total orders in Cobs, such as {1, 2} ≻′

{1, 5} ≻′ {1, 4} ≻′ {1, 3} ≻′ {2, 5} ≻′ {2, 4} ≻′ {2, 3} ≻′ {5, 4} ≻′ {5, 3} ≻′ {4, 3}
(the order ≻′ is obtained by swapping players 3 and 5 in ≻). Similarly, the probability
matrices PA,B = 0.6 for all A ≻ B, (the ground truth), but P 1

A,B = 0.7 ∀ A ≻ B and
P 2
A,B = 0.6 ∀ A ≻′ B are also in P.

We now recall the definition of the deducible relation, ≻∗ for both teams and single
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players, where the latter definition is a combination of the former and single players
consistency.

The intuition behind these definitions is that a relation can be deducible (proven) by
team duels if any “reasonable” total order that could possibly be the ground order
agree on this relation. We stress that both Pobs and Cobs are strictly for analysis, as
we do not need to explicitly calculate them.

Definition 3.19. Team A is deducibly better than a different team B, denoted by
A ≻∗ B (using team duels), if A ≻′ B for all ≻′∈ Cobs.

Definition 3.20. Player a is deducibly better than player b, denoted by a ≻∗ b, if
{a} ∪ S ≻′ {b} ∪ S for all ≻′∈ Cobs.

We continue with an example for relations that ≻∗ must satisfy. Suppose the learner
has observed that {a, c} ≻obs {b, d} ≻obs {a, e} ≻obs {c, d}. Since all the relations
≻∈ Cobs satisfy transitivity, it follows that {b, d} ≻∗ {c, d}, {a, c} ≻∗ {a, e}, and
{a, c} ≻∗ {c, d}. As each ≻ Cobs also satisfies single players consistency, we deduce
b ≻∗ c, c ≻∗ e and a ≻∗ d, respectively. Applying single players consistency again, we
can get, for example, {a, b} ≻∗ {a, c} ≻∗ {a, e} ≻∗ {d, e} (using b ≻∗ c, c ≻∗ e and
a ≻∗ d, respectively).

Intuitively, what we will show in Theorem 3.2 is that for every pair of players that
one is provably better than the another there exists a witness for it, thus there is a
short proof with which the learner can verify their relation with O(1) queries in the
deterministic case. Before we start proving the Theorem 3.2 we prove the following
helpful lemma.

Lemma 3.21. Let ≻∈ Cobs and P be a corresponding probability matrix satisfying
SST.
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Let a, b ∈ [n] with a ≻ b. Then, the following holds true:

1. Let (S, S ′) ∈ Sa,b, then P{a}∪S,{b}∪S′ ≥ P{b}∪S,{a}∪S′.

2. Let (S, T ) ∈ Ta,b, then P{a}∪S,T ≥ P{b}∪S,T .

Proof. 1. We start by proving that for every (S, S ′) ∈ Sa,b it holds that

P{a}∪S,{b}∪S′ ≥ P{b}∪S,{a}∪S′

by exhaustion.

(a) If S ∪ {a} ≻ S ′ ∪ {b} and S ′ ∪ {a} ≻ S ∪ {b} then it follows that 1/2 <

P{a}∪S,{b}∪S′ , P{a}∪S′,{b}∪S and therefore

P{a}∪S,{b}∪S′ > 1/2 > 1− P{a}∪S′,{b}∪S = P{b}∪S,{a}∪S′ .

(b) If (a) does not hold, then it follows that either of the following holds true:

(i) {b} ∪ S ≻ {a} ∪ S ′ (and {a} ∪ S ≻ {b} ∪ S ′ as b ⊁ a).
From single players consistency of ≻ we have that

{a} ∪ S ≻ {b} ∪ S ≻ {a} ∪ S ′ ≻ {b} ∪ S ′

Applying SST, we have that

P{a}∪S,{b}∪S′ ≥ P{a}∪S,{a}∪S′ ≥ P{b}∪S,{a}∪S′ .

(ii) {b} ∪ S ′ ≻ {a} ∪ S (and {a} ∪ S ′ ≻ {b} ∪ S as b ⊁ a).
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From consistency, we have that

{a} ∪ S ′ ≻ {b} ∪ S ′ ≻ {a} ∪ S ≻ {b} ∪ S

Applying SST, we have that

P{a}∪S′,{b}∪S ≥ P{a}∪S′,{a}∪S ≥ P{b}∪S′,{a}∪S.

Therefore
1− P{b}∪S′,{a}∪S ≥ 1− P{a}∪S′,{b}∪S.

Applying PA,B = 1− PB,A for every A,B ∈ [n],

P{a}∪S,{b}∪S′ ≥ P{b}∪S,{a}∪S′ .

(iii) The case that {b} ∪ S ′ ≻ {a} ∪ S and {b} ∪ S ′ ≻ {a} ∪ S cannot hold
as it would imply b ≻ a which is a contradiction to a ≻ b, as ≻ being a
consistent total order yields a total order on players.

2. Strict total order on teams together with consistency implies that either of the
following holds: (a) {a} ∪ S ≻ {b} ∪ S ≻ T , (b){a} ∪ S ≻ T ≻ {b} ∪ S, or (c)
T ≻ {a} ∪ S ≻ {b} ∪ S. Applying SST on (a) and (c) proves the claim, and if (b)
holds we have

P{a}∪S,T > 1/2 > P{b}∪S,T .

We note that the left to right direction in the following sentence is very similar to
Lemma 3.17 and their proofs are equivalent, however for completeness we provide a
full proof here as well.
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Theorem 3.2. Let a, b ∈ [n]. Then, a ≻∗ b if and only if S∗
a,b ∪ T ∗

a,b ̸= ∅.

Proof. We start with the direction from right to left, i.e., S∗
a,b ∪ T ∗

a,b ̸= ∅ implies
a ≻∗ b.

First, consider (S, S ′) ∈ S∗
a,b and assume for contradiction that a ≻∗ b does not hold.

That is, there exists ≻′∈ Cobs and P ′ ∈ Pobs such that b ≻′ a, and P ′ is a corresponding
winning probability matrix.

By Lemma 3.21 and the definition of Pobs it follows that

PS∪{b},S′∪{a} = P ′
S∪{b},S′∪{a} ≥ P ′

S∪{a},S′∪{b} = PS∪{a},S′∪{b}

holds, as the teams are disjoint. This is a contradiction to (S, S ′) ∈ S∗
a,b.

Similarly, let (S, T ) ∈ T ∗
a,b and assume for contradiction that a ≻∗ b does not hold.

That is, there exists ≻′∈ Cobs and P ′ ∈ Pobs such that b ≻′ a, and P ′ is a corresponding
winning probability matrix. By Lemma 3.21 and the definition of Pobs it follows that

PS∪{b},T = P ′
S∪{b},T ≥ P ′

S∪{a},T = PS∪{a},T

holds, as the teams are disjoint. This is a contradiction to (S, T ) ∈ T ∗
a,b.

We turn to the direction from left to right, i.e. that a ≻∗ b yields S∗
a,b ∪ T ∗

a,b ̸= ∅. We
start by defining Da as the set of observable duels (A,B) such that a ∈ A. Moreover,
we define a permutation π on the set of players, which simply exchanges the players
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a and b when present. More precisely,

π(S) =



S \ {a} ∪ {b} if a ∈ S, b ̸∈ S

S \ {b} ∪ {a} if b ∈ S, a ̸∈ S

S else.

We claim that a ≻∗ b implies

PA,B ≥ Pπ(A),π(B) for all (A,B) ∈ Da (3.2)

(P is the ground truth winning probability matrix). To see why, we first define

D1
a = {(A,B) ∈ Da | b ∈ A}

D2
a = {(A,B) ∈ Da | b ∈ B}

D3
a = {(A,B) ∈ Da | b /∈ A ∪B}.

Notice that

Da = D1
a ∪ D2

a ∪ D3
a (3.3)

When (A,B) ∈ D1
a, then (π(A), π(B)) = (A,B) and PA,B = Pπ(A),π(B).

When (A,B) ∈ D2
a, then (A \ {a}, B \ {b}) ∈ Sa,b, and PA,B ≥ PA\{a}∪{b},B\{b}∪{a} =

Pπ(A),π(B) follows from Lemma 3.21.

Similarly, when (A,B) ∈ D3
a then (A \ {a}, B) ∈ Ta,b and PA,B ≥ PA\{a}∪{b},B =

Pπ(A),π(B) follows from Lemma 3.21.
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We will now show that a ≻∗ b implies the existence of (A,B) ∈ Da with PA,B >

Pπ(A),π(B).

Assume not. Then in particular from (3.2) we have that PA,B = Pπ(A),π(B) holds for
all (A,B) ∈ Da.

Claim. Let ≻′ be the relation defined by A ≻′ B iff π(A) ≻ π(B) with the corre-
sponding winning probabilities defined by P ′

A,B = Pπ(A),π(B). If PA,B = Pπ(A),π(B) for
every (A,B) ∈ Da then P ′ ∈ Pobs and thus ≻′∈ Cobs.

Proof. Observe that PA,B = P ′
A,B for all disjoint teams A and B follows by definition.

In addition, since π is invertible and involuntary, for every team A there exists a team
Aπ such that π(Aπ) = A hence PA,A = PAπ ,Aπ = 1/2. It remains to show that (1)
Every pair of different teams A,B holds P ′

A,B > 1/2 iff A ≻′ B, (2) that ≻′ is a total
ordering satisfying single players consistency, and (3) that P ′ satisfy SST w.r.t. ≻′.

(1) Let A,B be two different teams. It follows by the assumption over P that
P ′
A,B = Pπ(A),π(B) > 1/2, iff π(A) ≻ π(B), which holds iff A ≻′ B by definition.

(2) We now show that ≻′ is a strict total order. From it’s definition we have that
≻′ is irreflexive. We also have that ≻′ is connected (and therefore strict) as π is
invertible and involutory, and every pair of different teams A,B holds either A ≻′ B (if
π−1(A) = π(A) ≻ π(B) = π−1(B)) or B ≻′ A (if π−1(B) = π(B) ≻ π(A) = π−1(A)),
but not both. For transitivity, Consider a triplet of different teams, A,B,C such that
A ≻′ B ≻′ C (and therefore π−1(A) = π(A) ≻ π−1(B) = π(B) ≻ π−1(C) = π(C)).
From transitivity of ≻, we get π−1(A) = π(A) ≻ π(C) = π−1(C) which implies
A ≻′ C. Hence the relation ≻′ is a strict total order.

We continue by showing that ≻′ satisfies single players consistency.
Let x, y ∈ [n] be a pair of players and S ∈ [n] \ {x, y} be a set of players such that
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x ∪ S ≻′ y ∪ S. We will show that {x} ∪ S ′ ≻′ {y} ∪ S ′ for all S ′ ∈ [n] \ {x, y}.

Since π is invertible, we know that there exist players xπ = π(x) and yπ = π(y), and
a set, Sπ = π(S) ∈ [n] \ {xπ, yπ},such that

{x} ∪ S = π−1({xπ} ∪ Sπ)

and
{y} ∪ S = π−1({yπ} ∪ Sπ).

From the definition of ≻′, we get

{xπ} ∪ Sπ ≻ {yπ} ∪ Sπ.

Therefore from the consistency of ≻ every S ′
π ∈ [n] \ {xπ, yπ} holds {xπ} ∪ S ′

π ≻

{yπ} ∪ S ′
π hence by definition {x} ∪ S ′ ≻′ {y} ∪ S ′.

(3) We now show that P ′ satisfy SST w.r.t. ≻′. Let A ≻′ B ≻′ C. From the definition
of ≻′ we have that π−1(A) = π(A) ≻ π−1(B) = π(B) ≻ π−1(C) = π(C). As P satisfy
SST w.r.t. ≻,

Pπ(A),π(C) ≥ max{Pπ(A),π(B), Pπ(B),π(C)}

Once again from the definition of ≻′,

P ′
A,C ≥ max{P ′

A,B, P
′
B,C},

Which means that P ′ satisfy SST w.r.t. ≻′ by definition.

Now, observe that, together with the above claim, a ≻∗ b imply that for any S ⊆ [n] \
{a, b} of size k−1 it holds that S∪{a} ≻∗ S∪{b} which implies (i) S∪{a} ≻ S∪{b} as
well as (ii) S∪{a} ≻′ S∪{b}, as both ≻ and ≻′ are in Cobs. Applying the definitions of

80



≻′ and π, statement (ii) implies π−1(S∪{a}) = π(S∪{a}) ≻ π(S∪{b}) = π−1(S∪{b})
which is equivalent to S ∪ {b} ≻ S ∪ {a} and hence yields a contradiction to (i).

We therefore deduce the existence of (A,B) ∈ Da such that PA,B > Pπ(A),π(B). From
(3.3), either (A,B) ∈ D2

a, thus (A\{a}, B\{b}) ∈ Sa,b, and PA,B > PA\{a}∪{b},B\{b}∪{a} =
Pπ(A),π(B) yields (A\{a}, B \{b}) ∈ S∗

a,b, or (A,B) ∈ D3
a, thus (A\{a}, B) ∈ Ta,b and

PA,B > PA\{a}∪{b},B = Pπ(A),π(B) implies (A \ {a}, B) ∈ T ∗
a,b (As (A,B) ∈ D1

a, implies
Pπ(A),π(B) = PA,B > PA,B which is a contradiction.). Overall, S∗

a,b ∪ T ∗
a,b ̸= ∅.

3.1.7 Algorithms & Proofs for the Stochastic Setting (Section 3.1.4)

We start by splitting the definition of Xa,b(S, S ′, T ) into two random variables,
according to the two types of witnesses we introduced in the previous section. This
will simplify the proof of Lemma 3.4.

For (S, S ′) ∈ Sa,b we introduce a random variable Za,b(S, S ′) that combines the
outcomes of the two duels obtained from the potential subsets witness (S, S ′), namely
(S∪{a}, S ′∪{b}) and (S ′∪{a}, S∪{b}) and similarly, a random variable Ya,b(S, T ) that
combines the outcomes of the two duels obtained by subset-team witness, (S ∪{a}, T )
and (T, S ∪ {b}).

Definition 3.22. For a, b ∈ [n], a ̸= b, (S, S ′) ∈ Sa,b and (S, T ) ∈ Ta,b,

Za,b(S, S ′) = 1[(S ∪ {a} > S ′ ∪ {b})]
2 + 1[(S ′ ∪ {a} > S ∪ {b})]

2 ,

Ya,b(S, T ) = 1[{a} ∪ S > T ]
2 + 1[T > {b} ∪ S]

2 .

We note that both Za,b(S, S ′) and Ya,b(S, T ) can take values in {0, 1/2, 1}.

The random variables Za,b and Ya,b are the outcomes of picking random pairs, (S, S ′) ∈
Ta,b or (S, T ) ∈ Sa,b and returning Za,b(S, S ′) and Ya,b(S, T ), respectively. Observe
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that

E[Za,b] =
∑

(S,S′)∈Sa,b

E[Za,b(S, S ′)]
|Sa,b|

=
∑

(S,S′)∈Sa,b

P{a}∪S,{b}∪S′ + P{a}∪S,{b}∪S′

2|Sa,b|
,

E[Ya,b] =
∑

(S,T )∈Ta,b

E[Ya,b(S, T )]
|Ta,b|

=
∑

(S,T )∈Ta,b

P{a}∪S,T + PT,{b}∪S′

2|Ta,b|
,

Where the expectation E[Za,b] is taken over all elements of Sa,b and the expectation
E[Ya,b] is taken over all elements Ta,b.

The following lemma apply for every a ≻ b, even if a ⊁∗ b. We prove Lemma using
SST and consistency.

Lemma 3.23. Let a, b ∈ [n] be any two players such that a ≻ b. Then,

(1) For every (S, S ′) ∈ Sa,b it holds that E[Za,b(S, S ′)] ≥ 1/2.

(2) For every (S, T ) ∈ Ta,b it holds that E[Ya,b(S, T )] ≥ 1/2.

Proof. (1) Let (S, S ′) ∈ Sa,b and a ≻ b. Then,

E[Za,b(S, S ′)] = P{a}∪S,{b}∪S′ + P{a}∪S′,{b}∪S

2 ≥ 1
2

⇐⇒ P{a}∪S,{b}∪S′ + P{a}∪S′,{b}∪S ≥ 1

⇐⇒ P{a}∪S,{b}∪S′ ≥ 1− P{a}∪S′,{b}∪S

⇐⇒ P{a}∪S,{b}∪S′ ≥ P{b}∪S,{a}∪S′ ,

which holds according to Lemma 3.21.
(2) Let (S, T ) ∈ Ta,b and a ≻ b. From Lemma 3.21 we have that

P{a}∪S,T ≥ P{b}∪S,T ,
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which is equivalent to

P{a}∪S,T ≥ P{b}∪S,T = 1− PT,{b}∪S

and therefore
2E[Ya,b(S, T )] ≥ 1.

Hence, E[Ya,b(S, T )] ≥ 1/2.

Corollary 3.24. For players a, b ∈ [n] such that a ≻ b then E[Za,b],E[Ya,b] ≥ 1/2.

The random variable Xa,b(S, S ′, T ) is a single random variable that determines the
distinguishability of the relation between players a and b using team duels with
potential witnesses. For the definition of Xa,b(S, S ′, T ) we refer to the main part of
this section.

In the following we show how Xa,b(S, S ′, T ) can be expressed by Za,b(S, S ′) and
Ya,b(S, T ), namely

Xa,b(S, S ′, T ) = 1[S ∪ {a} > S ′ ∪ {b}]− 1[S ∪ {b} > S ′ ∪ {a}]
2

+ 1[S ∪ {a} > T ]− 1[S ∪ {b} > T ]
2

= 1[S ∪ {a} > S ′ ∪ {b}] + 1[S ′ ∪ {a} > S ∪ {b}]− 1
2

+1[S ∪ {a} > T ] + 1[T > S ∪ {b}]− 1
2 = Za,b(S, S ′) + Ya,b(S, T )− 1.

In similar fashion to the definitions of Sa,b, S∗
a,b and Za,b w.r.t. Z(S, S ′), we de-

fined
Xa,b = {(S, S ′, T )|(S, S ′) ∈ Sa,b, (S, T ) ∈ Ta,b},

and the random variable Xa,b to be the outcome of picking a random triplet,
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(S, S ′, T ) ∈ Xa,b and returning Xa,b(S, S ′, T ).

The set X ∗
a,b contains all triplets (S, S ′, T ) ∈ Xa,b such that either (S, S ′) ∈ S∗

a,b or
(S, T ) ∈ T ∗

a,b. Note that Xa,b(S, S ′, T ),E[Xa,b] ∈ [−1, 1].

For the next Theorem’s proof we rely on Theorem 3.2, Corollary 3.24 in one direction,
and show the other using the probabilistic method.

Theorem 3.3. For every two players a, b ∈ [n] it holds that a ≻∗ b if and only if
E[Xa,b] > 0.

Proof. We will show that for players a, b ∈ [n] such that a ≻∗ b iff one of the following
holds:
(1) E[Za,b] > 1/2, or
(2) E[Ya,b] > 1/2.
This is equivalent to E[Xa,b] > 0 according to the definition of Xa,b and Corollary
3.24.
(⇒) If a ≻∗ b then from Theorem 3.2 we know that one of the following holds:

1. There exists a subsets, witness (S, S ′) ∈ Sa,b for a ≻ b. So by definition
E[Za,b(S, S ′)] > 1/2, and combined with Lemma 3.23 we have E[Za,b] > 1/2.

2. There exists a subset-team witness (S, T ) ∈ Ta,b for a ≻ b. Thus E[Ya,b(S, T )] >
1/2, hence Lemma 3.23 implies that E[Ya,b] > 1/2.

(⇐) If (1) holds, the probabilistic method implies the existence of (S, S ′) ∈ Sa,b such
that E[Za,b(S, S ′)] > 1/2 which means that (S, S ′) is a witness for a ≻ b, hence,
a ≻∗ b by Theorem 3.2. If (2) holds, the probabilistic method implies that there
exists (S, T ) ∈ Ta,b such that E[Ya,b(S, T )] > 1/2 which means that (S, T ) is a witness
for a ≻ b, hence, a ≻∗ b by Theorem 3.2.

Thus according to the definition of Xa,b the theorem holds.
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Gap parameter Recall that we defined our gap parameter by ∆ = E[Xk,k+1]. In
the following we show that our gap parameter does not just help us to distinguish
between the top k and the top k + 1 players, but also between other players in
A∗
k and players from [n] \ A∗

k. To this end, we show in Lemma 3.4 that strong
stochastic transitivity holds for E[Xa,b]. For most elements (S, S ′, T ) ∈ Xa,b it holds
that E[Xa,c(π(S), π(S ′), π(T ))] ≥ E[Xa,b(S, S ′, T )] (and analogously for Xb,c), where
π is a permutation exchanging b and c, but, surprisingly, this is not true in general. By
constructing a charging scheme, we can still show that this holds in expectation over
all elements of Xa,b, and derive a strong stochastic transitivity for distinguishabilities
w.r.t. the total order ≻ on the players.

The proof of the following lemma also shows that from every a ≻ b witness (S, S ′, T ) ∈
X ∗
a,b, and for any player c such that b ≻ c we can create a a ≻ c- witness. Similarly,

from every b ≻ c witness (S, S ′, T ) ∈ X ∗
b,c, and for any player a such that a ≻ b we

can create a a ≻ c- witness.

Lemma 3.4. For a triplet of players a ≻ b ≻ c it holds that

E[Xa,c] ≥ max{E[Xa,b],E[Xb,c]}.

Proof. In the following we show that E[Xa,c] ≥ E[Xa,b]. The proof that E[Xa,c] ≥
E[Xb,c] works completely analogously and is therefore omitted. Let π be the function
exchanging b and c, i.e.

π(S) =



S \ {c} ∪ {b} if c ∈ S, b ̸∈ S

S \ {b} ∪ {c} if b ∈ S, c ̸∈ S

S else.
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Then, we define the function f : Xa,b → Xa,c by f(S, S ′, T ) = (π(S), π(S ′), π(T )).
Observe that, for this application of π, the second case within the definition of π is
never occurs, as none of the sets S, S ′, T contains b when (S, S ′, T ) ∈ Xa,b. It will we
helpful to partition Xa,b in the following way.

X 1
a,b = {(S, S ′, T ) ∈ Xa,b | c ̸∈ S ∪ S ′ ∪ T}

X 2
a,b = {(S, S ′, T ) ∈ Xa,b | c ∈ S}

X 3
a,b = {(S, S ′, T ) ∈ Xa,b | c ∈ S ′ \ T}

X 4
a,b = {(S, S ′, T ) ∈ Xa,b | c ∈ T \ S ′}

X 5
a,b = {(S, S ′, T ) ∈ Xa,b | c ∈ T ∩ S ′}.

Then we can also define X i
a,c = {f(S, S ′, T ) | (S, S ′, T ) ∈ X i

a,b} for all i ∈ {1, . . . , 5}.
Observe that {X i

a,c | i ∈ {1, . . . , 5}} is also a partition of Xa,c.

We will start by proving that for every (S, S ′, T ) ∈ X 1
a,b ∪ X 2

a,b ∪ X 3
a,b ∪ X 4

a,b ∪ X 5
a,b

E[Za,c(f(S, S ′))] ≥ E[Za,b(S, S ′)] (3.4)

and for all (S, S ′, T ) ∈ X 1
a,b ∪ X 2

a,b ∪ X 3
a,b

E[Ya,c(f(S, T ))] ≥ E[Ya,b(S, T )] (3.5)

by exhaustion.

(i) Let (S, S ′, T ) ∈ X 1
a,b. We get that f(S, S ′, T ) = (S, S ′, T ) and both

E[Za,c(S, S ′)] = P{a}∪S,{c}∪S′ + P{a}∪S′,{c}∪S

2 ≥
P{a}∪S,{b}∪S′ + P{a}∪S′,{b}∪S

2
= E[Za,b(S, S ′)],

86



E[Ya,c(S, T )] = P{a}∪S,T + PT,{c}∪S

2 ≥
P{a}∪S,T + PT,{b}∪S

2
= E[Ya,b(S, T )]

follow from consistency and SST.

(ii) Let (S, S ′, T ) ∈ X 2
a,b. Then, f(S, S ′, T ) = (S \ {c} ∪ {b}, S, T ) and both

E[Za,c(S \ {c} ∪ {b}, S ′)] = P{a}∪S\{c}∪{b},{c}∪S′ + P{a}∪S′,{c}∪S\{c}∪{b}

2
≥
P{a}∪S,{b}∪S′ + P{a}∪S′,{b}∪S

2
= E[Za,b(S, S ′)]

E[Ya,c(S \ {c} ∪ {b}, T )]) = P{a}∪S\{c}∪{b},T + PT,{c}∪S

2
≥
P{a}∪S,T + PT,{b}∪S

2
= E[Ya,b(S, T )]

follow as {c} ∪ S \ {c} ∪ {b} = S ∪ {b} and from consistency and SST yield the
rest.

(iii) Let (S, S ′, T ) ∈ X 3
a,b. Then, f(S, S ′, T ) = (S, S ′ \ {c} ∪ {b}, T ) and

E[Za,c(S, S ′ \ {c} ∪ {b}))] = P{a}∪S,{c}∪S′\{c}∪{b} + P{a}∪S′\{c}∪{b},{c}∪S

2
≥
P{a}∪S,{b}∪S′ + P{a}∪S′,{b}∪S

2
= E[Za,b(S, S ′)]

follows as {c}∪S ′ \ {c}∪ {b} = S ′ ∪{b} and consistency and SST yield the rest.
In addition, we already showed that in this case thus E[Ya,c(S, T )] ≥ E[Ya,b(S, T )]
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(due to the same reason as in (i)).

(iv) Let (S, S ′, T ) ∈ X 4
a,b. Then, f(S, S ′, T ) = (S, S ′, T \ {c} ∪ {b}). Observe that

we have already shown that E[Za,c(S, S ′)] ≥ E[Za,b(S, S ′)] in this case (due to
the same reason as (i)).

(v) Let (S, S ′, T ) ∈ X 5
a,b. Then, f(S, S ′, T ) = (S, S ′\{c}∪{b}, T \{c}∪{b}). Observe

that we have already shown that E[Za,c(S, S ′ \ {c} ∪ {b})] ≥ E[Za,b(S, S ′)] in
this case (due to the same reason as (iii)).

This concludes the proof of equations (3.4) and (3.5). In particular, from (ii) and (iii)
it directly follows that

∑
(S,S′,T )∈X i

a,c

E[X(S, S ′, T )] =
∑

(S,S′,T )∈X i
a,b

E[X(f(S, S ′, T ))] ≥
∑

(S,S′,T )∈X i
a,b

E[X(S, S ′, T )]

(3.6)
holds for i ∈ {2, 3}.

We will continue the proof by showing that, for every (S, T ) ∈ Sa,b with c ∈ T , it
holds that

E[Za,c(S, T \ {c})] + E[Ya,c(S, T \ {c} ∪ {b})] ≥ E[Za,b(S, T \ {c})] + E[Ya,b(S, T )].
(3.7)

This will then be helpful to conclude the proof.

To this end, observe that

E[Za,c(S, T \ {c})] + E[Ya,c(S, T \ {c} ∪ {b})])

= PS∪{a},T + PT\{c}∪{a},S∪{c} + PS∪{a},T\{c}∪{b} + PT\{c}∪{b},S∪{c}

= PS∪{a},T\{c}∪{b} + PT\{c}∪{a},S∪{c} + PS∪{a},T + PT\{c}∪{b},S∪{c}
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≥ PS∪{a},T\{c}∪{b} + PT\{c}∪{a},S∪{b} + PS∪{a},T + PT,S∪{b}

= E[Za,b(S, T \ {c})] + E[Ya,b(S, T )],

which follows by consistency and SST. This will now be helpful to establish a charging
scheme. Namely, we are first going to show that

∑
(S,S′,T )∈X 4

a,c

E[Xa,c(S, S ′, T )] =
∑

(S,S′,T )∈X 4
a,b

E[Xa,c(f(S, S ′, T ))] ≥
∑

(S,S′,T )∈X 4
a,b

E[Xa,b(S, S ′, T )].

(3.8)

This is true since

∑
(S,S′,T )∈X 4

a,c

E[Xa,c(S, S ′, T )] + |Xa,c|

∑
(S,S′,T )∈X 4

a,b

E[Xa,c(S, S ′, T \ {c} ∪ {b})] + |Xa,c|

=
∑

(S,S′,T )∈X 4
a,b

(E[Za,c(S, S ′)] + E[Ya,c(S, T \ {c} ∪ {b})])

=
(
n− k − 2
k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S ′)] +
∑

(S,T )∈Ta,b|c∈T
E[Ya,c(S, T \ {c} ∪ {b})]

)

=
(
n− k − 2
k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S ′)] +
∑

(S,S′)∈Sa,b∩Sa,c

E[Ya,c(S, S ′ ∪ {b})]
)

=
(
n− k − 2
k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S ′)] + E[Ya,c(S, S ′ ∪ {b})]
)

≥
(
n− k − 2
k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S ′)] + E[Ya,b(S, S ′ ∪ {c})]
)

=
(
n− k − 2
k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S ′)] +
∑

(S,S′)∈Sa,b∩Sa,c

E[Ya,b(S, S ′ ∪ {c})]
)

=
(
n− k − 2
k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S ′)] +
∑

(S,T )∈Ta,b|c∈T
E[Ya,b(S, T )]

)
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=
∑

(S,S′,T )∈X 4
a,b

(E[Za,b(S, S ′)] + E[Ya,b(S, T )])

=
∑

(S,S′,T )∈X 4
a,b

E[Xa,b(S, S ′, T )] + |Xa,b|,

where the inequality follows by equation (3.7). This completes the proof of (3.8).

Next, we are going to show that a similar bound holds when we sum over elements in
X 1
a,b ∪ X 5

a,b. More precisely, we are going to show that

∑
(S,S′,T )∈X 1

a,c∪X 5
a,c

E[Xa,c(S, S ′, T )] =
∑

(S,S′,T )∈X 1
a,b

∪X 5
a,b

E[Xa,c(f(S, S ′, T ))]

≥
∑

(S,S′,T )∈X 1
a,b

∪X 5
a,b

E[Xa,b(S, S ′, T )]. (3.9)

To this end, observe that

∑
(S,S′,T )∈X 1

a,c

E[Xa,c(S, S ′, T )] +
∑

(S,S′,T )∈X 5
a,c

E[Xa,c(S, S ′, T )] + |X 1
a,c|+ |X 5

a,c|

∑
(S,S′,T )∈X 1

a,b

E[Xa,c(S, S ′, T )] +
∑

(S,S′,T )∈X 5
a,b

E[Xa,c(S, S ′ \ {c} ∪ {b}, T \ {c} ∪ {b})] + |X 1
a,b|+ |X 5

a,b|

=
(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S ′)] +
(
n− k − 3
k − 1

) ∑
(S,T )∈Ta,b∩Ta,c

E[Ya,c(S, T )]

+
(
n− k − 2
k − 1

) ∑
(S,S′)∈Sa,b|c∈S′

E[Za,c(S, S ′ \ {c} ∪ {b})] +
(
n− k − 2
k − 2

) ∑
(S,T )∈Ta,b|c∈T

E[Ya,c(S, T \ {c} ∪ {b})]

=
(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S ′)] + [. . . ] +
(
n− k − 2
k − 2

) ∑
(S,T )∈Ta,b|c∈T

E[Ya,c(S, T \ {c} ∪ {b})]

=
((

n− k − 2
k

)
−
(
n− k − 2
k − 2

)) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S ′)] + [. . . ]

+
(
n− k − 2
k − 2

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S ′)] + E[Ya,c(S, S ′ ∪ {b})]

90



≥
((

n− k − 2
k

)
−
(
n− k − 2
k − 2

)) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S ′)] + [. . . ]

+
(
n− k − 2
k − 2

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S ′)] + E[Ya,b(S, S ′ ∪ {c})]

=
(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S ′)] + [. . . ] +
(
n− k − 2
k − 2

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Ya,b(S, S ′ ∪ {c})]

=
(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S ′)] + [. . . ] +
(
n− k − 2
k − 2

) ∑
(S,S′)Ta,b|c∈T

E[Ya,b(S, T )]

=
(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S ′)] +
(
n− k − 3
k − 1

) ∑
(S,T )∈Ta,b∩Ta,c

E[Ya,c(S, T )]

+
(
n− k − 2
k − 1

) ∑
(S,S′)∈Sa,b|c∈S′

E[Za,c(S, S ′ \ {c} ∪ {b})] +
(
n− k − 2
k − 2

) ∑
(S,T )∈Ta,b|c∈T

E[Ya,b(S, T )]

≥
(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S ′)] +
(
n− k − 3
k − 1

) ∑
(S,T )∈Ta,b∩Ta,c

E[Ya,b(S, T )]

+
(
n− k − 2
k − 1

) ∑
(S,S′)∈Sa,b|c∈S′

E[Za,b(S, S ′)] +
(
n− k − 2
k − 2

) ∑
(S,T )∈Ta,b|c∈T

E[Ya,b(S, T )]

=
∑

(S,S′,T )∈X 1
a,b

E[Xa,b(S, S ′, T )] +
∑

(S,S′,T )∈X 5
a,b

E[Xa,b(S, S ′, T )] + |X 1
a,c|+ |X 5

a,c|,

where the first inequality follows by equation (3.7) and (3.4) and the second inequality
follows from equation (3.4) and (3.5). The dots ([. . . ]) stands for
(
n− k − 3
k − 1

) ∑
(S,T )∈Ta,b∩Ta,c

E[Ya,c(S, T )]+
(
n− k − 2
k − 1

) ∑
(S,S′)∈Sa,b|c∈S′

E[Za,c(S, S ′\{c}∪{b})],

which is a part of the expression that it is omitted during the calculations for the
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sake of brevity. Summarizing, we get that

E[Xa,c] =
∑

(S,S′,T )∈Xa,c
E[Xa,c(S, S ′, T )]
|Xa,c|

=
∑5
i=1

∑
(S,S′,T )∈X i

a,c
E[Xa,c(S, S ′, T )]

|Xa,c|

≥
∑5
i=1

∑
(S,S′,T )∈X i

a,b
E[Xa,b(S, S ′, T )]

|Xa,c|
= E[Xa,b],

where the inequality follows from equations (3.6), (3.8), and (3.9). The last inequality
follows from |Xa,b| = |Xa,c|.

The reduction We close this section by giving the two subroutines mentioned within
the reduction to the classic dueling bandits setting.

Algorithm 1 singlesDuel: simulation of a duel between single players
Input: Players a, b ∈ [n]
Output: w ∈ {0, 1/2, 1} such that w = 1 is a won, w = 0 if b won and w = 1/2 in case
of a tie.
Pick (S, S′, T ) ∈ Xa,b randomly
z ← (1[{a} ∪ S ≻ {b} ∪ S′] + 1[{a} ∪ S′ ≻ {b} ∪ S])/2
y ← (1[{a} ∪ S ≻ T ] + 1[T ≻ {b} ∪ S])/2
x← z + y − 1
return (1 + x)/2

Algorithm 2 estimateX: Single player distinguishability estimation
Input: Players a, b ∈ [n], number of duels r ∈ N
Output: x ∈ [0, 1]
for i = 1, . . . r do

xi ← singlesDuel(a, b)
end for
x← 1

r [
∑r
i=1 xi]− 1/2

return x
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3.1.8 Algorithms & Proofs for the Deterministic Setting (Section 3.1.5)

Uncover Subroutine As sketched within the main part of this, we refine the idea of
the Uncover subroutine by a binary search approach. Moreover, we add the option to
input a refinement of A and B, namely A = A(1)∪A(2), B = B(1)∪B(2), guaranteeing
that the uncovered relation is between a pair of players from A(1) and B(1), while A(2)

and B(2) are contained in one of the sets of the witness each. For that to work, we
require that

(a) |A(1)|+ |A(2)| = k,

(b) |A(i)| = |B(i)| for i ∈ {1, 2},

(c) A(1) ∪ A(2) ≻ B(1) ∪B(2), and

(d) A(1) ∪B(2) ≻ B(1) ∪ A(2).

Observe that for any four sets satisfying (a) and (b) one of the four sets wins in
both duels. By enforcing (c) and (d) we fix wlog that this set is A(1). Let us assume
that the sets A(1) and B(1) are ordered, meaning that A(1) = {a1, . . . , a|A(1)|} and
B(1) = {b1, . . . , b|A(1)|}. We also introduce the shorthand notation Aℓ:r for {aℓ, . . . , ar}
and respectivelyBℓ:r for {bℓ, . . . , br} for any ℓ, r ∈ [|A(1)|]. The subroutine is formalized
in Algorithm 3.
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Algorithm 3 Uncover Subroutine
Input: four disjoint sets, A(1), B(1), A(2), B(2) with |A(1)| = |B(1)|, |A(2)| = |B(2)|,

|A(1)|+ |A(2)| = k, A(1) ∪A(2) ≻ B(1) ∪B(2), and A(1) ∪B(2) ≻ B(1) ∪A(2)

Output: a ∈ A(1), b ∈ B(1), (S, S′) ∈ S∗
a,b with (C ⊆ S and D ⊆ S′) or (D ⊆ S and

C ⊆ S′)

Set S ← A(1) ∪A(2), T ← B(1) ∪B(2), ℓ← 1, r ← |A(1)|

while ℓ < r do

i←
⌊
ℓ+r

2
⌋

S ← S −Ai+1:r ∪Bi+1:r

T ← T −Bi+1:r ∪Ai+1:r

if S ≻ T then

r ← i

else

ℓ← i + 1

swap S and T

end if

end while

return (aℓ, bℓ), and (S \ {aℓ}, T \ {bℓ})

In order to show that the algorithm is well-defined and works correctly, the following
Lemma will be helpful.

Lemma 3.25. In subroutine Uncover (Algorithm 3), at the end of every while loop,
it holds that, (i) ℓ, r ∈ N with ℓ ≤ r, (ii) Aℓ:r ⊆ S, Bℓ:r ⊆ T , (iii) S ≻ T , and
(iv) T \ Bℓ:r ∪ Aℓ:r ≻ S \ Aℓ:r ∪ Bℓ:r, (v) exactly one of S and T contains A(2), the
other set contains B(2).

Proof. We prove all statements via one joint induction over the iterations of the while
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loop. All statements are clearly true at the beginning of the first while loop. Now,
consider any iteration in which the four statements are true at the beginning of the
while loop. It suffices to show that they are still true after resetting S, T , ℓ, and r.
For clarity, we refer to the modified variables of the teams just before the if condition
as S ′, T ′ and after the if condition as S ′′, T ′′. Similarly, ℓ′, and r′ are the values of
the indices after the if condition. In the following, we show that the four conditions
still hold for S ′′,T ′′,ℓ′, and r′.

Case 1: S ′ ≻ T ′. Then, S ′′ = S ′, T ′′ = T ′, ℓ′ = ℓ, r′ = i. The condition of
the while loop, ℓ < r, clearly implies that ℓ′ = ℓ ≤ ⌊ ℓ+r2 ⌋ = i = r′. Moreover, by
construction Aℓ:i = Aℓ′:r′ ⊆ S ′′ and Bℓ:i = Bℓ′:r′ ⊆ T ′′ and hence condition (ii) is
satisfied. Condition (iii), i.e., S ′′ ≻ T ′′ is satisfied by the case condition. For condition
(iv) let us rewrite the induction hypothesis for condition (iv) as

T −Bℓ:r ∪ (Aℓ:i ∪ Ai+1:r) ≻ S − Aℓ:r ∪ (Bℓ:i ∪Bi+1:r).

Observe that T −Bℓ:r ∪ Ai+1:r = T ′ −Bℓ:i and S − Aℓ:r ∪Bi+1:r = S ′ − Aℓ:i. Hence,
the above expression can be rewritten as

T ′ −Bℓ:i ∪ Aℓ:i ≻ S ′ − Aℓ:i ∪Bℓ:i.

Plugging in T ′ = T ′′, S ′ = S ′′, ℓ = ℓ′ and i = r′ yields condition (iv) for the
updated variables. Lastly, condition (v) is satisfied directly by applying the induction
hypothesis.

Case 2: T ′ ≻ S ′. Then, S ′′ = T ′, T ′′ = S ′, ℓ′ = i + 1, r′ = r. For condition
(ii), observe that ℓ, r ∈ N with ℓ < r clearly implies that ℓ′ = i + 1 = ⌊ ℓ+r2 ⌋ + 1 ≤
⌊2r−1

2 ⌋+1 ≤ r = r′. Moreover, by construction Ai+1:r ⊆ T ′ = S ′′ and Bi+1:r ⊆ S ′ = T ′′

and hence (ii) is satisfied. Condition (iii), i.e., S ′′ = T ′ ≻ S ′ = T ′′, is satisfied by
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the case condition. For condition (iv), let us rewrite the induction hypothesis for
condition (iii) as

S − Aℓ:r ∪ (Aℓ:i ∪ Ai+1:r) ≻ T −Bℓ:r ∪ (Bℓ:i ∪Bi+1:r).

Observe that S − Aℓ:r ∪ Aℓ:i = S ′ −Bi+1:r and T −Bℓ:r ∪Bℓ:i = T ′ − Ai+1:r. Hence,
the above expression can be rewritten to

S ′ −Bi+1:r ∪ Ai+1:r ≻ T ′ − Ai+1:r ∪Bi+1:r.

Inserting S ′ = T ′′, T ′ = S ′′, i + 1 = ℓ′ and r = r′ yields condition (iv) for the
updated variables. Lastly, condition (v) is satisfied directly by applying the induction
hypothesis.

With the help of Lemma 3.25 it is easy to see that the algorithm is well-defined,
more precisely, that the constructed tuple (S, T ) forms a feasible duel within every
iteration of the while loop. It remains to show that the algorithm works correctly
and its running time is bounded by O(log(|A(1)|)).

Lemma 3.26. Let A(1), A(2), B(1), B(2) be sets satisfying conditions (a) to (d). After
performing O(log(|A(1)|)) duels, Uncover returns (a, b) with a ∈ A(1), b ∈ B(1) and
(S, S ′) ∈ S∗

a,b with either A(2) ⊆ S and B(2) ⊆ S ′ or B(2) ⊆ S and A(2) ⊆ S ′.

Proof. By Lemma 3.25, the termination of the algorithm implies that ℓ = r. By
statement (ii) from Lemma 3.25 we get that aℓ ∈ S and bℓ ∈ T holds. Moreover,
conditions (iii) and (iv) can be rewritten as

(S \ {aℓ}) ∪ {aℓ} ≻ (T \ {bℓ}) ∪ {bℓ} (3.10)
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and
(T \ {bℓ}) ∪ {aℓ} ≻ (T \ {aℓ}) ∪ {bℓ}, (3.11)

respectively. Clearly, this implies that (S \ {aℓ}, T \ {bℓ}) ∈ S∗
aℓ,bℓ

and hence aℓ ≻ bℓ.

It is easy to see that the number of iterations of the while loop is upper bounded
by the height of a balanced binary tree on |A(1)| elements, i.e., O(log(|A(1)|)). Since
every iteration induces exactly one query, this also bounds the total number of queries.
Moreover, by condition (v) we have that one of A(2) is included in S or T and B(2) in
the other one. This concludes the proof.

Clearly, Lemma 3.26 directly implies Lemma 3.10. For this, simply call Uncover with
A(2) = B(2) = ∅.

Lemma 3.10. Let A and B be two disjoint teams with A ≻ B. After performing
O(log(k)) duels, Uncover returns (a, b) with a ∈ A, b ∈ B and (S, S ′) ∈ S∗

a,b.

Reducing the Number of Players to O(k) Before formalizing the pre-processing
procedure ReducePlayers in Algorithm 4, recall that algorithm maintains a dominance
graph D = (V,E) on the set of players. More precisely, the nodes of D are the
players, i.e., V = [n], and there exists an arc from node a to node b if the algorithm
has proven that a ≻ b. The set V<2k is the subset of the players having an indegree
smaller than 2k in D.

Additionally, we define a second graph G<2k as follows: The set of nodes of G<2k

equals V<2k and there exists an (undirected) edge between two nodes a, b ∈ V<2k if
and only if neither of the arcs (a, b) or (b, a) is present within the graph D. The
algorithm now searches for a matching of size k within the graph G<2k by calling the
subroutine GreedyMatching, formalized in Algorithm 5. Let {(a1, b1), . . . , (ak, bk)} be
such a matching. In particular, this implies that the algorithm has not identified any
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of the relations between ai and bi yet. Hence, when calling uncover for the (ordered)
sets A = {a1, . . . , ak} and B = {b1, . . . , bk} (after possibly swapping A and B), the
algorithm learns about one additional pairwise relation, say ai ≻ bi and add the arc
(ai, bi) to the graph D. Then, the algorithm also updates D to its transitive closure.
The algorithm ends when it cannot find a matching of size k in G<2k anymore. We
formalize the idea within Algorithm 4.

Algorithm 4 ReducePlayers
Input: a set of players [n]

Output: a set S with |S| ≤ 6k − 2 s.t.

A∗
2k ⊆ S

while |GreedyMatching(G<2k)| = k do

Let {{a1, b1}, . . . , {ak, bk}} be Greedy

Matching

Set A = {a1, . . . , ak}, B = {b1, . . . , bk}

(a, b)← uncover(A, B)

Add (a, b) to D, D ←

transitiveClosure(D)

Update V<2k and G<2k

end while

return V<2k

Algorithm 5 Subroutine GreedyMatch-

ing
Input: an undirected Graph G =

(V, E)

Output: a matching of size at most k

M ← ∅

while |M | < k and E ̸= ∅ do

Pick arbitrary edge (u, v) from E

Delete all edges incident to u and v

from E

end while

return M

Lemma 3.12. Given the set of players [n], ReducePlayers returns X ⊆ [n] with
|X| ≤ 6k − 2 and A∗

2k ⊆ X. ReducePlayers performs O(nk log(k)) duels and runs in
time O(n2k2).

Proof. We start by proving that A∗
2k ⊆ X. Every player not included in X has at

least 2k ingoing arcs in D. In other words, there exist 2k players which dominate it.
Hence, such a player is not included in A∗

2k.
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We turn to prove that |X| ≤ 6k − 2: Any independent set within the graph G<2k

contains less than 2k + 1 nodes. An independent set within G<2k is a subset of the
nodes T ⊆ V<2k such that no two nodes of T are connected by an edge. Now, assume
for contradiction that there exists an independent set T ⊆ V<2k within the graph
G<2k with |T | = 2k + 1. Consider the subgraph of D induced by the set T , i.e.,
D[T ] = (T, {(a, b) ∈ E | a, b ∈ T}). Since T is an independent set within G<2k, we
know that D[T ] is a tournament graph, i.e., a directed graph in which any two nodes
are connected by exactly one directed arc. Moreover, since D[T ] is transitive (since ≻
and hence D is transitive), there exists exactly one node within T with an indegree
of 2k within the graph D. This is a contradiction to T ⊆ V<2k.

This observation is now helpful to conclude the proof. Assume for contradiction that
|V<2k| ≥ 6k − 1. Then the following greedy procedure lets us construct a matching
of size 2k within the graph G<2k. This yields a contradiction to the termination of
the while loop, since every maximal matching, and in particular, a matching of size
smaller than k returned by GreedyMatching, is a 1/2-approximation of a matching
with maximum cardinality. Hence, the existence of a matching with 2k edges yields a
contradiction to the fact that GreedyMatching did not find a matching of size k. We
start by defining T = V<2k and M = ∅. Since |T | > 2k, T is not an independent set
and there exists an edge between some two nodes in T . Now, pick any such edge, say
{a, b}, and add it to M and remove a and b from T . After i rounds of this procedure,
|M | = i and |T | = 2k + 2(2k − i)− 1. We can repeat this procedure for 2k rounds
and have found a matching of size 2k, a contradiction.

We now turn to prove the number of duels performed by the algorithm. In every
step of the while loop, the algorithm adds one arc which was not existent before to
the graph D. Moreover, since any selected matching never includes an edge with
one of its endpoints having an indegree larger than 2k − 1, no node has an indegree
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higher than 2k after the termination of the algorithm. We can then upper bound the
number of arcs within D by 2kn.

This is also a bound for the number of iterations of the while loop. Within each
iteration of the while loop the algorithm needs to make one query in order to identify
the winning team and in addition it calls the subroutine uncover. As argued within
the proof of Lemma 3.12, the uncover subroutine induces additional O(log(k)) queries
per while loop. Summarizing, this implies that the algorithm requires O(nk log(k))
queries in total.

As for the running time, we have already argued that the while loop does at most
O(nk) iterations. Within the while loop the algorithm needs to run GreedyMatching
for finding a matching of size k within G<2k and run the uncover subroutine. While
the latter step requires a running time of O(log(k)) as argued within Lemma 3.12,
GreedyMatching for selecting a matching of size k can be implemented in O(nk). In
total, we get a running time of O(n2k2).

Subroutines NewCut and Compare In Algorithm 6 we formalize the subroutine
NewCut, which takes as input a subset of the players X ⊆ [n], a pair of players
a, b ∈ X and a witness (S, T ) ∈ S∗

a,b ∪ T ∗
a,b and outputs a partition of X into U and L

such that U ▷ L holds. We denote by πxy the permutation on subsets that exchange
players x and y. More precisely,

πxy(A) =



A \ {x} ∪ {y} if x ∈ A, y ̸∈ A

A \ {y} ∪ {x} if x ̸∈ A, y ∈ A

A else.
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Algorithm 6 NewCut
Input: X ⊆ [n], a pair a, b ∈ X and (S, T ) ∈ S∗

a,b ∪ T ∗
a,b

Output: Partition of X into U ▷ L with a ∈ U and b ∈ L

Initialize W ← {(S, T, a)}, U ← {a}, X ← X \ {a, b}

while W non-empty do

Pick (S, T, y) ∈ W and remove it from W

for x ∈ X do

if (πxy(S), πxy(T )) ∈ S∗
xb ∪ T ∗

xb then

add x to U , remove x from X

add (πxy(S), πxy(T ), x) to W

else if |T | = k and x ∈ T and (S, T \ {x}) ∈ S∗
xb then

add x to U and remove it from X

add (S, T \ {x}, x) to W

end if

end for

end while

return (U, X ∪ {b})

Before we prove the correctness of the algorithm, we introduce the following two
lemmas. Strictly speaking, these are special cases of statements shown within the
proof of Lemma 3.4 for the deterministic setting. For the sake of illustration, we
state and prove them here for the deterministic case again, independently of Lemma
3.4.

Lemma 3.27. If a ≻ b ≻ c and (S, S ′) ∈ S∗
b,c, then (πab(S), πab(S ′)) ∈ S∗

a,c.
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Proof. We distinguish two cases. First assume a ̸∈ S ∪ S ′. Then,

S ∪ {a} ≻ S ∪ {b} ≻ S ′ ∪ {c},

where the first statement follows from single-player consistency and the second
statement from (S, S ′) ∈ S∗

bc. Moreover,

S ′ ∪ {a} ≻ S ′ ∪ {b} ≻ S ∪ {c},

where again the first statement follows from single-player consistency and the second
one from (S, S ′) ∈ S∗

bc.

If a ∈ S ∪S ′, assume wlog that a ∈ S. Then, πab(S) = S \ {a}∪{b} and πab(S ′) = S ′.
We get

πab(S) ∪ {a} = S ∪ {b} ≻ S ′ ∪ {c}

and

S ′∪{a} ≻ S ′∪{b} ≻ S∪{c} = S\{a}∪{a}∪{c} ≻ S\{a}∪{b}∪{c} = πab(S)∪{c},

where the first and last statement follow from single player consistency and the second
statement from (S, S ′) ∈ S∗

bc. Summarizing, (πab(S), πab(S ′)) ∈ S∗
ac.

Lemma 3.28. If a ≻ b ≻ c and (S, T ) ∈ T ∗
b,c, then (πab(S), πab(T )) ∈ T ∗

a,c or
(S, T \ {a}) ∈ S∗

a,c.

Proof. We distinguish three cases. First, assume that a ̸∈ S ∪ T . Then,

S ∪ {a} ≻ S ∪ {b} ≻ T ≻ S ∪ {c},
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where the first statement follows from single player consistency and the second and
third from (S, T ) ∈ T ∗

bc. Next, assume a ∈ S. Then, πab(S) = S \ {a} ∪ {b} and we
get

πab(S)∪{a} = S∪{b} ≻ T ≻ S∪{c} = S\{a}∪{a}∪{c} ≻ S\{a}∪{b}∪{c} = πab(S)∪{c}.

Hence, (πab(S), πab(T )) ∈ T ∗
ab. Finally, assume a ∈ T . We get,

S ∪ {a} ≻ S ∪ {b} ≻ T \ {a} ∪ {a} ≻ T \ {a} ∪ {c},

where the first and last statement follow from single player consistency and the second
statement from (S, T ) ∈ T ∗

bc. Moreover,

T \ {a} ∪ {a} ≻ S ∪ {c},

which follows from (S, T ) ∈ T ∗
bc. Summarizing, (S, T \ {a}) ∈ S∗

ac.

Having these two lemmas, we are ready to prove the correctness of the NewCut
subroutine.

Lemma 3.13. Let X ⊆ [n], a, b ∈ X and (S, T ) ∈ S∗
a,b∪T ∗

a,b. Then, NewCut(X, (a, b), (S, T ))
returns a partition of X into U and L such that U ▷L, a ∈ U and b ∈ L. The number
of duels performed by NewCut and its running time can be bounded by O(|X|2).

Proof. Let X be the original set of players given as input to the algorithm, and U

and L the returned sets. We denote by X ′ and U ′ the corresponding sets maintained
and modified by the algorithm during its execution. To see that U and L form a
partition of V , observe that U ′ and X ′ form a partition of X \ {b} during the entire
execution of the algorithm.
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We turn to show that U ▷ L. Assume for contradiction that there exists c ∈ L and
d ∈ U with c ≻ d. Since d ∈ U we know that the algorithm found a witness for
d ≻ b which we denote by (S, T ) and added (S, T, d) to the list W. Moreover, as
c ∈ L, the algorithm selected x = c in the for loop when (S, T, d) was picked from W .
Now, if |T | = k − 1, we know that (S, T ) ∈ S∗

d,b and can apply Lemma 3.27 which
yields (πcd(S), πcd(T )) ∈ S∗

c,b. This is a contradiction, as otherwise c would have been
added to U ′ at this point. If |T | = k, we can apply Lemma 3.28, yielding that either
(πcd(S), πcd(T )) ∈ Tc,b or (S, T \ {c}) ∈ S∗

c,b, both of which cannot be as c ̸∈ U ′ at the
end of the algorithm. This completes the proof of correctness.

It remains to bound the number of duels performed. Since the number of duels
performed in every iteration of the for loop is constant, it suffices to bound the
number of iterations of the for loop. As the algorithm adds at most |X| − 1 elements
to W and for each element the for loop runs at most |X| − 2 times, the number of
duels can be bounded by O(|X|2).

We now turn to formalize the subroutine Compare within Algorithm 7.

Algorithm 7 Compare
Input: tuple (a, b), witness (S, S′) ∈ S∗

ab and C ⊆ S, D ⊆ S′ with |C| = |D|

if S \ C ∪D ∪ {a} ≻ S′ \D ∪ C ∪ {b} and S′ \D ∪ C ∪ {a} ≻ S \ C ∪D ∪ {b} then

return True

else

return False

end if

Lemma 3.14. Let a ≻ b be two players, (S, S ′) ∈ S∗
a,b and C ⊆ S,D ⊆ S ′ with |C| =

|D|. If Compare((a, b), (S, S ′), (C,D)) returns True, then v(a)−v(b) > |v(C)−v(D)|.
Otherwise, one call to Uncover returns c ∈ C and d ∈ D together with a witness for
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their relation.

Proof. For the sake of brevity we define S̄ = S \ C and S̄ ′ = S \D. Recall that from
(S, S ′) ∈ Sa,b we get that (i) S̄∪C∪{a} ≻ S̄ ′∪D∪{b} and (ii) S̄ ′∪D∪{a} ≻ S̄∪C∪{b}

hold. Recall that we are considering additive total orders. For any set A ⊆ [n] we
define v(A) = ∑

a∈A v(a). Then, we can rewrite (i) and (ii) to

(i) v(S̄) + v(C) + v(a) > v(S̄ ′) + v(D) + v(b)

and
(ii) v(S̄ ′) + v(D) + v(a) > v(S̄ ′) + v(C) + v(b).

Then, we distinguish two cases.
Case 1. (iii) S̄ ∪ D ∪ {a} ≻ S̄ ′ ∪ C ∪ {b} and (iv) S̄ ′ ∪ C ∪ {a} ≻ S̄ ∪ D ∪ {b}.
Similarly to before, we can rewrite (iii) and (iv) to

(iii) v(S̄) + v(D) + v(a) > v(S̄ ′) + v(C) + v(b)

and
(iv) v(S̄ ′) + v(C) + v(a) > v(S̄) + v(D) + v(b).

Then, from adding (ii) and (iii) we get that

v(a)− v(b) > v(C)− v(D)

and from adding (i) and (iv) we get that

v(a)− v(b) > v(D)− v(C).
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Summarizing, this yields v(a)− v(b) > |v(C)| − |v(D)|.

Case 2. (v) S̄ ′ ∪ C ∪ {b} ≻ S̄ ∪D ∪ {a}

In that case, observe that the quartet (C,D, S̄∪{a}, S̄ ′∪{b}) satisfies the requirements
for the Uncover subroutine due to equation (i) and (v). Hence, Uncover will return
a dominance of some player in C towards some player in D together with a witness
for this relationship.

Case 3. (vi) S̄ ∪D ∪ {b} ≻ S̄ ′ ∪ C ∪ {a}

In that case, observe that the quartet (D,C, S̄∪{b}, S̄ ′∪{a}) satisfies the requirements
for the Uncover subroutine due to equation (ii) and (vi). Hence, Uncover will return
a dominance of some player in D towards some player in C together with a witness
for this relationship.

Algorithm CondorcetWinning Recall that the algorithm maintains a partition of
the players into a weak ordering, i.e., T = {T1, . . . , Tℓ} with T1 ▷ T2 ▷ · · · ▷ Tℓ. We
introduce the short-hand notation T≤j = ⋃

m∈[j] Tm and T<j = ⋃
m∈[j−1] Tm. After the

application of the preprocessing procedure ReducePlayers, this partition consists of
one set, namely T = {T1}, where |T1| ∈ O(k) and A∗

2k ⊆ T1. At any point in the
execution of the algorithm, we are especially interested in two indices, namely ik ∈ [ℓ]
such that |T<ik | < k < |T≤ik | and similarly i2k ∈ [ℓ] such that |T<i2k

| < 2k < |T≤i2k
|.

In case one of these indices does not exist, this implies that we have either identified
the set A∗

k or A∗
2k. In the first case, we have found a Condorcet winning team and

in the second case Observation 3.11 implies that we can find one by performing one
additional duel. For the sake of brevity, we disregard this case from now on.

Assuming ik is defined, observe that all players from T<ik are guaranteed to be among
the top-k players. On the other hand, among the players from Tik some belong to A∗

k
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and others do not. The main idea of the algorithm will then be to, at any given time,
take some k-sized prefix of T , i.e., a subset including T<ik that is included in T≤ik

and either proving that this prefix is a Condorcet winning team, or showing that the
partition T can be refined.

In the following we distinguish the cases that ik ̸= i2k and ik = i2k. For the
first case we give the algorithm CondorcetWinning1 and for the latter case the
algorithm CondorcetWinning2. Observe that, once the CondorcetWinning1 called
CondorcetWinning2 (which implies ik ≠ i2k) this will be true until the termination of
the algorithm.

CondorcetWinning1 The algorithm starts by partitioning the set T<ik into two
sets U1 and U2, where U1 is a prefix of T<ik of size |T≤ik | − 2k. It partitions the set
Tik into five sets X, Y,W1,W2, and Z. In particular it is known that (U1 ∪U2) ▷ (X ∪
Y ∪W1 ∪W2 ∪ Z) but no relation among any pair in Tik is known. Regarding the
sizes of the sets it holds that |Ui| = |Wi| for i ∈ {1, 2}, |X| = |Y | = k − |U1| − |U2|

and |U1| = |Z|. The main aim of the algorithm will be to define 0 < ϵ1 < ϵ2 and
prove that the following statements are true:

(i) |v(X)− v(Y )| < ϵ1

(ii) |v(a)− v(b)| < ϵ2 for all a ∈ Y ∪W1 ∪W2 and b ∈ Z, and

(iii) there exist u1, . . . , u|Z|+1 ∈ U1 ∪ U2 as well as w1, . . . , w|Z|+1 ∈ W1 ∪W2 such
that

(a) v(u1)− v(w1) ≥ ϵ1 and

(b) v(ui)− v(wi) ≥ ϵ2 for all i ∈ {2, . . . , |Z|+ 1}.

With these three statements we can show that U1 ∪ U2 ∪X is a Condorcet winning
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team. More precisely, one can show that v(U1 ∪ U2 ∪X)− v(W1 ∪W2 ∪ Y ) > |Z| · ϵ2

and v(W1 ∪W2 ∪ Y ) − v(B∗) > −|Z| · ϵ2, where B∗ is the best response towards
U1 ∪U2 ∪X, i.e., B∗ simply contains the best k players from [n] \ (U1 ∪U2 ∪X). See
Figure 3.1 for an illustration of the argument.

It remains to sketch how the algorithm defines ϵ1, ϵ2 and proves (i) − (iii). The
algorithm starts by checking whether Uncover can be applied to the sets A(1) =
U2, A

(2) = X ∪ Z,B(1) = W2, B
(2) = Y ∪ W1. If this is not the case, a relation

between a pair in A(2) and B(2) can be found and the partition can be refined by
applying NewCut. Otherwise, let ū ∈ U2 and w̄ ∈ W2 be the returned pair from
Uncover. For the sake of brevity we assume for now that the entire indifference
class of ū in T is included in U2. Then, using Compare, the algorithm checks
whether |v(X) − v(Y )| < v(ū) − v(w̄) and whether |v(a) − v(b)| < v(ū) − v(w̄) for
all a ∈ W1 ∪W2 ∪ Y and b ∈ Z. The algorithm repeats the process by replacing w̄
by all w ∈ W1. If any of the calls to Compare returned False, then we show that
the partition can be refined. Otherwise, we have shown that conditions (i) − (iii)
are satisfied for ϵ1 = v(ū)− v(w∗

1) and ϵ2 = v(ū)− v(w∗
2), where w∗

1 and w∗
2 are the

best and second best players from W1 ∪ {w̄}, respectively. For the case when not the
entire indifference class of ū is included in U2, we still have to exchange ū by other
players from its indifferent class which are included in U1.

Lemma 3.29. After performing O(k5) many duels, CondorcetWinning1 has identified
a Condorcet winning team or called CondorcetWinning2.

Proof. In part I we show that the algorithm is well-defined and that, within line
13,21,24, 29, 35, and 40, a refined partition can indeed be found. In part II we show
that, if the algorithm outputs a team, this team is indeed Condorcet winning. Lastly,
in part III we argue about the bound on the number of duels performed.
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Part I. We show the first two statements by going through the algorithm line by line.

We start by showing that in line 12, the two queries are feasible. First observe that by
construction, the sets U1, U2, X, Y,W1,W2, and Z are disjoint. Moreover, |U | = |W |,
|U1| = |W1|, and hence |U2| = |W2|. Also, |X| = |Y | and |W1| = |Z|. In total, we get
that |W2|+ |Y |+ |W1| = |U1|+ |X|+ |Z| = |U |+ |X| = k and the same holds for the
other query as well.

Next, we show that in line 13, the partition T can indeed be refined. Consider wlog
the case when W2 ∪ (Y ∪W1) ≻ U2 ∪ (X ∪ Z). Then, since U2 ▷ W2 we know that
U2∪ (Y ∪W1) ≻ W2∪ (X ∪Z) needs to hold. Hence, Uncover(Y ∪W1, X ∪Z,W2, U2)
returns a pair (a, b) with a ∈ Y ∪W1 and b ∈ X ∪Z together with a witness (S, S ′) ∈
Sa,b. Since a, b ∈ Tik , we can call NewCut(T , (a, b), (S, S ′)) which returns a refined
partition. An analogous argument holds for the case W2 ∪ (X ∪ Z) ≻ U2 ∪ (Y ∪W2).

We turn to show that the input for the Uncover subroutine is valid in line 15. Since the
condition in line 12 is not satisfied, we know that U2 ∪ (X ∪Z) ≻ W2 ∪ (Y ∪W1) and
U2∪ (Y ∪W1) ≻ W2∪ (X ∪Z). This suffices to show that (U2,W2, (X ∪Z), (Y ∪W1))
is a valid input for Uncover. Hence, for the returned pair (ū, w̄) is holds that ū ∈ U2

and w̄ ∈ W2. Moreover, we can assume in the following wlog that (X ∪ Z) ⊆ S and
(Y ∪W1) ⊆ S ′.

We continue with the situation in line 21 and show that a refined partition can be
found. We distinguish two cases.

Case 1 (S, S ′′) ∈ Sū,w. This implies (i) S∪{ū} ≻ S ′′∪{w} and (ii) S ′′∪{ū} ≻ S∪{w}.
Moreover, from (S, S ′′) ̸∈ Su,w we know that either (iii) S ∪ {w} ≻ S ′′ ∪ {u} or
(iv) S ′′ ∪ {w} ≻ S ∪ {u} is true. Assume without loss of generality that (iii) holds.
Then, together with (ii) we get that S ′′ ∪ {ū} ≻ S ∪ {w} ≻ S ′′ ∪ {u}, hence ū ≻ u

and in particular (S ∪ {w}, S ′′) ∈ Tū,u. Since ū and u are from the same indifference
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class of T , calling NewCut2(T , (ū, u), (S ∪ {w}, S ′′)) returns a refined partition. An
analogous argument holds when (iv) is true.
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Algorithm 8 CordorcetWinning1
1: Input: a partition of [n] into T1 ▷ T2 ▷ · · · ▷ Tℓ

2: Output: a CondorcetWinning Team

3: if ik ̸= i2k then

4: return CondorcetWinning2(T )

5: end if

6: Set U ← T<ik

7: Set X and Y to be two disjoint, (k − |U |)-sized subsets of Tik

8: Set W to be a |U |-sized subset of Tik \X \ Y

9: Set Z to be Tik \X \ Y \W

10: Set W1 to be a |Z|-sized subset of W and W2 ←W \W1

11: Set U1 to be a |Z|-sized prefix of U and U2 ← U \ U1

12: if W2 ∪ (Y ∪W1) ≻ U2 ∪ (X ∪ Z) or W2 ∪ (X ∪ Z) ≻ U2 ∪ (Y ∪W1) then

13: return CondorcetWinning(refinedPartition)

14: end if

15: (ū, w̄), (S, S′)← Uncover(U2, W2, (X ∪ Z), (Y ∪W1))

16: Let T̄ be indifference class of ū in T

17: for u ∈ T̄ ∩ U1 ∪ {ū} do

18: for w ∈W1 ∪ {w̄} do

19: S′′ ← fw̄,w(S′)

20: if (S, S′′) ̸∈ Su,w then

21: return CondorcetWinning(refinedPartition)

22: end if

23: if Compare((u, w), (S, S′′), (X, Y )) not true then

24: return CondorcetWinning(refinedPartition)

25: end if

26: for z ∈ Z do

27: for q ∈ S′′ ∩ (W ∪ Y ) do

28: if Compare((u, w), (S, S′′), ({z}, {q})) not true then

29: return CondorcetWinning(refinedPartition)

30: end if

31: end for

32: end for

33: (Q, Q′)← (S \ Z ∪ πw∗,w(W1), S′′ \ πw∗,w(W1) ∪ Z)

34: if (Q, Q′) ̸∈ Su,w then

35: return CondorcetWinning(refinedPartition)

36: end if

37: for z ∈ Z do

38: for w′ ∈ Q ∩W2 do

39: if Compare((u, w), (Q, Q′), ({w′}, {z})) not true then

40: return CondorcetWinning(refinedPartition)

41: end if

42: end for

43: end for

44: end for

45: end for

46: return U ∪X
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Case 2 (S, S ′′) ̸∈ Sū,w. Then, either (i) S ∪ {w} ≻ S ′′ ∪ {ū} or (ii) S ′′ ∪ {w} ≻

S ∪ {ū} holds while both is not possible as ū ≻ w. First, assume (i) is true. Then,
from (S, S ′) ∈ Sū,w̄, we know that (iii) S ′ ∪ {ū} ≻ S ∪ {w̄}. Reformulating (i) to
S ∪ {w} ≻ S ′ \ {w} ∪ {ū} ∪ {w̄} and (iii) to S ′ \ {w} ∪ {ū} ∪ {w} ≻ S ∪ {w̄} shows
that w ≻ w̄ and in particular (S, S ′ \ {w} ∪ {ū}) ∈ Sw,w̄. As w and w̄ are contained
in the same indifference class of T , calling NewCut(T , (w, w̄), (S, S ′ \ {w} ∪ {ū}))
refines the partition. Second, assume that (ii) holds. However, from (S, S ′) ∈ Sū,w̄
we know that (iv) S ∪ {ū} ≻ S ′ ∪ {w̄} is true. As S ′′ ∪ {w} = S ′ ∪ {w̄} this yields a
contradiction to (ii).

We turn to prove that we can find a refined partition within line 24. When
Compare((u,w), (S, S ′′), (X, Y )) is not true, then one call to Uncover(X, Y, S\X,S ′′\

Y ) returns a pair (x, y) with x ≻ y (or vice versa) and a witness (P, P ′) ∈ Sx,y (or
(P, P ′) ∈ Sy,x) (as shown within Lemma 3.14). Since x and y are from the same
indifference class of T , namely Tik , the algorithm can call NewCut(T , (x, y), (P, P ′))
and obtain a refined partition.

We continue with the situation in line 29. When Compare((u,w), (S, S ′′), ({z}, {w′}))
is not true, then a call to Uncover({z}, {w′}, S \ {z}, S ′′ \ {w′}) returns the pair
(z, w′) (or (w′, z)) and a witness (P, P ′) ∈ Sz,w′ (or (P, P ′) ∈ Sw′,z). Since z and
w′ are from the same indifference class of T , namely Tik , the algorithm can call
NewCut(T , (z, w′), (P, P ′)) and obtain a refined partition.

We turn to prove that we can find a refined partition within line 35. From (Q,Q′) ̸∈
Su,w we know that either (i) Q∪{w} ≻ Q′∪{u} or (ii) Q′∪{w} ≻ Q∪{u} while both
are not possible as u ≻ w. First, assume that (i) holds. From (S, S ′′) ∈ Su,w we get in
particular that (iii) S ′′∪{u} ≻ S∪{w} holds. Rewriting (i) as πw̄,w(W1)∪S\Z∪{w} ≻
Z∪S ′′ \πw̄,w(W1)∪{u} and (iii) as πw̄,w(W1)∪S ′′ \πw̄,w(W1)∪{u} ≻ Z∪S \Z∪{w}

establishes that we can call Uncover(πw̄,w(W1), Z, S ′′ \ πw̄,w(W1) ∪ {u}, S \ Z ∪ {w})
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which returns a pair (ŵ, ẑ) with ŵ ∈ πw̄,w(W1) and ẑ ∈ Z together with a witness
for their relation. As ŵ and ẑ are from the same indifference class of T we can call
NewCut to refine the partition. The case when (ii) follows by an analogous argument.

Lastly, we turn to show that we can find a refined partition within line 40. To
see that Compare((u,w), (Q,Q′), ({w′}, {z})) is a valid query, observe that w′ ∈ Q

and z ∈ Q′. Moreover, (Q,Q′) ∈ Su,w. Hence, if Compare returns False, then
Uncover({w′}, {z}, Q \ {w′}, Q′ \ {z}) returns the pair (w′, z) (or (z, w′)) together
with a witness from Sw′,z (or Sz,w′). As z and w′ are from the same equivalence class
of T , we can call the NewCut and obtain a refined partition.

Part II. We now show that the set returned by CondorcetWinning(T ) is indeed
a Condorcet winning team. If, at some point of the algorithm ik ≠ i2k, then the
statement follows from Lemma 3.30. Otherwise, the algorithm returns U ∪X which
implies that within the last call of CondorcetWinning none of the if conditions was
satisfied. We show in the following that this implies that U ∪ X is a Condorcet
winning team.

We define

w∗
1 = argmax

w∈W1∪{w̄}
v(w),

w∗
2 = argmax

w∈W1∪{w̄}\{w∗
1}
v(w), and

u∗ = argmin
u∈T̄∩U1

v(u).

Moreover, ϵ1 = v(u∗)− v(w∗
1) and ϵ2 = v(u∗)− v(w∗

2).

We claim that

(i) |v(X)− v(Y )| < ϵ1, and
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(ii) |v(a)− v(b)| < ϵ2 for all a ∈ Y ∪W and b ∈ Z.

For (i) observe that there was a point within the iteration of the algorithm when
u = u∗ and w = w∗

1. Moreover, the algorithm called Compare((u,w), (S, S ′′), (X, Y ))
which returned true. As we have argued for the subroutine Compare, this implies
ϵ1 = v(u∗)− v(w∗

1) > |v(X)− v(Y )|.

To show (ii), we distinguish three cases. Let a ∈ Y ∪W and z ∈ Z.

Case 1. a = w∗
1. Then, there was a point within the iteration of the algorithm

when u = u∗, w = w∗
2, q = w∗

1 = a and z = b. As Compare((u,w), (S, S ′), ({z}, {q}))
returned true in line 28, we know that

|v(a)− v(b)| < v(u∗)− v(w∗
2) = ϵ2.

Case 2. a ̸= w∗
1, a ∈ S. Then, there was a point within the iteration of the algorithm

when u = u∗, w = w∗
1, q = a and z = b. As Compare((u,w), (S, S ′), ({z}, {q}))

returned true in line 28, we know that

|v(a)− v(b)| < v(u∗)− v(w∗
1) = ϵ1 < ϵ2.

Case 3. a ̸= w∗
1, a ∈ S ′. Then, there was a point within the iteration of the algorithm

when u = u∗, w = w∗
1, q = a and z = b. As Compare((u,w), (Q,Q′), ({z}, {q}))

returned true in line 39, we know that

|v(a)− v(b)| < v(u∗)− v(w∗
1) = ϵ1 < ϵ2.

Lastly, we show that (i) and (ii) suffice to prove that U∪X is a Condorcet winning team.
To this end let B∗ be the best response against U ∪X. Observe that B∗ ⊆ Y ∪W ∪Z.
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We start by showing

v(U ∪X)− v(W ∪ Y )

= v(U1 ∪ {ū} \ {u∗}) + v(u∗) + v(U2 \ {ū}) + v(X)

− v(w∗
1)− v(W1 ∪ {w̄} \ {w∗

1})− v(W2 \ {w̄})− v(Y )

= v(X)− v(Y ) + v(u∗)− v(w∗
1) + v(U1 ∪ {ū} \ {u∗})

− v(W1 ∪ {w̄} \ {w∗
1}) + v(U2 \ {ū})− v(W2 \ {w̄})

> −ϵ1 + v(u∗)− v(w∗
1) + v(U1 ∪ {ū} \ {u∗})

− v(W1 ∪ {w̄} \ {w∗
1}) + v(U2 \ {ū})− v(W2 \ {w̄})

> −ϵ1 + ϵ1 + v(U1 ∪ {ū} \ {u∗})− v(W1 ∪ {w̄} \ {w∗
1}) + v(U2 \ {ū})− v(W2 \ {w̄})

> −ϵ1 + ϵ1 + |Z| · ϵ2 + v(U2 \ {ū})− v(W2 \ {w̄})

> −ϵ1 + ϵ1 + |Z| · ϵ2 + 0

= |Z| · ϵ2.

The first inequality follows by (i), the second by the definition of ϵ1, the third by the
definition of ϵ2 and the fact that |u(U1 ∪ {ū} \ {u∗})| = |v(W2 ∪ {w̄} \ {w∗

1})| = |Z|,
and the last by the fact that U2 ▷ W2.

In addition, we get

v(W ∪ Y )− v(B∗) = v(W ∪ Y \B∗)− v(B∗ ∩ Z)

> −|Z| · ϵ2,

where the inequality follows from the fact that |v(W ∪ Y )| = |v(B∗ ∩ Z)| < |Z| and
(ii).
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Summing up the two inequalities yields

v(U ∪X)− v(B∗) > 0,

which concludes this part of the proof.

Part III. It remains to argue about the number of duels performed by CondorcetWin-
ning1 until it calls CondorcetWinning2 or returns a team. We first observe that the
partition T can be refined at most O(k) times. Also, the number of calls to Uncover
can be bounded by O(k), since, Uncover is either called just before a refinement
(hidden within any of the lines saying “refinedPartition”) or within line 15. In the
following, we will therefore bound the number of duels done within one recursive call
of CondorcetWinning1. To this end, observe that checking whether some tuple is a
subsets witness as well as calling Compare requires O(1) duels. Clearly, the number
of times these operations are performed within one recursive call (before the next call
is initiated) can be bounded by O(k4). Putting all of this together yields that the
number of duels can be bounded by O(k5).

CondorcetWinning2 We continue by formalizing the second case of the algorithm,
which is formalized within Algorithm 8. Since the approach is significantly easier
than the one of CondorcetWinning1, we directly give the proof.

Lemma 3.30. After performing O(k2 · log(k)) many duels, CondorcetWinning2 has
output a Condorcet winning team.

Proof. We start by showing that the two duels in line 14 are feasible. To this
end observe that U, V,X and Y are disjoint by construction. To argue about their
cardinalities, we consider the two cases of the if condition. First, assume |T≤ik | − k <
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Algorithm 9 CordorcetWinning2
1: Input: a partition of [n] into T1 ▷ T2 ▷ · · · ▷ Tℓ with ik ̸= i2k
2: Output: a CondorcetWinning Team
3: j ← min{k − |T<ik |, |T≤ik | − k}
4: Set X and Y to be two disjoint, j-sized subsets of Tik
5: Set W ← Tik \X \ Y
6: Set L← ∅
7: (∗) Set Z to be a subset of Ti2k

\ L of size 2k − |T<i2k
|

8: while |L| < |T≤i2k
| − 2k + 1 do

9: if |T≤ik | − k < k − |T<ik | then
10: U ← T<ik ∪W, V ← (T>ik ∩ T<i2k

) ∪ Z
11: else
12: U ← T<ik , V ←W ∪ (T>ik ∩ T<i2k

) ∪ Z
13: end if
14: if V ∪ Y ≻ U ∪X or V ∪X ≻ U ∪ Y then
15: return CondorcetWinning(refinedPartition)
16: end if
17: (u, v), (S, S′)← Uncover(U, V, X, Y )
18: if Compare((u, v), (S, S′), (X, Y )) not true then
19: return CondorcetWinning(refinedPartition)
20: end if
21: if v ∈ Z then
22: L← L ∪ {v}, go to (∗)
23: else
24: return U ∪X
25: end if
26: end while
27: return U ∪X

k − |T<ik |. Then

|U | = |T<ik |+ |Tik | − 2j = |T≤ik | − (|T≤ik | − k)− j = k − j.

As |X| = |Y | = j, we get that |U | + |X| = |U | + |Y | = k. Similarly, for the other
case, we have

|V | = |T<i2k
| − |T≤ik |+ |Z| = |T<i2k

| − |T≤ik |+ 2k = |T<ik | = k + k − |Tik | = k − j.
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Hence, also |U |+ |X| = |U |+ |Y | = k.

Next, we show that we can find a refined partition in line 15. Assume wlog that
V ∪ Y ≻ U ∪ X holds and observe that both statements cannot be true as U ▷ V

by construction. Hence, we have U ∪ Y ≻ V ∪ X which implies that we can call
Uncover(Y,X,U,V) which returns a pair (y, x) as well as a witness from Sy,x (or
Sx,y). Since x and y are from the same indifference class of T , namely Tik , we can
call the NewCut subroutine and obtain a refined partition.

The call to Uncover in line 17 is feasible, as the non-satisfaction of the if condition
implies that U ∪X ≻ V ∪ Y and U ∪ Y ≻ V ∪X.

In line 19 we can refine the partition T , as, if Compare((u, v), (S, S ′), (X, Y )) does
not return true, then Uncover(X, Y, S \X,S ′ \ Y ) returns a pair (x, y) with x ∈ X

and y ∈ Y (or (y, x)) together with a witness from Sx,y (or Sy,x). Since x and y are
both from the same indifference class of T , namely Tik , we can refine T by calling
the NewCut subroutine.

Lastly, we show that U ∪X is a Condorcet winning team when the algorithm reaches
line 24 or line 27. We first discuss line 24. First, observe that U ▷ V, u ∈ U , v ∈ V
and (S, S ′) is a witness for their relation, that is, (S, S ′) ∈ Suv. Moreover, since
Compare((u, v), (S, S ′), (X, Y )) is true, we know that

v(u)− v(v) > |v(X)− v(Y )|. (3.12)

Additionally we know that v ∈ V \ Z, which implies that v ∈ T<i2k
. Hence, v is in

particular contained in the best response against U ∪X. Since Y is also guaranteed
to be within the best response, we can denote the best response by V ′ ∪ Y . Using
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(3.12) and the fact that U ▷ V ′, we get

v(U ∪X)− v(V ′ ∪ Y ) = v(U \ {u}) + v(u) + v(X)− v(V ′ \ {v})− v(v)− v(Y )

> v(U \ {u})− v(V ′ \ {v}) > 0,

showing that U ∪X ≻ V ′ ∪ Y .

Now, consider the situation in line 27. This implies that the list L is of length
|T≤i2k

| − 2k + 1 and for each v ∈ L there exists u ∈ U such that

v(u)− v(v) > |v(X)− v(Y )|. (3.13)

Again, the best response against U∪X contains Y . Denote the best response by V ′∪Y .
By the size of L we know that V ′∩L ̸= ∅. Let v be a node in the intersection and u be
the node for which the algorithm has proven (3.13). Due to the same argumentation
as before, U ▷ V ′ and v(u′)− v(v′) > v(X)− v(Y ) implies U ∪X ≻ V ′ ∪ Y .

It remains to argue about the number of duels performed by CondorcetWinning2.
Again, it is clear that the partition T can be refined at most O(k) times. Per
refinement, the is one additional call to Uncover which is bounded by O(log(k))
duels. Moreover, the iterations of the while loop can be bounded by O(k). Within
one iteration the algorithm performs Compare (requiring O(1) duels) and Uncover
(requiring O(log(k)) duels). Putting everything together the number of duels can
hence be bounded by O(k2 log(k)).

Putting Lemma 3.29 and Lemma 3.30 together clearly yields the proof of Lemma
3.15.

Lemma 3.15. After performing O(k5) many duels, CondorcetWinning1 has identified
a Condorcet winning team. CondorcetWinning2 identifies a Condorcet winning team

119



after O(k2 log(k)) duels.

Extension to a Stochastic Environment In the following we sketch how we can
reduce any stochastic instance satisfying |PA,B−1/2| ∈ [1/2+θ, 1] to our deterministic
setting. To achieve such a reduction, simulate each deterministic duel by O( lnm/δ

θ2 )
stochastic duels to determine the duel’s winner with probability at least 1 − δ/m,
where O(m) is the sample complexity of an algorithm that finds a Condorcet winning
team in the deterministic case. An invocation of Chernoff-Hoeffding concentration
bound yields that each duel’s winner is correctly determined by this simulation with
probability at least 1−δ/m, and applying union bound over the total number of duels
results in an algorithm that requires O(m lnm/δ

θ2 ) team duels to identify a Condorcet
winning team with probability at least 1− δ.

Additive Total Orders

In the following we provide a sufficient condition for assigning values to players in a
way that complies with a total order on teams, assuming that each team has value of
the cumulative values of it’s players and that team A is better than team B if and
only if the value of A is larger than the value of B. Formally:

Given: A set of players [n] and a total order ≻ on the subsets of size k.

Question: Do there exist values for the players representing this order? Or more
precisely, does the following system of linear inequalities have a feasible solution?

We denote define D = {(A,B) | A,B are teams, A ≻ B}.

∑
b∈B

xb −
∑
a∈A

xa ≤ −1 for all (A,B) ∈ D

xa ≥ 0 for all a ∈ [n]
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We remark that, alternatively to −1 on the right hand side, we could have chosen
any other negative number.

The following is a variant of Farkas Lemma:

Lemma 3.31 (Farkas’ Lemma [54]). Let n,m ∈ N, A ∈ Rn×m and b ∈ Rm. Then,
exactly one of the following is true.

1. ∃ x ∈ Rn, Ax ≤ b, x ≥ 0

2. ∃ y ∈ Rm, yTA ≥ 0, y ≥ 0 and yT b < 0.

Imagine the system above in matrix form Ax, then the system yTA ≥ 0, yT b < 0, y ≥ 0
looks as follows:

∑
(A,B)∈D:i∈B

yAB −
∑

(A,B)∈D:i∈A
yAB ≥ 0 for all players i ∈ [n]

yAB ≥ 0 for all (A,B) ∈ D∑
(A,B)∈D

yAB > 0

Assume the second system does have a feasible solution y ≥ 0. In particular, there
exists one pair A ≻ B for which yAB > 0. We can assume wlog that this solution is
rational and by scaling it up that it is integer.

We define the following condition:

Condition (*) There exist A = {A1, . . . , Am} and B = {B1, . . . , Bm} satisfying the
following two conditions:

(i) Aj ≻ Bj for all j ∈ [m]
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(ii) Let nA
i be the number of times that player i is included in some element of A.

Define nB
i analogously. Then, nA

i = nB
i for all players i ∈ [n].

Claim 3.32. The second system of linear inequalities has a feasible solution if and
only if (∗) is satisfied.

Proof. “⇒ ” Assume the second system has a feasible (and wlog integral) solution
y. We construct A and B as follows: For each pair A ≻ B for which yAB > 0, add
exactly yAB copies of A and B to A and B, respectively. The first constraints for
condition (∗) is clearly satisfied. Now, assume for contradiction that there exists a
player i ∈ [n] for which nA

i > nB
i holds. Then, we get

∑
(A,B)∈D:i∈B

yAB −
∑

(A,B)∈D:i∈A
yAB = nB

i − nA
i < 0,

a contradiction to the feasibility of y. On the other hand, assume that there exists a
player i ∈ [n] for which nA

i < nB
i holds. Observe that

∑
j∈[n]

nA
j =

∑
j∈[n]

nB
j = |A|k

and hence ∑
j∈[n]\{i}

nA
j >

∑
j∈[n]\{i}

nB
j ,

which implies that there exists some i′ ∈ [n] \ {i} with nA
i′ > nB

i′ , a contradiction.

“⇐ ” Assume that there exist A and B satisfying condition (∗). Then, set yAj ,Bj
=

|{q ∈ [m] : (Aq, Bq) = (Aj, Bj)}| for all j ∈ [m] and yA,B = 0 for all other duels. This
is a feasible solution to the second system of inequalities.

This directly yields the sufficient condition for a total order to be representable by
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values.

Corollary 3.33. There exists a solution to the first system of inequalities if and only
if condition (∗) does not hold.

3.2 Departing Bandits

3.2.1 Introduction

At the heart of online services spanning such diverse industries as media consumption,
dating, financial products, and more, recommendation systems (RSs) drive personal-
ized experiences by making curation decisions informed by each user’s past history of
interactions. While in practice, these systems employ diverse statistical heuristics,
much of our theoretical understanding of them comes via stylized formulations within
the multi-armed bandits (MABs) framework. While MABs abstract away from many
aspects of real-world systems they allow us to extract crisp insights by formalizing
fundamental tradeoffs, such as that between exploration and exploitation that all RSs
must face [73, 94, 103, 114]. As applies to RSs, exploitation consists of continuing
to recommend items (or categories of items) that have been observed to yield high
rewards in the past, while exploration consists of recommending items (or categories
of items) about which the RS is uncertain but that could potentially yield even higher
rewards.

In traditional formalizations of RSs as MABs, the recommender’s decisions affect
only the rewards obtained. However, real-life recommenders face a dynamic that
potentially alters the exploration-exploitation tradeoff: Dissatisfied users have the
option to depart the system, never to return. Thus, recommendations in the service
of exploration not only impact instantaneous rewards but also risk driving away users
and therefore can influence long-term cumulative rewards by shortening trajectories
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of interactions.

In this work, we propose departing bandits which augment conventional MABs by
incorporating these policy-dependent horizons. To motivate our setup, we consider
the following example: An RS for recommending blog articles must choose at each
time among two categories of articles, e.g., economics and sports. Upon a user’s
arrival, the RS recommends articles sequentially. After each recommendation, the
user decides whether to “click” the article and continue to the next recommendation,
or to “not click” and may leave the system. Crucially, the user interacts with the
system for a random number of rounds. The user’s departure probability depends on
their satisfaction from the recommended item, which in turn depends on the user’s
unknown type. A user’s type encodes their preferences (hence the probability of
clicking) on the two topics (economics and sports).

When model parameters are given, in contrast to traditional MABs where the optimal
policy is to play the best fixed arm, departing bandits require more careful analysis
to derive an optimal planning strategy. Such planning is a local problem, in the sense
that it is solved for each user. Since the user type is never known explicitly (the
recommender must update its beliefs over the user types after each interaction), finding
an optimal recommendation policy requires solving a specific partially observable
MDP (POMDP) where the user type constitutes the (unobserved) state (more details
in Section 3.2.5). When the model parameters are unknown, we deal with a learning
problem that is global, in the sense that the recommender (learner) is learning for a
stream of users instead of a particular user.

We begin with a formal definition of departing bandits in Section 3.2.2, and demon-
strate that any fixed-arm policy is prone to suffer linear regret. In Section 3.2.3, we
establish the UCB-based learning framework used in later sections. We instantiate
this framework with a single user type in Section 3.2.4, where we show that it achieves
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Õ(
√
T ) regret for T being the number of users. We then move to the more challenging

case with two user types and two recommendation categories in Section 3.2.5. To
analyze the planning problem, we effectively reduce the search space for the optimal
policy by using a closed-form of the expected return of any recommender policy. These
results suggest an algorithm that achieves Õ(

√
T ) regret in this setting. Finally,

we also show an efficient optimal planning algorithm for multiple user types and
two recommendation categories, and describe a scheme to construct semi-synthetic
problem instances for this setting using real-world datasets.

Related Work

MABs have been studied extensively by the online learning community [31, 25]. The
contextual bandit literature augments the MAB setup with context-dependent rewards
[1, 121, 97, 86, 88]. In contextual bandits, the learner observes a context before they
make a decision, and the reward depends on the context. Another line of related work
considers the dynamics that emerge when users act strategically [87, 98, 40, 10, 9].
In that line of work, users arriving at the system receive a recommendation but act
strategically: They can follow the recommendation or choose a different action. This
modeling motivates the development of incentive-compatible mechanisms as solutions.
In our work, however, the users are modeled in a stochastic (but not strategic) manner.
Users may leave the system if they are dissatisfied with recommendations, and this
departure follows a fixed (but possibly unknown) stochastic model.

The departing bandits problem has two important features: Policy-dependent horizons,
and multiple user types that can be interpreted as unknown states. Existing MAB
works [8, 29] have addresses these phenomena separately but we know of no work
that integrates the two in a single framework. In particular, while [8] study the
setting with multiple user types, they focus on a fixed horizon setting. Additionally,
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while [29] deal with departure probabilities and policy-dependent interaction times
for a single user type, they do not consider the possibility of multiple underlying user
types.

The planning part of our problem falls under the framework of using Markov Decision
Processes for modeling recommender-user dynamics [119]. Specifically, our problem
works with partially observable user states which have also been seen in many recent
bandits variants [108, 90]. Unlike these prior works that focus on interactions with
a single user, departing bandits consider a stream of users each of which has an
(unknown) type selected among a finite set of user types.

More broadly, our RS learning problem falls under the domain of reinforcement
learning (RL). Existing RL literature that considers departing users in RSs in-
clude [136, 96, 135]. While [136] handle users of a single type that depart the RS
within a bounded number of interactions, our work deals with multiple user types. In
contrast to [135], we consider an online setting and provide regret guarantees that do
not require bounded horizon. Finally, [96] use POMDPs to model user departure and
focus on approximating the value function. They conduct an experimental analysis
on historical data, while we devise an online learning algorithm with theoretical
guarantees.

3.2.2 Departing Bandits: Problem Formulation

We propose a new online problem, called departing bandits, where the goal is to find
the optimal recommendation algorithm for users of (unknown) types, and where the
length of the interactions depends on the algorithm itself. Formally, the departing
bandits problem is defined by a tuple ⟨[M ], [K],q,P,Λ⟩, where M is the number of
user types, K is the number of categories, q ∈ [0, 1]M specifies a prior distribution
over types, and P ∈ (0, 1)K×M and Λ ∈ (0, 1)K×M are the click-probability and the
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departure-probability matrices, respectively.6

There are T users who arrive sequentially at the RS. At every episode, a new user
t ∈ [T ] arrives with a type type(t). We let q denote the prior distribution over the
user types, i.e., type(t) ∼ q. Each user of type x clicks on a recommended category
a with probability Pa,x. In other words, each click follows a Bernoulli distribution
with parameter Pa,x. Whenever the user clicks, she stays for another iteration, and
when the user does not click (no-click), she departs with probability Λa,x (and stays
with probability 1−Λa,x). Each user t interacts with the RS (the learner) until she
departs.

We proceed to describe the user-RS interaction protocol. In every iteration j of user
t, the learner recommends a category a ∈ [K] to user t. The user clicks on it with
probability Pa,type(t). If the user clicks, the learner receives a reward of rt,j(a) = 1.7

If the user does not click, the learner receives no reward (i.e., rt,j(a) = 0), and user t
departs with probability Λa,type(t). We assume that the learner knows the value of a
constant ϵ > 0 such that maxa,x Pa,x ≤ 1− ϵ (i.e., ϵ does not depend on T ). When
user t departs, she does not interact with the learner anymore (and the learner moves
on to the next user t+ 1). For convenience, the departing bandits problem protocol
is summarized in Algorithm 10.

Having described the protocol, we move on to the goals and performance of the learner.
Without loss of generality, we assume that the online learner’s recommendations are
made based on a policy π, which is a mapping from the history of previous interactions
(with that user) to recommendation categories. For each user (episode) t ∈ [T ], the
learner selects a policy πt that recommends category πt,j ∈ [K] at every iteration

6We denote by [n] the set {1, . . . , n}.
7We formalize the reward as is standard in the online learning literature, from the perspective of the

learner. However, defining the reward from the user perspective by, e.g., considering her utility as the
number of clicks she gives or the number of articles she reads induces the same model.
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Algorithm 10 The Departing Bandits Protocol
Input: number of types M , number of categories K, and number of users (episodes) T
Hidden Parameters: types prior q, click-probability P, and departure-
probability Λ

1: for episode t← 1, . . . , T do
2: a new user with type type(t) ∼ q arrives
3: j ← 1, depart← false
4: while depart is false do
5: the learner picks a category a ∈ [K]
6: with probability Pa,x, user t clicks on a and rt,j(a)← 1; otherwise, rt,j(a)← 0
7: if rt,j(a) = 0 then
8: with probability Λa,x: depart← true and user t departs
9: end if

10: the learner observes rt,j(a) and depart
11: if depart is false then
12: j ← j + 1
13: end if
14: end while
15: end for

j ∈ [Nπt(t)], where Nπt(t) denotes the episode length (i.e., total number of iterations
policy πt interacts with user t until she departs).8 The return of a policy π, denoted
by V π is the cumulative reward the learner obtains when executing the policy π until
the user departs. Put differently, the return of π from user t is the random variable
V π = ∑Nπ(t)

j=1 rt,j(πt,j).

We denote by π∗ an optimal policy, namely a policy that maximizes the expected
return, π∗ = argmaxπ E[V π]. Similarly, we denote by V ∗ the optimal return, i.e.,
V ∗ = V π∗ .

We highlight two algorithmic tasks. The first is the planning task, in which the goal
is to find an optimal policy π∗, given P,Λ,q. The second is the online learning
task. We consider settings where the learner knows the number of categories, K,

8We limit the discussion to deterministic policies solely; this is w.l.o.g. (see Subsection 3.2.5 for further
details).
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Type x Type y

Category 1 P1,x = 0.5 P1,y = 0.28
Category 2 P2,x = 0.4 P2,y = 0.39
Prior qx = 0.4 qy = 0.6

Table 3.1: The departing bandits instance in Section 3.2.2.

the number of types, M , and the number of users, T , but has no prior knowledge
regarding P,Λ or q. In the online learning task, the value of the learner’s algorithm
is the sum of the returns obtained from all the users, namely

T∑
t=1

V πt =
T∑
t=1

Nπ(t)∑
j=1

rt,j(πt,j).

The performance of the leaner is compared to that of the best policy, formally defined
by the regret for T episodes,

RT = T · E[V π∗ ]−
T∑
t=1

V πt . (3.14)

The learner’s goal is to minimize the expected regret E[RT ].

Example

The motivation for the following example is two-fold. First, to get the reader
acquainted with our notations; and second, to show why fixed-arm policies are inferior
in our setting.

Consider a problem instance with two user types (M = 2), which we call x and y

for convenience. There are two categories (K = 2), and given no-click the departure
is deterministic, i.e., Λa,τ = 1 for every category a ∈ [K] and type τ ∈ [M ]. That
is, every user leaves immediately if she does not click. Furthermore, let the click-
probability P matrix and the user type prior distribution q be as in Table 3.1.
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Looking at P and q, we see that Category 1 is better for Type x, while Category
2 is better for type y. Notice that without any additional information, a user is
more likely to be type y. Given the prior distribution, recommending Category 1
in the first round yields an expected reward of qxP1,x + qyP1,y = 0.368. Similarly,
recommending Category 2 in the first round results in an expected reward of 0.394.
Consequently, if we recommend myopically, i.e., without considering the user type,
always recommending Category 2 is better than always recommending Category
1.

Let πa denote the fixed-arm policy that always selects a single category a. Using
the tools we derive in Section 3.2.5 and in particular Theorem 3.42, we can compute
the expected returns of π1 and π2, E[V π1 ] and E[V π2 ]. Additionally, using results
from Section 3.2.5, we can show that the optimal policy for the planning task, π∗,
recommends Category 2 until iteration 7, and then recommends Category 1 for the
rest of the iterations until the user departs.

Using simple calculations, we see that E[V π∗ ]−E[V π1 ] > 0.0169 and E[V π∗ ]−E[V π2 ] >
1.22 × 10−5; hence, the expected return of the optimal policy is greater than the
returns of both fixed-arm policies by a constant. As a result, if the learner only
uses fixed-arm policies (πa for every a ∈ [K]), she suffers linear expected regret, i.e.,
E[RT ] = T · E[V π∗ ]−∑T

t=1 E[V πa ] = Ω(T ).

3.2.3 UCB Policy for Sub-exponential Returns

In this section, we introduce the learning framework used in this section and provide
a general regret guarantee for it.

In standard MAB problems, at each t ∈ [T ] the learner picks a single arm and receives
a single sub-Gaussian reward. In contrast, in departing bandits, at each t ∈ [T ] the
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learner receives a return V π, which is the cumulative reward of that policy. The return
V π depends on the policy π not only through the obtained rewards at each iteration
but also through the total number of iterations (trajectory length). Such returns are
not necessarily sub-Gaussian. Consequently, we cannot use standard MAB algorithms
as they usually rely on concentration bounds for sub-Gaussian rewards. Furthermore,
as we have shown in Section 3.2.2, in departing bandits fixed-arm policies can suffer
linear regret (in terms of the number of users), which suggests considering a more
expressive set of policies. This in turn yields another disadvantage for using MAB
algorithms for departing bandits, as their regret is linear in the number of arms
(categories) K.

As we show later in Sections 3.2.4 and 3.2.5, for some natural instances of the departing
bandits problem, the return from each user is sub-exponential (Definition 3.34).
Algorithm 11, which we propose below, receives a set of policies Π as input, along
with other parameters that we describe shortly. The algorithm is a restatement
of the UCB-Hybrid Algorithm from [72], with two modifications: (1) The input
includes a set of policies rather than a set of actions/categories, and accordingly,
the confidence bound updates are based on return samples (denoted by V̂ π) rather
than reward samples. (2) There are two global parameters (τ̃ and η) instead of two
local parameters per action. If the return from each policy in Π is sub-exponential,
Algorithm 11 not only handles sub-exponential returns, but also comes with the
following guarantee: Its expected value is close to the value of the best policy in
Π.

Sub-exponential Returns

For convenience, we state here the definition of sub-exponential random variables
[48].
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Definition 3.34. We say that a random variable X is sub-exponential with parameters
(τ 2, b) if for every γ such that |γ| < 1/b,

E[exp(γ(X − E[X]))] ≤ exp(γ
2τ 2

2 ).

In addition, for every (τ 2, b)-sub-exponential random variables, there exist constants
C1, C2 > 0 such that the above is equivalent to each of the following properties:

1. Tails: ∀v ≥ 0 : Pr[|X| > v] ≤ exp(1− v
C1

).

2. Moments: ∀p ≥ 1 : (E[|X|p])1/p ≤ C2p.

Let Π be a set of policies with the following property: There exist τ̃ , η such that
the return of every policy π ∈ Π is (τ 2, b)-sub-exponential with τ̃ ≥ τ and η ≥
b2

τ2 . The following Algorithm 11 receives as input a set of policies Π with the
associated parameters, τ̃ and η. Similarly to the UCB algorithm, it maintains an
upper confidence bound U for each policy, and balances between exploration and
exploitation. Theorem 3.35 below shows that Algorithm 11 always gets a value similar
to that of the best policy in Π up to an additive factor of Õ

(√
|Π|T + |Π|

)
. The

theorem follows directly from Theorem 3 from [72] by having policies as arms and
returns as rewards.

Theorem 3.35. Let Π be a set of policies with the associated parameters τ̃ , η. Let
π1, . . . , πT be the policies Algorithm 11 selects. It holds that

E

[
max
π∈Π

T · V π −
T∑

t=1

V πt

]
= O(

√
|Π|T log T + |Π| log T ).

There are two challenges in leveraging Theorem 3.35. The first challenge is crucial:
Notice that Theorem 3.35 does not imply that Algorithm 11 has a low regret; its
only guarantee is w.r.t. the policies in Π received as an input. As the number of
policies is infinite, our success will depend on our ability to characterize a “good” set
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Algorithm 11 UCB-based algorithm with hybrid radii: UCB-Hybrid [72]
1: Input: set of policies Π, number of users T , τ̃ , η
2: Initialize: ∀π ∈ Π : U0(π)←∞, n(π) = 0
3: for user t← 1, . . . , T do
4: Execute πt such that πt ∈ argmaxπ∈Π Ut−1(π) and receive return V̂ πt [n(πt)] ←∑Nπt (t)

j=1 rt,j(πt,j)
5: n(πt)← n(πt) + 1
6: if n(πt) < 8η ln T then
7: Update Ut(πt) =

∑n(πt)
i=1

V̂ πt [i]
n(πt) + 8√

η·τ̃ ln T

n(πt)

8: else
9: Update Ut(πt) =

∑n(πt)
i=1

V̂ πt [i]
n(πt) +

√
8τ̃2 ln T

n(πt)

10: end if
11: end for

of policies Π. The second challenge is technical: Even if we find such Π, we still need
to characterize the associated τ̃ and η. This is precisely what we do in Section 3.2.4
and 3.2.5.

3.2.4 Single User Type

In this section, we focus on the special case of a single user type, i.e., M = 1. For
notational convenience, since we only discuss single-type users, we associate each
category a ∈ [K] with its two unique parameters Pa := Pa,1,Λa := Λa,1 and refer
to them as scalars rather than vectors. In addition, We use the notation Na for the
random variable representing the number of iterations until a random user departs
after being recommended by πa, the fixed-arm policy that recommends category a in
each iteration.

To derive a regret bound for single-type users, we use two main lemmas: Lemma 3.36,
which shows the optimal policy is fixed, and Lemma 3.38, which shows that returns of
fixed-arm policies are sub-exponential and calculate their corresponding parameters.
These lemmas allow us to use Algorithm 11 with a policy set Π that contains all the
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fixed-arm policies, and derive a Õ(
√
T ) regret bound.

To show that there exists a category a∗ ∈ [K] for which πa∗ is optimal, we rely on the
assumption that all the users have the same type (hence we drop the type subscripts t),
and as a result the rewards of each category a ∈ [K] have an expectation that depends
on a single parameter, namely E[r(a)] = Pa. Such a category a∗ ∈ [K] does not
necessarily have the maximal click-probability nor the minimal departure-probability,
but rather an optimal combination of the two (in a way, this is similar to the knapsack
problem, where we want to maximize the reward while having as little weight as
possible). We formalize it in the following lemma.

Lemma 3.36. A policy πa∗ is optimal if

a∗ ∈ argmax
a∈[K]

Pa

Λa(1−Pa)
.

As a consequence of this lemma, the planning problem for single-type users is trivial—
the solution is a fixed-arm policy πa∗ given in the lemma. However, without access
to the model parameters, identifying πa∗ requires learning. We proceed with a simple
observation regarding the random number of iterations obtained by executing a
fixed-arm policy. The observation would later help us show that the return of any
fixed-arm policy is sub-exponential.

Observation 3.37. For every a ∈ [K] and every Λa > 0, the random variable
Na follows a geometric distribution with success probability parameter Λa[1−Pa] ∈
(0, 1− ϵ].

Using Observation 3.37 and previously known results (stated as Lemma 3.53 in
Section 3.2.4), we show that Na is sub-exponential for all a ∈ [K]. Notice that return
realizations are always upper bounded by the trajectory length; this implies that
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returns are also sub-exponential. However, to use the regret bound of Algorithm 11,
we need information regarding the parameters (τ 2

a , ba) for every policy πa. We provide
this information in the following Lemma 3.38.

Lemma 3.38. For each category a ∈ [K], the centred random variable V πa − E[V πa ]
is sub-exponential with parameters (τ 2

a , ba), such that

τa = ba = − 8e

ln(1 − Λa(1 − Pa)) .

Proof sketch. We rely on the equivalence between the subexponentiality of a random
variable and the bounds on its moments (Property 2 in Definition 3.34). We bound the
expectation of the return V πa , and use Minkowski’s and Jensen’s inequalities to show
in Lemma 3.52 that E[|V πa−E[V πa ]|p])1/p is upper bounded by −4/ ln(1−Λa(1−Pa))
for every a ∈ [K] and p ≥ 1. Finally, we apply a normalization trick and bound the
Taylor series of E[exp(γ(V πa − E[V πa ]))] to obtain the result.

An immediate consequence of Lemma 3.38 is that the parameters τ̃ = 8e/ ln( 1
1−ϵ)

and η = 1 are valid upper bounds for τa and ba/τ
2
a for each a ∈ [K] (I.e., ∀a ∈ [K] :

τ̃ ≥ τa and η ≥ b2
a/τ

2
a ). We can now derive a regret bound using Algorithm 11 and

Theorem 3.35.

Theorem 3.39. For single-type users (M = 1), running Algorithm 11 with Π = {πa :
a ∈ [K]} and τ̃ = 8e

ln( 1
1−ϵ

) , η = 1 achieves an expected regret of at most

E[RT ] = O(
√
KT log T +K log T ).

3.2.5 Two User Types and Two Categories

In this section, we consider cases with two user types (M = 2), two categories (K = 2)
and departure-probability Λa,τ = 1 for every category a ∈ [K] and type τ ∈ [M ].
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Even in this relatively simplified setting, where users leave after the first “no-click”,
planning is essential. To see this, notice that the event of a user clicking on a certain
category provides additional information about the user, which can be used to tailor
better recommendations; hence, algorithms that do not take this into account may
suffer a linear regret. In fact, this is not just a matter of the learning algorithm
at hand, but rather a failure of all fixed-arm policies; there are instances where all
fixed-arm policies yield high regret w.r.t. the baseline defined in Equation (3.14).
Indeed, this is what the example in Section 3.2.2 showcases. Such an observation
suggests that studying the optimal planning problem is vital.

In Section 3.2.5, we introduce the partially observable MDP formulation of departing
bandits along with notion of belief-category walk. We use this notion to provide a
closed-form formula for policies’ expected return, which we use extensively later on.
Next, in Section 3.2.5 we characterize the optimal policy, and show that we can
compute it in constant time relying on the closed-form formula. This is striking,
as generally computing optimal POMDP policies is computationally intractable
since, e.g., the space of policies grows exponentially with the horizon. Conceptually,
we show that there exists an optimal policy that depends on a belief threshold: It
recommends one category until the posterior belief of one type, which is monotonically
increasing, crosses the threshold, and then it recommends the other category. Finally,
in Section 3.2.5 we leverage all the previously obtained results to derive a small set
of threshold policies of size O(lnT ) with corresponding sub-exponential parameters.
Due to Theorem 3.35, this result implies a Õ(

√
T ) regret.

Efficient Planning

To recap, we aim to find the optimal policy when the click-probability matrix and
the prior over user types are known. Namely, given an instance in the form of ⟨P,q⟩,
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our goal is to efficiently find the optimal policy.

For planning purposes, the problem can be modeled by an episodic POMDP, ⟨S, [K], O,Tr,P,Ω,q, O⟩.
A set of states, S = [M ] ∪ {⊥} that comprises all types [M ], along with a designated
absorbing state ⊥ suggesting that the user departed (and the episode terminated).
[K] is the set of the actions (categories). O = {stay, depart} is the set of possible
observations. The transition and observation functions, Tr : S × [K] → S and
Ω : S × [K] → O (respectively) satisfy Tr(⊥ |i, a) = Ω(depart|i, a) = 1 − Pi,a and
Tr(i|i, a) = Ω(stay|i, a) = Pi,a for every type i ∈ [M ] and action a ∈ [K]. Finally,
P is the expected reward matrix, and q is the initial state distribution over the M
types.

When there are two user types and two categories, the click-probability matrix is
given by Table 3.2 where we note that the prior on the types holds qy = 1− qx, thus
can be represented by a single parameter qx.

Remark 3.40. Without loss of generality, we assume that P1,x ≥ P2,x,P1,y,P2,y

since one could always permute the matrix to obtain such a structure.

Since the return and number of iterations for the same policy is independent of the
user index, we drop the subscript t in the rest of this subsection and use .

Type x Type y

Category 1 P1,x P1,y

Category 2 P2,x P2,y

Prior qx qy = 1− qx

Table 3.2: Click probabilities for two user types and two categories.

As is well-known in the POMDP literature [74], the optimal policy π∗ and its expected
return are functions of belief states that represent the probability of the state at each
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time. In our setting, the states are the user types. We denote by bj the belief that
the state is (type) x at iteration j. Similarly, 1 − bj is the belief that the state is
(type) y at iteration j. Needless to say, once the state ⊥ is reached, the belief over
the type states [M ] is irrelevant, as users do not come back. Nevertheless, we neglect
this case as our analysis does not make use it.

We now describe how to compute the belief. At iteration j = 1, the belief state is set
to be b1 = P (state = x) = qx. At iteration j > 1, upon receiving a positive reward
rj = 1, the belief is updated from bj−1 ∈ [0, 1] to

bj(bj−1, a, 1) = bj−1 ·Pa,x

bj−1 ·Pa,x + Pa,y(1− bj−1)
, (3.15)

where we note that in the event of no-click, the current user departs the system, i.e.,
we move to the absorbing state ⊥. For any policy π : [0, 1] → {1, 2} that maps a
belief to a category, its expected return satisfies the Bellman equation,

E[V π(b)] =
(
bPπ(b),x + (1− b)Pπ(b),y

)
·

(1 + E[V π(b′(b, π(b), 1))]).

To better characterize the expected return, we introduce the following notion of
belief-category walk.

Definition 3.41 (Belief-category walk). Let π : [0, 1] → {1, 2} be any policy. The
sequence

b1, a1 = π(b1), b2, a2 = π(b2), . . .

is called the belief-category walk. Namely, it is the induced walk of belief updates and
categories chosen by π, given all the rewards are positive (rj = 1 for every j ∈ N).

Notice that every policy induces a single, well-defined and deterministic belief-
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category walk (recall that we assume departure-probabilities satisfy Λa,τ = 1 for
every a ∈ [K], τ ∈ [M ]). Moreover, given any policy π, the trajectory of every
user recommended by π is fully characterized by belief-category walk clipped at
bNπ(t), aNπ(t).

In what follows, we derive a closed-form expression for the expected return as a
function of b, the categories chosen by the policy, and the click-probability matrix.

Theorem 3.42. For every policy π and an initial belief b ∈ [0, 1], the expected return
is given by

E[V π(b)] =
∞∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y ,

where m1,i := |{aj = 1, j ≤ i}| and m2,i := |{aj = 2, j ≤ i}| are calculated based on
the belief-category walk b1, a1, b2, a2, . . . induced by π.

Characterizing the Optimal Policy

Using Theorem 3.42, we show that the planning problem can be solved in O(1). To
arrive at this conclusion, we perform a case analysis over the following three structures
of the click-probability matrix P:

• Dominant Row, where P1,y ≥ P2,y;

• Dominant Column, where P2,x ≥ P2,y > P1,y;

• Dominant Diagonal, where P1,x ≥ P2,y > P1,y,P2,x.

Crucially, any matrix P takes exactly one of the three structures. Further, since P is
known in the planning problem, identifying the structure at hand takes O(1) time.
Using this structure partition, we characterize the optimal policy.
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Dominant Row We start by considering the simplest structure, in which the
Category 1 is preferred by both types of users: Since P1,y ≥ P2,y and P1,x ≥

P2,x,P1,y,P2,y (Remark 3.40), there exists a dominant row, i.e., Category 1.

Lemma 3.43. For any instance such that P has a dominant row a, the fixed policy
πa is an optimal policy.

As expected, if Category 1 is dominant then the policy that always recommends
Category 1 is optimal.

Dominant Column In the second structure we consider the case where there is no
dominant row, and that the column of type x is dominant, i.e., P1,x ≥ P2,x ≥ P2,y >

P1,y. In such a case, which is also the one described in the example in Section 3.2.2,
it is unclear what the optimal policy would be since none of the categories dominates
the other.

Surprisingly, we show that the optimal policy can be of only one form: Recommend
Category 2 for some time steps (possibly zero) and then always recommend Category
1. To identify when to switch from Category 2 to Category 1, one only needs to
compare four expected returns.

Theorem 3.44. For any instance such that P has a dominant column, one of the
following four policies is optimal:

π1, π2, π2:⌊N∗⌋, π2:⌈N∗⌉,

where N∗ = N∗(P,q) is a constant, and π2:⌊N∗⌋ (π2:⌈N∗⌉) stands for recommending
Category 2 until iteration ⌊N∗⌋ (⌈N∗⌉) and then switching to Category 1.

The intuition behind the theorem is as follows. If the prior tends towards type y, we
might start with recommending Category 2 (which users of type y are more likely to
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click on). But after several iterations, and as long as the user stays, the posterior
belief b increases since P2,x > P2,y (recall Equation (3.15)). Consequently, since type
x becomes more probable, and since P1,x ≥ P2,x, the optimal policy recommends the
best category for this type, i.e., Category 1. For the exact expression of N∗, we refer
the reader to Section 3.2.10.

Using Theorem 3.42, we can compute the expected return for each of the four policies
in O(1), showing that we can find the optimal policy when P has a column in
O(1).

Dominant Diagonal In the last structure, we consider the case where there is no
dominant row (i.e., P2,y > P1,y) nor a dominant column (i.e., P2,y > P2,x). At
first glance, this case is more complex than the previous two, since none of the
categories and none of the types dominates the other one. However, we uncover
that the optimal policy can be either always recommending Category 1 or always
recommending Category 2. Theorem 3.45 summarizes this result.

Theorem 3.45. For any instance such that P has a dominant diagonal, either π1 or
π2 is optimal.

With the full characterization of the optimal policy derived in this section (for all
the three structures), we have shown that the optimal policy can be computed in
O(1).

Learning: UCB-based Regret Bound

In this section, we move from the planning task to the learning one. Building on
the results of previous sections, we know that there must exist a threshold policy—a
policy whose belief-category walk has a finite prefix of one category, and an infinite
suffix with the other category—which is optimal. However, there can still be infinitely
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many such policies. To address this problem, we first show how to reduce the search
space for approximately optimal policies with negligible additive factor to a set
of |Π| = O(ln(T )) policies. Then, we derive the parameters τ̃ and η required for
Algorithm 11. As an immediate consequence, we get a sublinear regret algorithm for
this setting. We begin with defining threshold policies.

Definition 3.46 (Threshold Policy). A policy π is called an (a, h)-threshold policy if
there exists an number h ∈ N ∪ {0} in π’s belief-category walk such that

• π recommends category a in iterations j ≤ h, and

• π recommends category a′ in iterations j > h,

for a, a′ ∈ {1, 2} and a ̸= a′.

For instance, the policy π1 that always recommends Category 1 is the (2, 0)-threshold
policy, as it recommends Category 2 until the zero’th iteration (i.e., never recommends
Category 2) and then Category 1 eternally. Furthermore, the policy π2:⌊N∗⌋ introduced
in Theorem 3.44 is the (2, ⌊N∗⌋)-threshold policy.

Next, recall that the chance of departure in every iteration is greater or equal to
ϵ, since we assume maxa,τ Pa,τ ≤ 1 − ϵ. Consequently, the probability that a user
will stay beyond H iterations is exponentially decreasing with H. We could use
high-probability arguments to claim that it suffices to focus on the first H iterations,
but without further insights this would yield Ω(2H) candidates for the optimal policy.
Instead, we exploit our insights about threshold policies.

Let ΠH be the set of all (a, h)-threshold policies for a ∈ {1, 2} and h ∈ [H] ∪ {0}.
Clearly, |ΠH | = 2H + 2. Lemma 3.47 shows that the return obtained by the best
policy in ΠH is not worse than that of the optimal policy π∗ by a negligible factor.
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Lemma 3.47. For every H ∈ N, it holds that

E
[
V π∗ − max

π∈ΠH

V π
]
≤ 1

2O(H) .

Before we describe how to apply Algorithm 11, we need to show that returns of
all the policies in ΠH are sub-exponential. In Lemma 3.48, we show that V π is
(τ 2, b)-sub-exponential for every threshold policy π ∈ ΠH , and provide bounds for
both τ and b2/τ 2.

Lemma 3.48. Let τ̃ = 8e
ln( 1

1−ϵ
) and η = 1. For every threshold policy π ∈ ΠH , the

centred random variable V π − E[V π] is (τ 2, b)-sub-exponential with (τ 2, b) satisfying
τ̃ ≥ τ and η ≥ b2/τ 2.

We are ready to wrap up our solution for the learning task proposed in this section.
Let H = Θ(lnT ), ΠH be the set of threshold policies characterized before, and let τ̃
and η be constants as defined in Lemma 3.48.

Theorem 3.49. Applying Algorithm 11 with ΠH , T, τ̃ , η on the class of two-types
two-categories instances considered in this section always yields an expected regret of

E[RT ] ≤ O(
√
T lnT ).

Proof. It holds that

E[RT ] = E
[
TV π∗ −

T∑
t=1

V πt

]

= E
[
TV π∗ − max

π∈ΠH

TV π
]

+ E
[

max
π∈ΠH

TV π −
T∑
t=1

V πt

]

≤ T

2O(H) +O(
√
HT log T +H log T ) = O(

√
T lnT ),
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where the inequality follows from Theorem 3.35 and Lemma 3.47. Finally, setting
H = Θ(lnT ) yields the desired result.
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3.2.6 Extension: Planning Beyond Two User Types

In this section, we treat the planning task with two categories (K = 2) but potentially
many types (i.e., M ≥ 2). For convenience, we formalize the results in this section in
terms of M = 2, but the results are readily extendable for the more general 2×M case.
We derive an almost-optimal planning policy via dynamic programming, and then
explain why it cannot be used for learning as we did in the previous section.

For reasons that will become apparent later on, we define by V π
H as the return of a

policy π until the H’s iteration. Using Theorem 3.42, we have that

E[V π
H(b)] =

H∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y ,

where m1,i := |{aj = 1, j ≤ i}| and m2,i := |{aj = 2, j ≤ i}| are calculated based on
the belief-category walk b1, a1, b2, a2, . . . induced by π. Further, let π̃∗ denote the
policy maximizing VH .

Notice that there is a bijection from H−iterations policies to (m1,i,m2,i)Hi=1; hence,
we can find π̃∗ by finding the arg max of the expression on the right-hand-side of the
above equation, in terms of (m1,i,m2,i)Hi=1. Formally, we want to solve the integer
linear programming (ILP),

maximize
H∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y

subject to ma,i =
i∑
l=1

za,l for a ∈ {1, 2}, i ∈ [H],

za,i ∈ {0, 1} for a ∈ {1, 2}, i ∈ [H],
z1,i + z2,i = 1 for i ∈ [H].

(3.16)

Despite that this problem involves integer programming, we can solve it using dynamic
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programming in O (H2) runtime. Notice that the optimization is over a subset of
binary variables (z1,i, z2,i)Hi=1. Let ZH be the set of feasible solutions of the ILP, and
similarly let Zh denote set of prefixes of length h ≤ H of ZH .

For any h ∈ [H] and z ∈ Zh, define

Dh(z) def=
h∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y ,

where ma,i = ∑i
l=1 za,l for j ∈ {1, 2}, i ∈ [h] as in the ILP.

Consequently, solving the ILP is equivalent to maximizing DH over the domain
ZH .

Next, for any h ∈ [H] and two integers c1, c2 such that c1 + c2 = h, define

D̃h(c1, c2) def= max
z∈Zh,

m1,h(z)=c1
m2,h(z)=c2

Dh(z). (3.17)

Under this construction, maxc1,c2 D̃
H(c1, c2) over c1, c2 such that c1 + c2 = H is

precisely the value of the ILP.

Reformulating Equation (3.17) for h > 1,

D̃h(c1,c2)= max
z1,z2∈{0,1}

z1+z2=1

{
D̃h−1(c1−z1,c2−z2)+α(c1,c2)

}
,

where α(m1,m2) def= b · xm1
1 · xm2

2 + (1− b)ym1
1 · ym2

2 . For every h, there are only h+ 1
possible values D̃h can take: All the ways of dividing h into non-negative integers c1

and c2; therefore, having computed D̃h−1 for all h feasible inputs, we can compute
D̃h(c1, c2) in O(h). Consequently, computing maxc1,c2 D̃

H(c1, c2), which is precisely
the value of the ILP in (3.16), takes O(H2) run-time. Moreover, the policy π̃∗ can
be found using backtracking. We remark that an argument similar to Lemma 3.47
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implies that E[V π∗ − V π̃∗ ] ≤ 1
2O(H) ; hence, π̃∗ is almost optimal.

To finalize this section, we remark that this approach could also work for K > 2
categories. Naively, for a finite horizon H, there are KH possible policies. The
dynamic programming procedure explain above makes the search operate in run-time
of O(HK). The run-time, exponential in the number of categories but polynomial in
the horizon, is feasible when the number of categories is small.

3.2.7 Extension: How to Evaluate Experimentally

For general real-world datasets, we propose a scheme to construct semi-synthetic
problem instances with many arms and many user types, using rating data sets with
multiple ratings per user. We exemplify our scheme on the MovieLens Dataset [64].
As a pre-processing step, we set movie genres to be the categories of interest, select
a subset of categories |A| of size k (e.g., sci-fi, drama, and comedy), and select the
number of user types, m. Remove any user who has not provided a rating for at least
one movie from each category a ∈ A. When running the algorithm, randomly draw
users from the data, and given a recommended category a, suggest them a random
movie which they have rated, and set their click probability to 1− r, where r ∈ [0, 1]
is their normalized rating of the suggested movie.

3.2.8 Bernstein’s Inequality

An important tool for analyzing sub-exponential random variables is Bernstein’s
Inequality, which is a concentration inequality for sub-exponential random variables
(see, e.g., [72]). Being a major component of the regret analysis for Algorithm 11, we
state it here for convenience.

Lemma 3.50. (Bernstein’s Inequality) Let a random variable X be sub-exponential
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with parameters (τ 2, b). Then for every v ≥ 0:

Pr[|X − E[X]| ≥ v] ≤


2 exp(− v2

2τ2 ) v ≤ τ2

b

2 exp(− v
2b) else

.

3.2.9 Proofs for Single User Type (Section 3.2.4)

To simplify the proofs, we use the following notation: For a fixed-arm policy πa, we
use V πa

j to denote its return from iteration j until the user departs. Namely,

V πa

j =
Nπa∑
i=j

Pa

Throughout this section, we will use the following Observation.

Observation 3.51. For every policy π and iteration j,

E[V π
j ] = Pπj

(1+E[V π
j+1])+(1−Λπj

)(1−Pπj
)E[V π

j+1] = E[V π
j+1](1−Λπj

(1−Pπj
))+Pπj

.

Lemma 3.36. A policy πa∗ is optimal if

a∗ ∈ argmax
a∈[K]

Pa

Λa(1−Pa)
.

Proof. First, recall that every POMDP has an optimal Markovian policy which is
deterministic (we refer the reader to Section 3.2.5 for full formulation of the problem
as POMDP). Having independent rewards and a single state implies that there exists
µ∗ ∈ N such that E[V ∗

j ] = µ∗ for every j ∈ N (similarly to standard MAB problems,
there exists a fixed-arm policy which is optimal).
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Assume by contradiction that the optimal policy πa∗ holds

a∗ /∈ argmax
a∈[k]

Pa

Λa(1−Pa)
.

Now, notice that

E[V πa′

] = E[V πa′

1 ] = E[V πa′

2 ](1−Λa′(1−Pa′)) + Pa′

Solving the recurrence relation and summing the geometric series we get

E[V πa′

] = Pa′

∞∑
j=0

(1−Λa′(1−Pa′))j = Pa′

Λa′(1−Pa′) .

Finally,
a∗ /∈ argmax

a∈[k]

Pa

Λa(1−Pa)
,

yields that any fixed-armed policy, πa′ such that

a′ ∈ argmax
a∈[k]

Pa

Λa(1−Pa)

holds E[V πa′
] > E[V πa∗

], a contradiction to the optimality of πa∗ .

Lemma 3.52. For each a ∈ [k], the centered random return V πa − E[V πa ] is sub-
exponential with parameter C2 = −4/ ln(1−Λa(1−Pa)).

In order to show that returns of fixed-arm policies are sub-exponential random
variables, we first show that the number of iterations of users recommended by
fixed-arm policies is also a sub-exponential. For this purpose, we state here a lemma
that implies that every geometric r.v. is a sub-exponential r.v.. The proof of the next
lemma appears, e.g., in [68] (Lemma 4.3).
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Lemma 3.53. Let X be a geometric random variable with parameter r ∈ (0, 1), so
that:

Pr[X = x] = (1− r)x−1 r, x ∈ N.

Then X satisfies Property (2) from Definition 3.34. Namely, X is sub-exponential
with parameter C2 = −2/ ln(1− r). Formally,

∀p ≥ 0 : (E[|X|p])1/p ≤ − 2
ln(1− r)p.

The lemma above and Observation 3.37 allow us to deduce that the variables Na are
sub-exponential in the first part of the following Corollary (the case in which Λa = 0
follows immediately from definition.). The second part of the lemma follows directly
from the equivalences between Properties (2) and (1) in Definition 3.34.

Corollary 3.54. For each a ∈ [K], the number of iterations a user recommended by
πa stays within the system, Na, is sub-exponential with parameter Ca

2 = −2/ ln(1−
Λa(1−Pa)). In addition, there exist constants Ca

1 > 0 for every a ∈ [K] such that

∀a ∈ [K], v ≥ 0 : Pr[|Na| > v] ≤ exp(1− v

Ca
1

).

The next Proposition 3.55 is used for the proof of Lemma 3.52.

Proposition 3.55. For every a ∈ [K],

|E[V πa ]| ≤ −2
ln(1−Λa(1−Pa))

Proof. First, notice that

(1−Λa(1−Pa)) ln(1−Λa(1−Pa)) > (1−Λa(1−Pa))
−Λa(1−Pa)

1−Λa(1−Pa)
= −Λa(1−Pa) > −2Λa(1−Pa),

150



where the first inequality is due to x
1+x ≤ ln(1 + x) for every x ≥ −1. Rearranging,

1−Λa(1−Pa)
Λa(1−Pa)

<
−2

ln(1−Λa(1−Pa))
. (3.18)

For each user, the realization of V πa is less or equal to the realization of Na − 1 for
the same user (as users provide negative feedback in their last iteration); hence,

|E[V πa ]| = E[V πa ] ≤ E[Na]−1 = 1
Λa(1−Pa)

−1 = 1−Λa(1−Pa)
Λa(1−Pa)

<
−2

ln(1−Λa(1−Pa))
.

We proceed by showing that returns of fix-armed policies satisfy Property (1) from
Definition 3.34.

Lemma 3.52. For each a ∈ [k], the centered random return V πa − E[V πa ] is sub-
exponential with parameter C2 = −4/ ln(1−Λa(1−Pa)).

Proof. We use Property (1) from Definition 3.34 to derive that V πa is also sub-
exponential. This is true since the tails of V πa satisfy that for all v ≥ 0,

Pr[|V πa| > v] ≤ Pr[|Na| > v + 1] ≤ Pr[|Na| > v] ≤(1) exp(1− v

C1
),

where the first inequality follows since |Na| > v + 1 is a necessary condition for
|V πa | > v, and the last inequality follows from Corollary 3.54. Along with Definition
3.34, we conclude that

E[|V πa|p]1/p ≤ −2/ ln(1−Λa(1−Pa))p. (3.19)

Now, applying Minkowski’s inequality and then Jensen’s inequality (as f(z) =
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zp, g(z) = |z| are convex for every p ≥ 1) we get

(E[|V πa − E[V πa ]|p])1/p ≤ E[|V πa|p]1/p + E[E[|V πa |]p]1/p ≤ E[|V πa|p]1/p + |E[V πa ]|.

Using Proposition 3.55 and Inequality (3.19), we get

E[|V πa |p]1/p+|E[V πa ]| ≤ −2
ln(1−Λa(1−Pa))

+ 1
Λa(1−Pa)

−1 ≤ −4
ln(1−Λa(1−Pa))

Hence V πa−E[V πa ] is sub-exponential with parameter C2 = −4/ ln(1−Λa(1−Pa)).

Lemma 3.38. For each category a ∈ [K], the centred random variable V πa − E[V πa ]
is sub-exponential with parameters (τ 2

a , ba), such that

τa = ba = − 8e

ln(1 − Λa(1 − Pa)) .

Proof. Throughout this proof, we will use the sub-exponential norm, || · ||ψ1 , which is
defined as

||Z||ψ1 = sup
p≥1

(E[|Z|p])1/p

p
.

Let
X = V πa − E[V πa ]

||V πa − E[V πa ]||ψ1

, y = γ · ||V πa − E[V πa ]||ψ1 .

We have that
||X||ψ1 = || V πa − E[V πa ]

||V πa − E[V πa ]||ψ1

||ψ1 = 1. (3.20)

Let γ be such that |γ| < 1/ba = − ln(1−Λa(1−Pa))
8e . From Lemma 3.52 we conclude that

|γ| =
∣∣∣ y

||V πa − E[V πa ]||ψ1

∣∣∣ ≤ − ln(1−Λa(1−Pa))
8e = 1

2e ·
1

||V πa − E[V πa ]||ψ1

;

hence, |y| < 1
2e .
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Summing the geometric series, we get

∞∑
p=2

(e|y|)p = e2y2

1− e|y| < 2e2y2 (3.21)

In addition, notice that yX = γ(V πa − E[V πa ]).
Next, from the Taylor series of exp(·) we have

E[exp(γ(V πa − E[V πa ]))] = E[exp(yX)] = 1 + yE[x] +
∞∑
p=2

ypE[Xp]
p! .

Combining the fact that E[X] = 0 and (3.20) to the above,

1 + yE[x] +
∞∑
p=2

ypE[Xp]
p! ≤ 1 +

∞∑
p=2

yppp

p! .

By applying p! ≥ (p
e
)p and (3.21), we get

1+
∞∑
p=2

yppp

p! ≤ 1+
∞∑
p=2

(e|y|)p ≤ 1+2e2y2 ≤ exp(2e2y2) = exp(2e2(γ·||V πa−E[V πa ]||ψ1)2),

where the last inequality is due to 1 + x ≤ ex.

Note that ||V πa − E[V πa ]||ψ1 ≤ − 4
ln(1−Λa(1−Pa)))

2). Ultimately,

E[exp(γ(V πa−E[V πa ]))] ≤ exp
(
2e2γ2(− 4

ln(1−Λa(1−Pa))
)2
)

= exp
(1

2γ
2(− 8e

ln(1−Λa(1−Pa))
)2
)
.

This concludes the proof of the lemma.
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3.2.10 Proofs for Two User Types and Two Categories (Section 3.2.5)

Planning when K = 2

Theorem 3.42. For every policy π and an initial belief b ∈ [0, 1], the expected return
is given by

E[V π(b)] =
∞∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y ,

where m1,i := |{aj = 1, j ≤ i}| and m2,i := |{aj = 2, j ≤ i}| are calculated based on
the belief-category walk b1, a1, b2, a2, . . . induced by π.

Proof. Let βπi (b) := b · P1,x
m1,i · P2,x

m2,i + (1 − b)P1,y
m1,i · P2,y

m2,i . We will prove
that for every policy π and every belief b, we have that E[V πa

H (b)] = ∑H
i=1 β

π
i (b) by a

backward induction over H.

For the base case, consider H = 1. We have that

E[V π
1 (b1)] = b1·Pa1,x+(1−b)Pa1,y = b·P1,x

m1,1·P2,x
m2,1+(1−b)P1,y

m1,1·P2,y
m2,1 = βπ1 (b)

as ma,1 = I[a1 = a].

For the inductive step, assume that E[V π
H−1(b)] = ∑H−1

i=1 βπi (b) for every b ∈ [0, 1]. We
need to show that E[V π

H(b)] = ∑H
i=1 β

π
i (b) for every b ∈ [0, 1].

Indeed,

E[V π
H(b1)] = βπ1 (b1)(1 + E[V π

H−1(b′(b1, a1, liked))])

= βπ1 (b1)(1 + E[V π
H−1(b2)])

= βπ1 (b1)(1 +
H−1∑
i=2

βπi (b2))

=
H∑
i=1

βπi (b1),
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where the second to last equality is due to the induction hypothesis and the assumption
that π is a deterministic stationary policy. The proof completes by realizing that
E[V π(b)] = limH→∞ E[V π

H(b)] = limH→∞
∑H
i=1 β

π
i (b) = ∑∞

i=1 β
π
i (b), since the sum is

finite and has positive summands.

Dominant Row (DR)

Lemma 3.43. For any instance such that P has a dominant row a, the fixed policy
πa is an optimal policy.

Proof. We will show that for every iteration j, no matter what were the previous
topic recommendations were, selecting topic 1 rather than topic 2 can only increase
the value.

Let π be a stationary policy such that π(bj) = 2. Changing it into a policy πj that is
equivalent to π for all iterations but iteration j + 1 in which it recommends topic 1
can only improve the value.

Since P1,x,P2,x,P1,y,P2,y ≥ 0, P1,x−P2,x ≥ 0, b, 1− b ≥ 0 and this structure satisfies
P2,y −P1,y ≤ 0, we get that for every m̄1,j, m̄2,j, n1,j, n2,j ∈ N and for every b,

b ·Pm̄1,j+n1,j

1,x ·Pm̄2,j+n2,j

2,x (P1,x −P2,x) ≥ (1− b)Pm̄1,j+n1,j

1,y ·Pm̄2,j+n2,j

2,y (P2,y −P1,y);

thus,
b ·Pm̄1,j+1+n1,j

1,x ·Pm̄2,j+n2,j

2,x + (1− b)Pm̄1,j+1+n1,j

1,y ·Pm2,j+n2,j

2,y ≥

b ·Pm̄1,j+n1,j

1,x ·Pm̄2,j+1+n2,j

2,x + (1− b)Pm̄1,j+n1,j

1,y ·Pm̄2,j+1+n2,j

2,y .

Hence for every time step j + 1, choosing topic 1 instead of topic 2 leads to increased
value of each of the summation element b · Pm1,i

1,x · P
m2,i

2,x + (1 − b)Pm1,i

1,y · P
m2,i

2,y such
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that m1,i = m̄1,j + n1,j ≥ m̄1,j and m2,i = m̄2,j + n2,j ≥ m̄2,j. We deduce that

E[V πj (b)] ≥ E[V π(b)].

Dominant Column (DC)

Before proving the main theorem (Theorem 3.44), we prove two auxiliary lem-
mas.

Lemma 3.56. For P with a DC structure, if a policy π is optimal then it recommends
topic 1 for all iteration j′ ≥ j + 1 such that

∞∑
i=j+1

Pm1,i

1,x Pm2,i

2,x >
∞∑

i=j+1

1− b
b
· P2,y −P1,y

P1,x −P2,x
· P2,x

P2,y
Pm1,i

1,y Pm2,i

2,y . (3.22)

Proof. First, assume by contradiction that there exists an optimal policy π that
recommends topic 2 in iteration j + 1 such that (3.22) holds.

Let πj be the policy that is equivalent to π but recommend topic 1 instead of topic 2
in iteration j + 1. Since π and πj recommends the same topic until iteration j, along
with the optimality of π, we have

E[V πj (b)]− E[V π(b)] = E[V πj

j+1(b)]− E[V π
j+1(b)] ≤ 0.

Expending the above equation,

∞∑
i=j+1

b·Pmπ
1,i+1

1,x ·Pmπ
2,i−1

2,x +(1−b)Pmπ
1,i+1

1,y ·Pmπ
2,i−1

2,y −
( ∞∑
i=j+1

b·Pmπ
1,i

1,x ·P
mπ

2,i

2,x +(1−b)Pmπ
1,i

1,y ·P
mπ

2,i

2,y

)
≤ 0
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∞∑
i=j+1

b ·Pmπ
1,i

1,x ·P
mπ

2,i

2,x (P1,x

P2,x
− 1) ≤

∞∑
i=j+1

(1− b)Pmπ
1,i

1,y ·P
mπ

2,i

2,y (1− P1,y

P2,y
)

b(P1,x −P2,x)
P2,x

∞∑
i=j+1

·Pmπ
1,i

1,x ·P
mπ

2,i

2,x ≤
(1− b)(P2,y −P1,y)

P2,y

∞∑
i=j+1

Pmπ
1,i

1,y ·P
mπ

2,i

2,y

∞∑
i=j+1

Pmπ
1,i

1,x ·P
mπ

2,i

2,x ≤
1− b
b
· P2,x

P2,y
· P2,y −P1,y

P1,x −P2,x

∞∑
i=j+1

Pmπ
1,i

1,y ·P
mπ

2,i

2,y ,

which is a contradiction to (3.22).

For the second part of the lemma, assume that condition (3.22) holds for some
iteration j + 1 ∈ N and some optimal policy π; hence, π(b,mπ

1,j,m
π
2,j) = 1 and we

have mπ
1,j+1 = mπ

1,j + 1 and mπ
2,j+1 = mπ

2,j. Exploiting this fact, we have that

∞∑
i=j+2

Pmπ
1,i

1,x Pmπ
2,i

2,x =
∞∑

i=j+1
Pmπ

1,i+1
1,x Pmπ

2,i

2,x = P1,x

∞∑
i=j+1

Pmπ
1,i

1,x Pmπ
2,i

2,x > (3.22),

implying

P1,x

∞∑
i=j+1

1− b
b
· P2,y −P1,y

P1,x −P2,x
· P2,x

P2,y
Pmπ

1,i

1,y Pmπ
2,i

2,y

>(P1,x ≥ P1,y)P1,y

∞∑
i=j+1

1− b
b
· P2,y −P1,y

P1,x −P2,x
· P2,x

P2,y
Pmπ

1,i

1,y Pmπ
2,i

2,y

=
∞∑

i=j+1

1− b
b
· P2,y −P1,y

P1,x −P2,x
· P2,x

P2,y
Pmπ

1,i+1
1,y Pmπ

2,i

2,y

=
∞∑

i=j+2

1− b
b
· P2,y −P1,y

P1,x −P2,x
· P2,x

P2,y
Pmπ

1,i

1,y Pmπ
2,i

2,y .

An immediate consequence of Lemma 3.56 is the following corollary.

Corollary 3.57. For any DC-structured P and every belief b ∈ [0, 1], the optimal
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policy π first recommends topic 2 for at most

argminN
N∑
i=1

Pmπ
2,i

2,x >
1− b
b
· P2,y −P1,y

P1,x −P2,x
· P2,x

P2,y

N∑
i=1

Pmπ
2,i

2,y

times, and then recommends topic 1 permanently. In addition, N ∈ N since P2,x >

P2,y.

Theorem 3.44. For any instance such that P has a dominant column, one of the
following four policies is optimal:

π1, π2, π2:⌊N∗⌋, π2:⌈N∗⌉,

where N∗ = N∗(P,q) is a constant, and π2:⌊N∗⌋ (π2:⌈N∗⌉) stands for recommending
Category 2 until iteration ⌊N∗⌋ (⌈N∗⌉) and then switching to Category 1.

Proof. Due to Theorem 3.42 and Corollary 3.57, we can write the expected value of
a policy as a function of N when P has a DC structure:

E[V πN (b)] =
∞∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y

=
N∑
i=1

b ·Pi
2,x + (1− b)Pi

2,y +
∞∑

i=N+1
b ·PN

2,x ·Pi−N
1,x + (1− b)PN

2,y ·Pi−N
1,y

= b ·
P2,x(PN

2,x − 1)
P2,x − 1 + (1− b) ·

P2,y(PN
2,y − 1)

P2,y − 1 + b ·PN
2,x ·

∞∑
i=1

Pi
1,x + (1− b)PN

2,y ·
∞∑
i=1

Pi
1,y

= b ·
P2,x(PN

2,x − 1)
P2,x − 1 + (1− b) ·

P2,y(PN
2,y − 1)

P2,y − 1 + b ·PN
2,x ·

P1,x

1−P1,x
+ (1− b)PN

2,y
P1,y

1−P1,y

= PN
2,x · b

( P2,x

P2,x − 1 + P1,x

1−P1,x

)
+ PN

2,y(1− b)
( P2,y

P2,y − 1 + P1,y

1−P1,y

)
+ bP2,x

1−P2,x
+ (1− b)P2,y

1−P2,y
.

(3.23)

Equation (3.23) could be cast as c1 · PN
2,x + c2PN

2,y + c3(P2,x,P2,y) for positive c1,
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negative c2 and positive c3. Let f : R ← R be the continuous function such that
f(N) = c1 ·PN

2,x + c2PN
2,y + c3(P2,x,P2,y).

We take the derivative w.r.t. N to find the saddle point of f :

d

dN
f = c1 · ln P2,x ·PN

2,x + c2 ln P2,y ·PN
2,y = 0,

which suggests the saddle point of f is

Ñ =
ln
(
− c2 ln P2,y

c1 ln P2,x

)
ln
(

P2,x

P2,y

) .

Next, set N∗ def= max{0, Ñ}. Since f has a single saddle point and for every n ∈ N

it holds that f(N) = E[V πN (b)], to determine the optimal policy, one only needs to
compare the value E[V πN (b)] at the boundary points (N = 0, N = ∞) and at the
closest integers to the saddle point (N = ⌊N∗⌋, N = ⌈N∗⌉).

Dominant Diagonal (SD)

Theorem 3.45. For any instance such that P has a dominant diagonal, either π1 or
π2 is optimal.

Proof. We prove the following claim by a backward induction over the number of
iterations remaining: For every k = H − 1, . . . 1 it holds that for every policy π and
belief b,

E[V π
k (b)] ≤ max{E[V π1

k (b)],E[V π2

k (b)]}.

First, we notice that when k = H − 1, the only possible policies are π1 and π2. For
k = H − 2, we prove the statement by contradiction. There are only two ways to
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selects topics when k = H − 2:

π′
1:H = (π1:H−2, 1︸︷︷︸

H−1

, 2︸︷︷︸
H

) and π′′
1:H = (π1:H−2, 2︸︷︷︸

H−1

, 1︸︷︷︸
H

).

Let m1 and m2 denote the number of times π has played topic 1 and 2 till time
H − 2, inclusive. Assume that the policy π′ is optimal. In particular, it holds that
E[V π1

k ] ≤ E[V π′
k ] and E[V π2

k ] ≤ E[V π′
k ]. We get

bPm1
1,xPm2

2,xP1,x(P1,x −P2,x) ≤ Pm1
1,yPm2

2,y (1− b)P1,y(P2,y −P1,y), (3.24)

and

Pm1
1,yPm2

2,y (1− b)(P2,y −P1,y)(1 + P2,y) ≤ bPm1
1,xPm2

2,x(P1,x −P2,x)(1 + P2,x). (3.25)

As both sides of (3.24) and (3.25) are positive, the multiplication of their left hand
sides is smaller than the multiplication of their right hand sides, i.e.,

bPm1
1,xPm2

2,xP1,x(P1,x −P2,x)Pm1
1,yPm2

2,y (1− b)(P2,y −P1,y)(1 + P2,y)

≤ Pm1
1,yPm2

2,y (1− b)P1,y(P2,y −P1,y)bPm1
1,xPm2

2,x(P1,x −P2,x)(1 + P2,x)

Dividing both sides by bPm1
1,xPm2

2,x(P1,x − P2,x)Pm1
1,yPm2

2,y(1 − b)(P2,y − P1,y) > 0, we
obtain

P1,x(1 + P2,y) ≤ P1,y(1 + P2,x),

which is a contradiction as P1,x > P1,y and 1 + P2,y > 1 + P2,x.

Now, assume that the policy π′′ is optimal. In particular, it holds that E[V π1
k ] ≤ E[V π′′

k ]
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and E[V π2
k ] ≤ E[V π′′

k ]. We get

Pm1
1,xPm2

2,xb(P1,x −P2,x)(1 + P1,x) ≤ Pm1
1,yPm2

2,y (1− b)(1 + P1,y)(P2,y −P1,y), (3.26)

and

Pm1
1,yPm2

2,y (1− b)P2,y(P2,y −P1,y) ≤ Pm1
1,xPm2

2,xbP2,x(P1,x −P2,x). (3.27)

As both sides of (3.26) and (3.27) are positive, the multiplication of their left hand
sides is smaller than the multiplication of their right hand sides,

Pm1
1,xPm2

2,xb(P1,x −P2,x)(1 + P1,x)Pm1
1,yPm2

2,y (1− b)P2,y(P2,y −P1,y)

≤ Pm1
1,yPm2

2,y (1− b)(1 + P1,y)(P2,y −P1,y)Pm1
1,xPm2

2,xbP2,x(P1,x −P2,x).

Dividing both sides by Pm1
1,xPm2

2,xb(P1,x − P2,x)Pm1
1,yPm2

2,y(1 − b)(P2,y − P1,y) > 0, we
obtain

P2,y(1 + P1,x) ≤ P2,x(1 + P1,y),

which is again, a contradiction as P2,x < P2,y and 1 + P1,y < 1 + P1,x.

For H ≥ 3, we prove the statement by contradiction. Suppose not, i.e., the optimal
policy π switch recommended topic at least once. Let t denote the time step where π
switch for the last time. We first consider the case where π has switched from topic 2
to topic 1 at time t. More specifically, we have

π1:H = (π1:t−2, 2︸︷︷︸
πt−1

, 1︸︷︷︸
πt

, 1, . . . , 1︸ ︷︷ ︸
πt+1:H−1

, 1︸︷︷︸
πH

).

Consider another policy π̃ (that behaves the same as π except at time step t − 1)
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defined as

π̃1:H = (π1:t−2, 2︸︷︷︸
πt−1

, 2︸︷︷︸
πt

, 1, . . . , 1︸ ︷︷ ︸
πt+1:H−1

, 1︸︷︷︸
πH

).

Let m1 and m2 denote the number of times π has recommended topic 1 and 2 till
(and include) time t− 1. Since π is optimal, we have the difference between the value
of π and π̃ to be non-negative, i.e.,

E[V π
H ]− E[V π̃

H ] =
H−t+1∑
i=1

bPm1+i−1
1,x Pm2+1

2,x (P1,x −P2,x) + (1− b)Pm1+i−1
1,y Pm2+1

2,y (P1,y −P2,y) ≥ 0,

(3.28)

where the difference is induced by the discrepancy of the two policies from time step
t to H. Consider another policy π′ (that behaves the same as π except at time step
H) defined as

π′
1:H = (π1:t−2, 2︸︷︷︸

πt−1

, 1︸︷︷︸
πt

, 1, . . . , 1︸ ︷︷ ︸
πt+1:H−1

, 2︸︷︷︸
πH

).

Since π is optimal, we have the difference between the value of π and π′ to be
non-negative, i.e.,

E[V π
H ] > E[V π′

H ]⇒ bPm1+H−t
1,x Pm2

2,x(P1,x −P2,x) > (1− b)Pm1+H−t
1,y Pm2

2,y (P2,y −P1,y),

where the difference is induced by the discrepancy of the two policies from time step
H. Multiplying both sides by P1,y > 0, we get

P1,ybPm1+H−t
1,x Pm2

2,x(P1,x −P2,x) > (1− b)Pm1+H−t+1
1,y Pm2

2,y (P2,y −P1,y).
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Using P1,x

P1,y
> 1, and P1,ybPm1+H−t

1,x Pm2
2,x(P1,x −P2,x) > 0,

bPm1+H−t+1
1,x Pm2

2,x(P1,x −P2,x) > (1− b)Pm1+H−t+1
1,y Pm2

2,y (P2,y −P1,y);

hence,

bPm1+H−t+1
1,x Pm2

2,x(P1,x −P2,x) + (1− b)Pm1+H−t+1
1,y Pm2

2,y (P1,y −P2,y) ≥ 0. (3.29)

Next, we construct a new policy πnew that outperforms π. We let πnew to be the
policy defined as below

πnew
1:H = (π1:t−2, 1︸︷︷︸

πt−1

, 1︸︷︷︸
πt

, 1, . . . , 1︸ ︷︷ ︸
πt+1:H−1

, 1︸︷︷︸
πH

).

The value difference between πnew and π (caused by the discrepancy of the two policies
from time t− 1 to H) is

E[V πnew

H ]− E[V π
H ] =

H−t+1∑
i=1

bPm1+i−1
1,x Pm2

2,x(P1,x −P2,x) + (1− b)Pm1+i−1
1,y Pm2

2,y (P1,y −P2,y)

+ bPm1+H−t+1
1,x Pm2

2,x(P1,x −P2,x) + (1− b)Pm1+H−t+1
1,y Pm2

2,y (P1,y −P2,y)

>
H−t+1∑
i=1

bPm1+i−1
1,x Pm2+1

2,x (P1,x −P2,x) + (1− b)Pm1+i−1
1,y Pm2+1

2,y (P1,y −P2,y)

≥ 0,

where the first inequality is true because P2,x < P2,y, P1,x−P2,x > 0 and P1,y−P2,y <

0, therefore for every 1 ≤ i ≤ H − t+ 1

bPm1+i−1
1,x Pm2

2,x(P1,x−P2,x)(1−P2,x) > 0 > (1− b)Pm1+i−1
1,y Pm2

2,y (P2,y −P1,y)(P2,y − 1)

along with (3.29). The second inequality follows from (3.28). Thus, we have success-
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fully find another policy πnew
1:H that differs from π and achieves a higher value, which

is a contradiction.

next, we consider the case where π has switched from topic 1 to topic 2 at time t, i.e.,

π1:H = (π1:t−2, 1︸︷︷︸
πt−1

, 2︸︷︷︸
πt

, 2, . . . , 2︸ ︷︷ ︸
πt+1:H−1

, 2︸︷︷︸
πH

).

Consider another policy π̃ (that behaves the same as π except at time step t) defined
as

π̃1:H = (π1:t−2, 1︸︷︷︸
πt−1

, 1︸︷︷︸
πt

, 2, . . . , 2︸ ︷︷ ︸
πt+1:H−1

, 2︸︷︷︸
πH

).

Since π is optimal, we have the difference between the value of π and π̃ to be
non-negative, i.e.,

E[V π
H ]− E[V π̃

H ] =
H−t+1∑
i=1

bPm1+1
1,x Pm2+i−1

2,x (P2,x −P1,x) + (1− b)Pm1+1
1,y Pm2+i−1

2,y (P2,y −P1,y) ≥ 0,

(3.30)

where the difference follows from the discrepancy between the two policies from time
step t to H.

Consider another policy π′ (that behaves the same as π except at time step H) defined
as

π′
1:H = (π1:t−2, 1︸︷︷︸

πt−1

, 2︸︷︷︸
πt

, 2, . . . , 2︸ ︷︷ ︸
πt+1:H−1

, 1︸︷︷︸
πH

).

Since π is optimal, we have the difference between the value of π and π′ to be
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non-negative, i.e.,

E[V π
H ] > E[V π′

H ]⇒ (1− b)Pm1
1,yPm2+H−t

2,y (P2,y −P1,y) ≥ bPm1
1,xPm2+H−t

2,x (P1,x −P2,x),

where the difference is induced by the discrepancy of the two policies from time step
H. Multiplying both sides by P2,x > 0,

P2,x(1− b)Pm1
1,yPm2+H−t

2,y (P2,y −P1,y) ≥ bPm1
1,xPm2+H−t+1

2,x (P1,x −P2,x).

Using P2,x(1− b)Pm1
1,yPm2+H−t

2,y (P2,y −P1,y) > 0 and P2,y

P2,x
≥ 1, we get

(1− b)Pm1
1,yPm2+H−t+1

2,y (P2,y −P1,y) ≥ bPm1
1,xPm2+H−t+1

2,x (P1,x −P2,x);

hence,

bPm1
1,xPm2+H−t+1

2,x (P2,x −P1,x) + (1− b)Pm1
1,yPm2+H−t+1

2,y (P2,y −P1,y) ≥ 0. (3.31)

Again, we will construct a new policy πnew that outperforms π. We let πnew to be the
policy defined as below

πnew
1:H = (π1:t−2, 2︸︷︷︸

πt−1

, 2︸︷︷︸
πt

, 2, . . . , 2︸ ︷︷ ︸
πt+1:H−1

, 1︸︷︷︸
πH

).

Now, the value difference between πnew and π (caused by the discrepancy of the two
policies from time t− 1 to H) is

E[V πnew

H ]− E[V π
H ] =

H−t+1∑
i=1

(
bPm1

1,xPm2+i−1
2,x (P2,x −P1,x) + (1− b)Pm1

1,yPm2+i−1
2,y (P2,y −P1,y)

)
+ bPm1

1,xPm2+H−t+1
2,x (P2,x −P1,x) + (1− b)Pm1

1,yPm2+i−1
2,y (P2,y −P1,y)
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>
H−t+1∑
i=1

bPm1+1
1,x Pm2+i−1

2,x (P2,x −P1,x) + (1− b)Pm1+1
1,y Pm2+i−1

2,y (P2,y −P1,y)

≥ 0,

where the first inequality is true because P1,y < P1,x, P2,x−P1,x < 0 and P2,y−P1,y >

0 and (3.31), and the second from (3.30). Similarly, we have successfully find another
policy πnew

1:H that differs from π and achieves a higher value, which is a contradiction.

We have covered all cases, so the inductive argument holds. This concludes the proof
of the theorem.

UCB-based regret bound

Lemma 3.48. Let τ̃ = 8e
ln( 1

1−ϵ
) and η = 1. For every threshold policy π ∈ ΠH , the

centred random variable V π − E[V π] is (τ 2, b)-sub-exponential with (τ 2, b) satisfying
τ̃ ≥ τ and η ≥ b2/τ 2.

Proof. Let γ be such that

|γ| < − ln(1− ϵ)
8e ≤ min

a∈{1,2},i∈{x,y}
{− ln(1−Λa,i(1−Pa,i))

8e } = min
a∈{1,2},i∈{x,y}

{− ln(Pa,i)
8e }.

Next, we have that

E[exp(γ(V π − E[V π]))] ≤
∑

a∈{1,2}
E[exp(γ(V πa − E[V πa ]))]

∣∣∣type(t) ∈ argmax
i∈[1,2]

Pa,i]·Pr[type(t) ∈ argmax
i∈[1,2]

Pa,i] ≤

max
a∈{1,2}

{E[exp(γ(V̄ πa − E[V̄ πa ]))]}

Where V̄ πa is the return for the instance ⟨[1], [2],q, P̄, Λ̄⟩ such that for every a ∈ {1, 2}:
P̄a,1 = maxi∈{x,y} Pa,i and Λa,1 = 1.
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Finally, from Lemma 3.38 we get

max
a∈{1,2}

{E[exp(γ(V̄ πa − E[V̄ πa ]))]} ≤ max
a∈{1,2}

exp((− 8e
ln(P̄a,1)

)2γ
2

2 ) = max
a∈{1,2},i∈{x,y}

exp((− 8e
ln(Pa,i)

)2γ
2

2 ).

Choosing
τ = b = max

a∈{1,2},i∈{x,y}
− 8e

ln(Pa,i)

completes the proof as

max
a∈{1,2},i∈{x,y}

− 8e
ln(Pa,i)

≤ − 8e
ln(1− ϵ) = τ̃ and τ 2

b2 = 1 = η.

Lemma 3.47. For every H ∈ N, it holds that

E
[
V π∗ − max

π∈ΠH

V π
]
≤ 1

2O(H) .

Proof. Recall that V π = ∑Nπ

j=1 rj(πj), where we drop the dependence on the user
index for readability. Formulating differently, for any H ∈ N it holds that

V π =
H∑
j=1

Ij≤Nπ · rj(πj) +
∞∑

j=H+1
Ij≤Nπ · rj(πj).

Using the same representation for V π′ and taking expectation, we get that

E
[
V π − V π′] ≤ E

 H∑
j=1

Ij≤Nπ · rj(πj)−
H∑
j=1

Ij≤Nπ′ · rj(π′
j)
+ E

 ∞∑
j=H+1

Ij≤Nπ · rj(πj)


≤ 0 + E

 ∞∑
j=H+1

Ij≤Nπ · rj(πj)
 =

∞∑
j=H+1

Pr (j ≤ Nπ) rj(πj)

≤
∞∑

j=H+1
(1− ϵ)j(1− ϵ) = (1− ϵ)H+2

∞∑
j=0

(1− ϵ)j
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≤ (1− ϵ)H 1
ϵ
≤ e−ϵH

ϵ
= 1

2O(H) .

3.3 The SafeZone Problem

3.3.1 Introduction

Most research in reinforcement learning (RL) deals with the problem of learning an
optimal policy for some Markov decision process (MDP). One notable exception for
that is Safe RL, that focuses on finding the best policy that meets safety requirements.
Typically, these problems are handled by adjusting the objective to include safety
requirements and then optimizing over it, or incorporating additional safety constraints
to the exploration stage. Anomaly Detection is the problem of identifying patterns in
data that do not correspond to what is expected, i.e., anomalies. Anomaly Detection
addresses a variety of applications: cyber-security, fraud detection, failure detection,
etc. (see [32] for survey).

In this chapter, we introduce the SafeZone problem, a general approach for safe
RL and anomaly detection that concentrates on a given policy rather than finding
a policy that follows some predefined safety specifications and emphasizes entire
trajectories in order to detect anomalies.

Consider a policy for a finite horizon MDP. The policy induces a Markov Chain
(MC) on the MDP. Given a subset of states, we define the escape probability to be
the probability that a random trajectory has at least one state outside this subset
(hence the trajectory escapes it). A SafeZone is a subset of states whose quality is
measured by its’ size and escape probability (ideally, both are small). If a SafeZone

has low escape probability, we consider it safe.
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Trivial SafeZone solutions are the entire set of states (which has minimal escape
probability of 0 on the account of maximal size), and the empty set (which has
minimal size but has maximal escape probability of 1). We are interested to find
SafeZone with a good tradeoff: namely a relatively small set size with small escape
probability. More precisely, given a bound over the escape probability, ρ > 0, the
goal of the learner is, using trajectory sampling, to find the smallest SafeZone with
escape probability at most ρ. We address unknown environment, by which we mean
no prior knowledge on the transition function or the policy used. The learner can
only access random trajectories generated by the induced MC. For many applications,
if there exists such a small SafeZone it is useful to find it.

Consider for example automatic robotic arm that assembles products. If something
unusual happened during the assembly of a product, it might result in a malfunctioning
product. In that case, the operator should be notified (anomaly detection). On
the other hand, we would not like to call the operator too often. If we find a
SafeZone, we can make sure that we notify the operator only in the rare events the
production process (trajectory) escapes it. Furthermore, if the SafeZone is small, the
manufacturer can potentially test the SafeZone states and verify their compliance,
ensuring that the majority of products are well constructed for a significantly lower
testing budget.

Another useful application is transportation design. For example, given data re-
garding bicycle commutes (not necessarily done on bicycle lanes) in a populated
areas, pave bike lanes in the SafeZone, namely in a way that would accommodate
popular commutes, from starting point to destination. Making cycling safer and more
accessible would also promote it as a viable transportation option, which in turn
benefits the environment [127].

We remark that finding a SafeZone alone does not suffice for safety; Rather, a
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nearly optimal SafeZone is a behavioral description that can be used for safety
applications, such as safer cycling. As another example, efficient testing (of states
within the SafeZone ) that “captures” most of the products’ assembly process would
improve safety.

Other motivations include imitation learning with compact policy representation.
Namely, design a smaller state policy that preforms well for most cases but might
be undefined on some states. In this case, trajectories that reach undefined states
have zero reward, and such trajectories are captured by the escape probability. One
natural application for that is creating a ‘lite’ version for a given software such as
Microsoft’s Windows Lite.

Our work can also be viewed through the lens of explainable RL, where the goal
is to explain a specific policy. SafeZone is a new post-hoc explanation of the
summarization type [3]. Going back to the bicycle example, a municipality could
provide a convincing explanation to its community for the chosen design.

Our results include approximation algorithms for the SafeZone problem, which we
show is NP-hard, even when the model is given and the horizon is small (H = 2). We
are interested in a good tradeoff between the escape probability of the SafeZone

and its size. Our algorithms are evaluated based on two criteria: their approximation
factors (w.r.t. the escape probability bound and the optimal set size for this bound),
and their trajectory sample complexity bounds (e.g., [51]).

Our results are the following:

1. Introducing the SafeZone problem (section 3.3.2), and some of its applications.
2. We explore naive approaches, namely greedy algorithms that select SafeZones

based on state distributions and trajectory sampling. In addition, we show cases
in which their solutions are far from optimal, either in terms of high escape
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probability or significantly larger set size (see section 3.3.3).
3. We design Finding SafeZone, an efficient approximation algorithm with

provable guarantees. The algorithm returns a SafeZone which is slightly more
than twice in terms of both the size and the escape probability compared to the
optimal (see section 3.3.4).

4. We prove that finding a SafeZone is NP-hard, even for horizon H = 2 and
known environment setting (i.e., when the induced Markov chain is given) in
section 3.3.5.

5. We conclude the section with an empirical demonstration in section 3.3.6.

Trajectory escaping. The SafeZone problem deals escaping trajectories. In
particular, given a SafeZone, a trajectory escapes it, no matter if only one of
its states is outside the SafeZone or all of them. A related, yet very different
problem, is that of minimizing a subset size, such that the expected number of states
outside the set is minimized. This related problem, while significantly easier (as it
is solved by returning the most visited states), does not apply to the applications
we described earlier. In Section 3.3.3, we show that the solution for the SafeZone

does not necessarily overlaps with the most visited states. Furthermore, simply
returning states which appeared in trajectory samples could result in a set size far
from optimal.

Related Work

MDPs have been studied extensively in the context of decision making in particular
by the Reinforcement Learning (RL) community (see [110] for a broad background
on MDPs, and [124] for background on reinforcement learning).

Safe RL. A related line of research is safe RL, where the learner’s goal is to find the
best policy that satisfies safety guarantees. The two main methodologies to handle
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such problems are: (1) altering the objective to include the safety requirement and
optimizing over it, and (2) adding safety constraints to the exploration part. See
[106, 49, 131, 67, 65] for recent works and [58, 5] for surveys. In our work, the goal
is not to find the optimal policy, but instead given a policy, finding its SafeZone.
Moreover, the SafeZone problem is not characterized by specific requirements, and
beyond the MDP, the solution could very much depend on the given policy.

Imitation Learning. In imitation learning, the learner observes a policy behaviour
and wants to imitate it (see [70] for survey). Similar to imitation learning, we are
given access to samples of a given policy. In contrast, rather than imitating the policy
we find the policy’s SafeZone, which is an important property of the policy.

Approximate MDP equivalence. Another related research line is that of finding
an (almost) equivalent minimal model for a given MDP, where the goal is that the
optimal policy on the (almost) equivalent model induces an (approximately) optimal
policy in the original MDP, e.g., [60, 53]. This line of works and ours differ in
that we do not try to modify the MDP (e.g., cluster similar states), but rather to
find a SafeZone, a property which is defined for the existing MDP and a specific
policy.

Explainability. In explainability, the goal is to provide a post-hoc explanation to
a specific given model [101], e.g., using decision trees [21, 102], influential examples
[85], or a local approximation explanations [91]. We focus on explainability for
reinforcement learning, and specifically we suggest a new summarization explanation
through our SafeZone, [4].

MC with traps. A decision problem that might seem related to ours is that of
MC with traps ([46]): Given an input of a MC (with possibly infinite state space),
a starting state, and states trapping (absorbing) probabilities, the goal is to decide
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whether or not a (possibly infinite) random walk would reach an absorbing state
with probability 1, or not. In section 3.3.9, we explain why this problem is inherently
different than SafeZone.

3.3.2 SafeZone: Problem Formulation

We model the problem using a Markov model with finite horizon H > 1. Formally,
there is a Markov chain (MC) ⟨S, P, s0⟩ where S is the set of states, s0 ∈ S is the
initial state and P : S×S → [0, 1] is the transition function that maps a pair of states
into probability by P (s, s′) = Pr[st+1 = s′|st = s]. We assume the transition function
P is induced by a policy π : S → SimplexA on a MDP ⟨S, s0, P

′,A⟩ with transition
function P ′ : S ×A× S → [0, 1] such that P (s, s′) = ∑

a∈A P
′(s, a, s′) · π(a|s) for all

s, s′ ∈ S (though any MC can be generated this way, thus our theoretical guarantees
apply for general MCs).

A trajectory τ = (s0, . . . , sH) starts in the initial state s0 and followed by a sequence
of H states generated by P , i.e., Pr[si+1 = s′|si = s] = P (s, s′) for all i ∈ [H],
where [H] := {1, . . . , H}. We abuse the notation and regard a trajectory τ both as a
sequence and a set.

Given a subset of states F ⊆ S, a trajectory τ escapes F if it contains at least one
state s ∈ τ such that s /∈ F , i.e., τ ̸⊆ F . We refer to the probability that a random
trajectory escapes F as escape probability and denote it by ∆(F ) = Prτ [τ ̸⊆ F ]. We
call F a ρ−safe (w.r.t. the model ⟨S, s0, P ⟩) if its escape probability, ∆(F ), is at
most ρ. Formally,

Definition 3.58. A set F ⊆ S is ρ−safe if

∆(F ) := Pr
τ

[τ ̸⊆ F ] ≤ ρ,
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where τ is a random trajectory.

A set F ⊆ S is called (ρ, k)−SafeZone if F is ρ−safe and |F | ≤ k. Given a safety
parameter ρ ∈ (0, 1), we denote the smallest size ρ−safe set by k∗(ρ):

k∗(ρ) = min
F⊆S is ρ−safe

|F |.

Whenever the discussed parameter ρ is clear from the context we use k∗ instead of
k∗(ρ). We remark that there might be multiple different (ρ, k)−SafeZone sets.

The learner knows the set of states, S, the initial state, s0, and the horizon H but has
no knowledge regarding the transition function P or the minimal size of the ρ−safe
set, k∗. Instead, the learner receives information about the model from sampling
trajectories from the distribution induced by π.

Given ρ > 0, the ultimate goal of the learner would have been to find a (ρ, k∗(ρ))−
SafeZone. However, as we show in section 3.3.5, finding a (ρ, k∗(ρ))−SafeZone

is NP-hard, even when the transition function P is known. This is why we loosen
the objective to find a bi-criteria approximation (ρ′, k′)−SafeZone . (Bi-criteria
approximations are widely studied in approximation and online algorithms [125, 129].)
In our setting, given ρ the objective is to find a set F which is (ρ′, k′)−SafeZone

with minimal size k′ ≥ k∗ and minimal escape probability ρ′ ≥ ρ. In addition, we are
interested in minimizing the sample complexity.

Notice that the learner can efficiently verify, with high probability, whether a set F is
approximately ρ−safe or not. The following proposition formalize this and follows
directly from lemma 3.75.

Proposition 3.59. There exists an efficient algorithm such that for every set F ⊆ S
and parameters ρ, λ > 0, the algorithm samples O( 1

ϵ2
ln 1

λ
) random trajectories and
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Table 3.3: Upper bounds for safety and size. * Only for layered MDPs.

Algorithm Safe Set Size Sample Complexity

Greedy by Thresh-
old

2ρ k∗H/ρ –

Simulation 2ρ O(k∗H ln k∗) poly(k∗, 1
ρ )

Greedy at Each
Step*

ρH k∗ –

Finding SafeZone 2ρ + 2ϵ (2 + δ)k∗ poly(k∗, H, 1
ϵ , 1

δ )

returns ∆̂(F ), such that with probability at most λ we have |∆(F )− ∆̂(F )| ≥ ϵ.

Summary of Contributions. We summarize the results of all the algorithms
that appear in the section in Table 3.3. The bounds of Greedy by Threshold

and Greedy At Each Step requires the Markov Chain model as input, and a
pre-processing step that takes O(|S|2H) time. Additionally, the bounds for first three
algorithms (the naive approaches) requires an additional knowledge of k∗(ρ). Beyond
the upper bounds, we provide instances that show that the upper bounds are tight
up to a constant for each of the first three algorithms (the naive approaches). The
following theorem is an informal statement of our main theorem, theorem 3.66.

Theorem 3.60. For every ρ, ϵ, δ > 0, with probability ≥ 0.99 there exists an algorithm
that returns a set which is (2ρ+ 2ϵ, (2 + δ)k∗)− SafeZone.

The running time of the algorithm is also bounded by poly(k∗, H, 1
δ
, 1
ϵ
). We empirically

evaluate the suggested algorithms on a grid-world instance (where the goal is to
reach an absorbing state), showing that Finding SafeZone outperforms the naive
approaches. Moreover, we show that different policies have qualitatively different
SafeZones. Finally, an informal statement of theorem 3.68.

Theorem 3.61. SafeZone is NP-hard.
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3.3.3 Gentle Start

This section explains and analyzes various naive algorithms to the SafeZone problem.
We show that even if the transition function is known in advance, these naive
algorithms result in outputs that are far from optimal. To describe the algorithms,
we define for each state s the probability to appear in a random trajectory and denote
it by p(s) = Prτ [s ∈ τ ] ∈ [0, 1]. Note that ∑s∈S p(s) is a number between 1 and H

(e.g., p(s0) = 1), and can be estimated efficiently using dynamic programming if the
environment and policy are known and sampling otherwise. To be precise, some of
the algorithms assume the probabilities {p(s)}s∈S are received as input.

Greedy by Threshold Algorithm. The algorithm gets, in addition to ρ, the
distribution p and a parameter β > 0 as input. It returns a set F that contains
all states s with probability at least β, i.e., p(s) ≥ β. We formalize this idea
as algorithm 14 in Section 3.3.10. For β = ρ

k∗ , the output of the algorithm is(
2ρ, k∗H

ρ

)
− SafeZone. More generally, we prove the following lemma.

Lemma 3.62. For any ρ, β ∈ (0, 1), the Greedy by Threshold Algorithm

returns a set that is (ρ+ k∗β, H
β

)− SafeZone. In particular, for β = ρ
k∗ , this set is(

2ρ, k∗H
ρ

)
− SafeZone.

While it is clear why there are instances for which the safety is tight, Lemma 3.71 in
Section 3.3.10 shows that the set size is tight as well.

Simulation Algorithm. The algorithm samples O( ln k∗

β
) random trajectories and

returns a set F with all the states in theses trajectories. It is formalized in Section
3.3.10 as algorithm 15.

Lemma 3.63. Fix ρ, β ∈ (0, 1). With probability at least 0.99, Simulation Algorithm
returns a set that is

(
ρ+ k∗β,O(k∗ + ρH ln k∗

β
)
)
−SafeZone. In particular, for β = ρ

k∗ ,
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this set is (2ρ,O(k∗H ln k∗))− SafeZone.

While this algorithm achieves a low escape probability, only 2ρ, in Lemma 3.72 in
Section 3.3.10 we prove that the size of F is tight up to a constant, i.e., an MDP
instance where |F | = Ω(k∗H ln k∗).

So far, the presented algorithms were approximately safe (i.e., low escape probability),
but might return large subsets. Without further assumptions, the following algorithm
provides a (ρH,Hk∗)−SafeZone. However, when considering MDPs with a special
structure it provides an optimal sized SafeZone , at the price of large escape
probability.

Greedy at Each Step Algorithm. For the analysis of the next algorithm we
assume the MDP is layered, i.e., there are no states that appear in more than a single
time step and denote S = ⋃H

i=1 Si. I.e., the transitions P (s, s′) are nonzero only for
s′ ∈ Si+1 and s ∈ Si. The Greedy at Each Step Algorithm takes at each time
step i the minimal number of states such that the sum of their probabilities is at
least 1− ρ. It is formalized in Section 3.3.10 as algorithm 16.

Lemma 3.64. For any ρ ∈ (0, 1), if the MDP is layered, Greedy at Each Step

Algorithm returns a set that is (ρH, k∗)− SafeZone.

In Lemma 3.73 we have a lower bound on the escape probability, which asymptotically
matches.

Weaknesses of the naive algorithms. We showed algorithms that identify
SafeZone with either escape probability much greater than ρ or with size much
greater than k∗. This holds even when providing extra information (such as the
transition function and/or the optimal size of the ρ−safe set, i.e., k∗). Moreover, we
showed tight lower bounds for these algorithms.
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3.3.4 Algorithm for Detecting SafeZones

In this section we suggest a new algorithm that builds upon and improves the added
trajectory selection of the Simulation Algorithm. One reason for why Simulation

returns a large set is that it treats every sampled trajectory identically, regardless of
how many states are being added.

More precisely, fix any (ρ, k∗)−SafeZone set, F ∗, and consider a trajectory τ that
escapes it, i.e., τ ̸⊆ F ∗. If τ was sampled, its states are added to the constructed set
F , which might increase the size of F by up to H states that are not in F ∗, without
significantly improving the safety.

In contrast, when selecting which trajectory to add to F , we would consider the
number of states it adds to the current set. For the sake of readability, we refer to any
state which is not in the current set F as new, and denote by newF (τ) the number of
new states in τ w.r.t. F , i.e.,

newF (τ) := |τ \ F |.

Note that for every F ⊆ S, we have that Prτ [newF (τ) ̸= 0] = ∆(F ).

The new algorithm does not sample each trajectory uniformly at random, but sample
from a new distribution, which will be denoted by QF . While favoring trajectories
with higher probabilities, which we already get by the sampling process, another key
idea would guide this new distribution: To prefer trajectories that gradually increase
the size of F . To implement this idea, we will ensure that the probability of adding a
trajectory τ to F should be inversely proportional to newF (τ).

Formally, the support ofQF is the trajectories with new states, i.e., X = {τ |newF (τ) ̸=
0}. For every τ ∈ X, QF (τ) ∝ Pr[τ ]

newF (τ) , where Pr[τ ] is the probability of trajectory τ
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under the Markov Chain with dynamics P . Note that the new distribution depends
on the current set F , and changes as we modify it. Intuitively, adding trajectories to
F according to QF instead of adding trajectories sampled directly from the dynamics
(as we do in Simulation) would increase the expected ratio between the added safety
and the number of new states we add to F , thus improving the set size guarantee of
the output set. We elaborate on this in section 3.3.4.

Our main algorithm is Finding SafeZone, Algorithm 12. The algorithm receives,
in addition to the safety parameter ρ, parameters ϵ, λ ∈ (0, 1), and maintains a set F
that is initiated to {s0}. On a high level, to implement the idea of adding trajectories
to F according to QF , we use rejection sampling. Namely, in each iteration of the
while–loop we first sample a trajectory τ and if newF (τ) ̸= 0, we accept it with
probability 1/newF (τ). If the trajectory is accepted, it is added to F . More precisely,
if newF (τ) ̸= 0, we sample a Bernoulli random variable, accept ∼ Br(1/newF (τ)). If
accept = 1, we add τ to F . This process of adding trajectories to F generates the
desired distribution, QF .

Whenever a trajectory is added to F , we estimate the escape probability ∆(F ) (w.r.t.
the updated set, F ). The algorithm stops adding states to F and returns it as output
when it becomes “safe enough”. To be precise, let ∆̂(F ) denote the result of the escape
probability estimation (by sampling trajectories as suggested in Proposition 3.59). If
∆̂(F ) ≤ 2ρ+ ϵ , it means that F is (2ρ+ 2ϵ)−safe with probability ≥ 1− λj > 1− λ,
in which case the algorithm terminates and returns F as output. To implement the
estimation ∆̂(F ), the algorithm calls EstSafety Subroutine. The subroutine samples
Nj = Θ( 1

ϵ2
ln 2

λj
) trajectories, and returns the fraction of trajectories that escaped

F .

For cases in which the transition function P is known to the learner, we provide an
alternative implementation for EstSafety which computes the exact probability ∆(F )
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(see section 3.3.8).

Algorithm Analysis

We define the event
E = {∀i |∆̂(Fi−1)−∆(Fi−1)| ≤ ϵ},

which states that all our EstSafety Subroutine estimations are accurate. We show that
E holds with high probability using Hoeffding’s inequality. In most of the analysis we
condition on E to hold.

The following theorem is the central component in the proof of the main theorem
that follows it.

Theorem 3.65. Given ρ, ϵ, λ ∈ (0, 1), Finding SafeZone Algorithm returns a
subset F ⊆ S such that:

1. The escape probability is bounded from above by ∆(F ) ≤ 2ρ+ 2ϵ, with probability
1− λ.

2. The expected size of F given E is bounded by E[|F | | E ] ≤ 2k∗.
3. The sample complexity of the algorithm is bounded by O

(
k∗

λϵ2
ln k∗

λ
+ Hk∗

ρλ

)
, and

the running time is bounded by O
(
Hk∗

λϵ2
ln k∗

λ
+ H2k∗

ρλ

)
, with probability 1− λ.

To obtain the main theorem, we run Finding SafeZone Algorithm several times
and return the smallest output set, F , see the next section for more details.

Theorem 3.66. (main theorem) Given ϵ, ρ, δ > 0, if we run Finding SafeZone

for Θ(1
δ
) times and return the smallest output set, F ⊆ S, then with probability ≥ 0.99

1. The escape probability is bounded by ∆(F ) ≤ 2ρ+ 2ϵ.
2. The size of F is bounded from above by |F | ≤ (2 + δ)k∗.

3. The total sample complexity and running time are bounded by O( k∗

δ2ϵ2
ln k∗

δ
+ Hk∗

ρδ2 ),
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and O(Hk∗

δ2ϵ2
ln k∗

δ
+ H2k∗

ρδ2 ), respectively.

Algorithm 12 Finding SafeZone
Input: ρ ∈ (0, 1)

Parameters: ϵ, λ ∈ (0, 1)

F ← {s0}, j ← 1, ∆̂(F )← 1

while ∆̂(F ) > 2ρ + ϵ do

τ ← sample a random trajectory

Compute newF (τ)

if newF (τ) ̸= 0 then

sample accept ∼ Br(1/newF (τ))

if accept = 1 then

F ← F ∪ τ

λj ← 3λ
2(jπ)2 , j ← j + 1

∆̂(F )← EstSafety(ϵ, λj , F )

end if

end if

end while

return F

Algorithm 13 EstSafety Subroutine
Input: subset F

Parameters: ϵ, λj ∈ (0, 1)

∆̂(F )← 0

T ← sample Nj = 1
2ϵ2 ln 2

λj
trajectories

for τ ∈ T do

if τ ̸⊆ F then

∆̂(F )← ∆̂(F ) + 1
Nj

end if

end for

return ∆̂(F )

Proof Technique

Escape probability set size bounds. To ease the presentation of the proof, we
assume that ∆̂(F ) = ∆(F ). This case is interesting by its own, since if the policy
and transition function are known, we can compute ∆(F ) efficiently using dynamic
programming (see section 3.3.8). As a result, event E always holds. In addition, it is
clear that the termination of the algorithm implies that ∆̂(F ) = ∆(F ) ≤ 2ρ, thus F
is (2ρ+ 2ϵ)−safe. The main challenge is bounding the size of F .
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A few notations before we start. Let F ∗ denote a minimal ρ−safe set (of size k∗).
Consider iteration i inside the while–loop. The random variable Gi is the number of
states in F ∗ that are added to F in iteration i and Bi is the number of states added
to F in iteration i that are not in F ∗ (G stands for good and B for bad). Notice that
both Gi and Bi depend on the current set F . Notice that the size of the output set
is exactly ∑iBi +Gi and that ∑iGi ≤ k∗.

The main idea of the proof technique is to show that by adding trajectories according
to the new distribution QF , we ensure that, in expectation, there are at least as much
good states that are added to F as bad states. Suppose the trajectory τ was chosen
to be added to F ∗ by the algorithm. If τ ⊆ F ∗, then Gi is equal to newF (τ) and
Bi = 0. If τ ̸⊆ F ∗, then Bi ≤ newF (τ). Summarizing these observations, we have the
following bounds

Gi ≥ newF (τ) · I[τ ⊆ F ∗] and Bi ≤ newF (τ) · I[τ ̸⊆ F ∗],

where I[·] is the indicator function.

Moreover, a direct consequence of the probability in which τ is added to F is that for
any set of trajectories T it holds that

Eτ∼QF
[newF (τ) · I[τ ∈ T ]] =

∑
τ∈T

QF (τ)newF (τ)

= 1
Z

∑
τ∈T,newF (τ )̸=0

(
Pr[τ ]

newF (τ)

)
newF (τ) = 1

Z
Pr
τ

[τ ∈ T ∧ newF (τ) ̸= 0],
(3.32)

where Z is the normalization factor of QF .

To bound the size of F , we want to show that the algorithm does not add too many
states outside of F ∗. We therefore bound E[Bi]/E[Gi], where the expectations are
over the trajectory τ that is added to F according to QF . Applying Equation (3.32)
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twice, once with T = {τ | τ ⊆ F ∗} and once with T = {τ | τ ̸⊆ F ∗}, we bound the
ratio between Bi and Gi by

E[Bi]
E[Gi]

≤ Prτ [τ ̸⊆ F ∗ ∧ newF (τ) ̸= 0]
Prτ [τ ⊆ F ∗ ∧ newF (τ) ̸= 0] . (3.33)

We know that Prτ [τ ̸⊆ F ∗] is always smaller than ρ, so the numerator is ≤ ρ. A lower
bound for the denominator is

Pr
τ

[newF (τ) ̸= 0]− Pr
τ

[τ ̸⊆ F ∗]. (3.34)

Whenever the algorithm is inside the main loop, the safety is at least Prτ [newF (τ) ̸=
0] = ∆(F ) > 2ρ. Thus (3.34) is lower bounded by ρ, and overall (3.33) is less or
equal to 1, which implies that

E[Bi] ≤ E[Gi]. (3.35)

This completes the proof because we know that the algorithm does not add too many
states outside of F ∗. More precisely,

E[|F |] = E
[∑

i

Bi +Gi

]
≤ E

[
2
∑
i

Gi

]
≤ 2k∗.

Sample complexity. To discuss the sample complexity, we drop the assumption
that the MC is known to a learner, and uses EstSafety Subroutine to approximate
∆(F ). The number of calls to EstSafety is bounded by the size of the output set,
F . Hence, this part of the sample complexity is bounded by |F | · N|F | and we
show that is O(k∗

ϵ2
log k∗). Another source of sampling is trajectories sampled for

purposes of potentially adding them to F . Observe that at any iteration the set F
has escape probability of at least 2ρ, and each trajectory that escapes F is accepted
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with probability at least 1/H. This implies a lower bound for the probability that a
random trajectory is accepted is 2ρ/H. This gives an upper bound of 2|F |ρ

H
for the

expected sample complexity.

Amplification. theorem 3.65 shows that if E holds, then the set size, |F |, is bounded
in expectation by 2k∗. As Pr[E ] ≥ 1− λ implies, from Markov’s inequality, that the
size (2 + δ)k∗ with small probability of about δ + λ = O(δ). If we want to make sure
that the actual size is at most (2 + δ)k∗ with high probability, we can repeat the
process about Θ

(
1
δ

)
times and take the smallest size set.

For full proofs we refer to section 3.3.11.

3.3.5 Hardness

In this section we show that SafeZone is NP-hard to solve, and this is why approx-
imation is necessarily. Moreover, SafeZone is hard even if the MC and optimal
ρ−safe size, k∗ is known. Our starting point is the NP-hardness of regular cliques.
The RegularClique(G, kc) problem gets as an input (i) a regular graph G with
n nodes where each node has degree d, and (ii) an integer kc. It returns whether G
contains a clique of size kc. Whenever G and kc are clear from the context we simply
write RegularClique. The following fact follows, e.g., from [23].

Fact 3.67. RegularClique is NP-hard.

Markov chain (random walk). Fix a graph G = (V,E) and a starting vertex
v0 ∈ V . The graph induces a Markov Chain (random walk) in the following way. The
states of the process correspond to the vertices V in the graph G. The transition
function is defined as P (v|u) = 1

d
·⊮[(u, v) ∈ E], where d is the degree any node. The

process starts from node v0 and then proceeds according to the transition function P
for H steps.
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Reduction. To prove the hardness of SafeZone , we show how to solve Regu-

larClique given a solver to SafeZone. For each vertex v ∈ V , run an algorithm
for SafeZone with horizon H = 2, k = kc, and ρ = 1 −

(
kc−1
d

)2
, and v as the

starting state. If there is at least one run of the algorithm that returns YES, then
the final answer is YES. Otherwise, the answer is NO. Note that this reduction is
efficient.

Theorem 3.68. For every graph G = (V,E) and an integer kc there exists a clique
of size kc in G ⇐⇒ SafeZone(M(G), kc, ρ) answers YES.

Given an environment, a policy and SafeZone , one could compute exactly how much
safe it is (see section 3.3.8 for details), from which we deduce our next corollary.

Corollary 3.69. SafeZone is NP-complete.

Note that for H = 1, the Greedy at Each Step Algorithm is optimal.

3.3.6 Empirical Demonstration

Each of the naive approaches in Section 3.3.3, has a specific instance that the naive
approach is guaranteed (w.h.p.) to return a solution which is far from optimal, as
we show in section 3.3.10. The purpose of this section is to demonstrate, using a
simple standard setup that, Finding SafeZone outperforms the both Greedy

by Threshold and Simulation (in accordance with our theory) 9. Additional
figures and a visual comparison of two policies’ different SafeZones can be found in
section 3.3.7.

The MDP. We focus on a simple N ×N grid problem, for some parameter N . The
agent starts off at mid-left state, (0, ⌊N2 ⌋) and wishes to reach the (absorbing) goal
state at (N − 1, ⌊N2 ⌋) with minimal number of steps. At each step it can take one

9As the MDP in this setup is not layered, we do not test Greedy by Each Step algorithm.
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Figure 3.2: Empirical results regarding Coverage (safety) differences between the algorithms
Finding SafeZones (safe-zone) and Simulation and Greedy by Threshold. The
coverage of Greedy by Threshold for k ≤ 100 is negligible (not more than 1%). For
k = 150, 200, 250, 300, Greedy by Threshold obtains 30%, 63%, 83%, 94% coverage,
respectively, and for k = 350 all algorithms obtain 100% coverage.

of four actions: {‘up’, ‘down’, ‘right’, ‘left’} by 1 grid square. With probability 0.9,
the intended action is performed and with probability 0.1 there is a drift down. The
agent stops either way after H = 300 steps.

Finding SafeZone vs. naive approaches

To compare the Finding SafeZone Algorithm to the naive approaches, we focus
on the policy that first goes to the right and when it reaches the rightmost column,
it goes up (see Figure 3.4(a) and Figure 3.3(c) in section 3.3.7 for depictions of the

186



number of total visits at each state using the described policy, respectively). We take
N = 30 and 2000 episodes (i.e., the coverage (safety) of each algorithm is estimated
for 2000 random trajectories). 10 fig. 3.2 depicts the trajectories coverage of each
algorithm minus the coverage of the Greedy by Threshold algorithm. A figure
with the absolute values can be found in section 3.3.7 (fig. 3.3(b)). We see that the
new algorithm exhibits better performance compared to its competitors. Moreover,
taking less than 30% of the states (k = 250 out of 900 states) is enough to get a
coverage of more 80% the trajectories. In section 3.3.7, we show a second policy
which is slightly less optimal than this one in terms of the expected number of steps
to reach to the goal state. The two policies have a very different SafeZones and we
can clearly see that the second policy requires less states to achieve the same level of
safety.

3.3.7 Extension: Additional Figures (Section 3.3.6)

(a) %Coverage: difference from Greedy by
Threshold Algorithm.

(b) %Coverage: absolute values.
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(c) Total number of visits at each
state from 2000 episodes. Zero visits
in grey.

(d) In blue: set chosen by
Greedy by Threshold Algo-
rithm.

(e) In blue: set chosen by Safe-
Zone Algorithm.

Figure 3.3: Empirical results regarding Coverage of the different algorithms, Finding
SafeZones and state visit frequency.

Solution illustrations

Figures 3.3(d),3.3(e) show the sets found for k = 60 both by the Finding SafeZone

Algorithm and Greedy by Threshold. We see that Greedy by Threshold

choose an unconnected set for this small k, leading to a coverage (safety) of 0. While
the new algorithm, choose a few states which consists of a several trajectories, thus
leading to a coverage (safety) larger than 0.

Comparing SafeZone of two policies

In this section we empirically explore the SafeZone of two different policies within
the same MDP. The first policy, described in the previous section, first goes right and
then to the middle, and the second policy first goes to the middle and then goes right.
See fig. 3.4. These seemingly similar policies induce very different SafeZones as can
be seen in fig. 3.6 that depict the number of visits in each state. We clearly see that

10To illustrate the algorithm’s performance, we have changed the stopping condition in their implemen-
tations from the desired safety level to desired set size, deciding randomly between different states of the
trajectory in case the set side exceeds k. For Greedy By Threshold, we gradually decrease the threshold
β until the set contains the desired amount of states.
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the second policy requires less states to achieve the same level of safety, even though
in terms of minimizing the number of steps to get to the goal state it is outperformed
by the first policy (intuitively, the second policy have more fail attempts to go up in
expectation since the lowest row of the grid cannot get worst). In Figure 3.5 we see
that already with 14% of the states, all three algorithms achieve trajectory coverage
of more than 85%.

fig. 3.6 shows the visits of the policies described in the main section for N = 30. It is
immediately clear that the SafeZone of the two policies are fundamentally different.
As mentioned, this affects their SafeZone sizes. Namely, when trying to go right
from a current state in the lowest row it is impossible to get to square which is lower
than that, and the first policy takes advantage of this. In contrast, the second policy
keeps trying to go up from lowest row, which implies that in expectation it goes down
more times compared to the first.

fig. 3.4 depicts the two policies discussed in the section when N = 7.

fig. 3.5 depicts coverage percentage for the different algorithms discussed in the section
when applied to the second policy.

Similarly to Figures 3.3(d) and 3.3(e), we provide for completeness, the same figures
for the policy “Go to the middle and then right”. Namely, Figures 3.7(a),3.7(b)
show the sets found for k = 60 both by the Finding SafeZone and Greedy by

Threshold algorithms w.r.t. this policy.
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(a) Go right and then to the goal state.

(b) Go to the middle and then right.

Figure 3.4: Two policies for the same MDP with N = 7. Starting state, s0, in blue, goal
state in red.
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Figure 3.5: SafeZone coverage for the second policy.
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(a) Number of visits at each state for policy “Go right and
then to the middle”

(b) Number of visits at each state for policy “Go to the
middle and then right”

Figure 3.6: Total number of visits for the two policies.
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(a) In blue: set chosen by Greedy at Each Step Algorithm
on the policy “Go to the middle and then right”

(b) Number of visits at each state for policy “Go to the
middle and then right”

Figure 3.7: Empirical results regarding Coverage of the different algorithms, Finding
SafeZones and state visit frequency.
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3.3.8 Extension: Exact Computation

In this section we assume that the transition function is known to the algorithm and
show how to compute ∆(F ).

Given a Markov Chain ⟨S, P, s0⟩ and a set F ⊆ S we create a new Markov Chain
⟨S ′, P ′, s0⟩ as follows. We add a new state ssink ̸∈ S, and set S ′ = F ∪ {ssink}. Each
transition from a state s ∈ F to a state s′ ̸∈ F we modify and make the transition in
P ′ to the sink ssink. In P ′, when we are in ssink we always stay in ssink. More formally:
(1) if s, s′ ∈ F then P ′(s′|s) = P (s′|s), (2) we set P ′(ssink|s) = ∑

s′ ̸∈F P (s′|s) and (3)
P ′(ssink|ssink) = 1 and P ′(s|ssink) = 0 for s ̸= ssink.

Now we claim that ∆(F ) = PrP ′ [sH = ssink], since any trajectory that reaches a state
not in F will reach the sink in P ′ and stay there. We can compute PrP ′ [sH = ssink]
using standard dynamics programming.

The running time of constructing ⟨S ′, P ′, s0⟩ is O(|S|2). Computing the probability of
PrP ′ [sH = ssink] takes O(H|S|2). Therefore we have established the following.

Lemma 3.70. Given a Markov chain ⟨S, P, s0⟩ and a set F ⊆ S we can compute
∆(F ) in time O(|S|2H).

Note that the above lemma implements an exact version of the EstSafety Subrou-
tine.

3.3.9 Extension: The relation to MC with Traps

Consider a MC with countable state space and fixed absorbing probability p(s)
for each state s, where the absorbing states are either sampled at the beginning
(Quenched problem), or after each step (Annealed problem). In both versions, the
goal of MC with traps ([46]) is to decide whether or not the reaching probability at a
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(stochastic) trapping state is 1, when starting from a specific state, x.

The main challenge of MC with traps is to handle a (possibly infinite) countable state
space and an infinite horizon. In contrasts, SafeZone is defined over a finite state
space and a finite horizon. Handling the SafeZone via trapping states problem is
pointless, as it is most likely to return a negative answer for finite setting.

Given a MC, a trivial exponential time algorithm to find its SafeZone is to enumerate
over all possible subsets of states, and compute their safety (as done in lemma 3.70).
In general, the main challenges of the SafeZone problem are computational and
sample complexity minimization (we address both).

We highlight some additional differences between the two problems:

1. The trapping states problem mainly addresses infinite-sized input, and the goal
is to decide whether some absorbing state is eventually reached, or not. In
contrast, in the SafeZone problem, we consider the algorithmic problem of
computing a subset of states from which the escape probability within the H
steps is small using trajectory samples alone. As a result, we do not see how
one of these problems could help solve the other.

2. Even if there are no absorbing states within the MC (thus the trapping proba-
bility is 0), the SafeZone problem is still challenging (in particular, the hardness
result still stands).

3. The safety of a subset of states depends on the subset itself, which is selected
by the algorithm. In contrast, trapping states are sampled from a known
distribution and induce a probability over reaching some absorbing state.

4. Our main challenge is to efficiently find a “good” subset of states. Given a
finite-horizon MC and a subset of states, Lemma E.1 computes the escape
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probability from the subset. Computing this probability is not a significant
challenge, unlike in the case of trapping states.

5. Finally, unlike the SafeZone problem, in trapping states problems, access to the
MC model is assumed.

3.3.10 Proofs for Gentle Start (Section 3.3.3)

Greedy by Threshold Algorithm

A naive approach to the SafeZone problem is to return all states s ∈ S with
probability p(s) ≥ β, for some parameter β > 0, see Algorithm 14.

Algorithm 14 Greedy by Threshold
Parameter: β > 0, {p(s)}s∈S
return {s ∈ S : p(s) ≥ β}

Lemma 3.62. For any ρ, β ∈ (0, 1), the Greedy by Threshold Algorithm

returns a set that is (ρ+ k∗β, H
β

)− SafeZone. In particular, for β = ρ
k∗ , this set is(

2ρ, k∗H
ρ

)
− SafeZone.

Proof. There are at most H
β

states with probability p(s) ≥ β. Thus |F | ≤ H
β
.

Denote by F ∗ the optimal (ρ, k∗)− SafeZone set. By law of total probability,

Pr
τ

[τ ̸⊆ F ] ≤ Pr
τ

[τ ̸⊆ F ∗] + Pr
τ

[τ ⊆ F ∗ \ F ].

Looking at the R.H.S of the inequality, the left term is smaller than ρ by the definition
of SafeZone. The right term is equal to the probability to reach a state in F ∗ that
its probability is smaller than β, i.e., a state in F ∗ \ F.

Using union bound, this can be bounded by k∗β.

196



Lemma 3.71. For every ρ ∈ (0, 1/2), H ∈ N, there exists an MDP and a minimal
integer k such that the MDP has a (ρ, k)−SafeZone , but for β = ρ/k Greedy

by Threshold Algorithm returns F with escape probability ≤ 2ρ and of size |F | =
Ω(H/β).

Proof. Fix ρ ∈ (0, 1). For ease of the presentation we will assume that 1−ρ
β

is an
integer (if not, it should be rounded to the nearest integer). Define A to contain
1−ρ
β
·H states, B to contain k−1 states, and S = {s0}∪A∪B. Consider the following

MDP with states S and starting state s0. The transition function is defined as follows:

• For every i ∈ A, Pr[sA1,i|s0] = β and for every j ∈ [H − 1], Pr[sAj+1,i|sAj,i] = 1.

• For s ∈ B, Pr[s|s0] = 1−ρ
k−1

• For s ∈ B, Pr[s|s] = 1

The MDP is illustrated in fig. 3.8. Clearly, {s0} ∪ B is a (ρ, k)−SafeZone . In
addition, Greedy by Threshold Algorithm returns the set of all states, as for
every state s ∈ A we have that p(s) = β, p(s0) = 1 > ρ ≥ β, and for every s ∈ B we
have that p(s) = 1−ρ

k−1 >
ρ
k

= β. Thus the size of the returned set is S, which is of size
Ω(H/β), which completes the proof.

Simulation Algorithm

Algorithm 15 Simulation Algorithm
Input: m = 1

β ln k∗

0.005
F ← {s0}
for i = 1 . . . m do

τ ← choose a random trajectory
F ← F ∪ τ

end for
return F
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Figure 3.8: Lower bound for Greedy By Threshold Algorithm.

Lemma 3.63. Fix ρ, β ∈ (0, 1). With probability at least 0.99, Simulation Algorithm
returns a set that is

(
ρ+ k∗β,O(k∗ + ρH ln k∗

β
)
)
−SafeZone. In particular, for β = ρ

k∗ ,
this set is (2ρ,O(k∗H ln k∗))− SafeZone.

Proof. Denote by F ∗ the optimal (ρ, k∗) − SafeZone set. By the law of total
expectation, we can split E[|F |] into two parts, depending on whether trajectories
are entirely in F ∗ or not:

• Trajectories that are entirely in F ∗ contribute at most k∗ states to F .

• A trajectory that is not contained in F ∗ contributes at most H states to F .

Thus,
E[|F |] ≤ k∗ + ρ ·

(
1
β

ln k∗

0.005

)
·H = O

(
k∗ + ρH ln k∗

β

)
.

We use Markov’s inequality to get the desired bound on |F |.

For the safety, we first denote the set of all states in F ∗ with probability at least β as
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Γ = {s ∈ F ∗ | p(s) ≥ β} . We will show that with probability at least 0.9995, it holds
that Γ ⊆ F, which will prove our claim, similarly to Lemma 3.62.

For a fixed state s ∈ Γ, the probability that s /∈ F is bounded by (1− p(s))
1
β

ln k∗
0.005 ≤

e− β
β

·ln k∗
0.005 = 0.005

k∗ . Using union bound, the probability that there is a state s ∈ Γ
which is not in F is bounded by k∗ · 0.005

k∗ = 0.005.

In other words, with probability at least 0.995, Γ ⊆ F , thus implementing the greedy
approach in Algorithm 14 and proving that the probability that a random trajectory
escapes F is bounded by ρ+ k∗β.

Lemma 3.72. For every ρ, γ ∈ (0, 1), H, k ∈ N, and β = ρ
k
, there is an integer

r ∈ N and MDP with (ρ, k)−SafeZone, but with probability ≥ 1− γ, Simulation

algorithm returns F of size E[|F |] ≥ kH ln k with escape probability ∆(F ) = O(ρ).

Proof. Fix ρ, γ ∈ (0, 1). Recall that m = 1
β

ln k∗

0.005 and take r = ⌈m2

γ
⌉. Define A to

contain rH states, B to contain k − 1 states, and S = {s0} ∪ A ∪B.

Consider the following MDP with states S and starting state s0. The transition
function is defined as follows:

• For every i ∈ A, Pr[sA1,i|s0] = ρ
r

and for every j ∈ [H − 1], Pr[sAj+1,i|sAj,i] = 1.

• For s ∈ B, Pr[s|s0] = 1−ρ
k−1

• For s ∈ B, Pr[s|s] = 1

The MDP is illustrated in Figure 3.9.

The set B ∪ {s0} is ρ−safe with k states.

We will show that:
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Figure 3.9: Lower bound for Simulation Algorithm.

• After adding ≥ 1
β

ln k = k
ρ

ln k random trajectories, with probability ≥ 1− γ we
have that |F | ≥ kH ln k.

• After adding m random trajectories, we have that with high probability F ∗ ⊆ F ,
thus ∆(F ) ≤ Ω(ρ).

To prove the first property, we claim that with probability≥ 1 − γ, every time we
add a trajectory τ such that τ ∩ A ̸= ∅, we add H new states.

Notice that if we ignore s0, trajectories in A are entirely unconnected, and each
trajectory is chosen randomly with probability Pr[sA1,i|s0] = ρ

r
. This yields that if

sA1,i /∈ F , then sAj,i /∈ F for every j ∈ [H]. As a result, every time we add a new sA1,i to
F , we add H− 1 more states to F . Let N denotes the amount of trajectories sampled
with states from A. The probability that their intersection contains only s0 is

r · (r − 1) · . . . · (r −N)
rN

≥
(
r −N
r

)N
=
(

1− N

r

)N
≥ 1− N2

r
= 1− γ.

From the structure of the MDP, we have that E[N ] = ρm. Therefore, with probability
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≥ 1− γ,
E[|F |] ≥ E[N ] ·H = ρ ·m ·H ≥ ρ · 1

β
ln k ·H = kH ln k.

The second property follows from Lemma 3.63.

Greedy at Each Step

Algorithm 16 Greedy at Each Step
Input: ρ > 0, {p(s)}s∈S
F ← {s0}
for i = 1 . . . H do

Sort states in Si, p(s1
i ) ≥ . . . ≥ p(s|Si|

i )
j∗ ← argminj∈[|Si|]

∑j
r=1 p(sri ) ≥ 1− ρ

F ← F ∪
{

s1
i , . . . sj

∗

i

}
end for
return F

Lemma 3.64. For any ρ ∈ (0, 1), if the MDP is layered, Greedy at Each Step

Algorithm returns a set that is (ρH, k∗)− SafeZone.

Proof. Take a random trajectory τ = (s1, s2, . . . ). For every si ∈ τ , the probability
that si /∈ F is bounded by ρ, thus using union bound, the probability that τ has state
si such that si /∈ F is at most ρH.

The construction of F guarantees that F is the minimal subset of states such that
for every i, the probability that si is in the subset is at least 1 − ρ. Assume by
contradiction that |F | > k∗. Then there is a time step i such that Pr[si ∈ F ∗] < 1−ρ,
which is a contradiction, since Pr[τ ∈ F ∗] ≤ mini Pr[si ∈ F ∗].
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Lemma 3.73. For any ρ ∈ (0, 1), there is an MDP and an integer k such that there
is a (ρ, k)−SafeZone , but Greedy At Each Step Algorithm returns F with
escape probability ∆(F ) ≥ Ω(Hρ).

Proof. Fix ρ ∈ (0, 1) and take k = 3H + 1.

Consider the MDP illustrated in Figure 3.10. The set {s0} ∪ {si1}i ∪ {si2}i ∪ {si3}i
form a (ρ, 3H + 1)−SafeZone .

Figure 3.10: Lower bound for Greedy at Each Step Algorithm.

We will prove by induction that the for every time i,

• p(si1) = 1− 2ρ,

• p(si2) = p(si3) = p(si4) = ρ
2 , and

• For every j ∈ {5, . . . , k + 4}, p(sij) = ρ
2k .

It is easy to see that the two properties hold for i = 1.

202



For i > 1,

p(si1) = p(si−1
1 )(1− ρ) + p(si−1

2 )ρ2 + p(si−1
3 )ρ2 = (1− 2ρ)(1− ρ) + 2(1− 2ρ)ρ2 = 1− 2ρ

p(si2) = pi−1(si−1
1 )ρ2 + p(si−1

2 )ρ+ p(si−1
3 )ρ = (1− 2ρ)ρ2 + ρ2

2 + ρ2

2 = ρ

2

Similarly, p(si3) = ρ
2 .

p(si4) = 1
2p(s

i−1
4 ) +

k+4∑
j=5

p(si−1
j )
2 = ρ

4 + k
ρ

4k = ρ

2

For every j ∈ {5, . . . , k + 4},

p(sij) = 1
2kp(s

i−1
4 ) +

k+4∑
m=5

p(si−1
m )

2k = ρ

4k + k
ρ

4k2 = ρ

2k .

The algorithm might return {s0}∪{si1}i∪{si2}i∪{si4}i, i.e., instead of taking ∪i{si3}i it
takes ∪i{si4}i. Finally, the observation ∆({s0}∪{si1}i∪{si2}i∪{si4}i) ≥ ρH

4 completes
the proof.

3.3.11 Algorithm for Detecting SafeZones: Full Analysis (Section 3.3.4)

For convince, we state here Hoeffding’s inequality.

Lemma 3.74. [Hoeffding’s Inequality] Let y1, . . . , yN be independent random variables
such that yi ∈ [a, b] for every yi with probability 1. Then, for any ϵ > 0,

Pr
[∣∣∣∣∣ 1
N

N∑
i=1

yi − E[yi]
∣∣∣∣∣ ≥ ϵ

]
≤ 2e−2Nϵ2/(b−a)2

.
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Proof of theorem 3.65

In this section we provide a complete proof for theorem 3.65. Throughout the section,
we define a few terms and notions. We will start with proving guarantees regarding a
single iteration of the while–loop.

Recall that F ∗ denotes a minimal ρ−safe set (of size k∗). If there are multiple optimal
solutions, choose one arbitrarily. For the convince of analysis, we denote the values of
the algorithm variables at the end of each iteration i of the while–loop by τi, Fi, accepti.
Let j(i) denote the value of variable j during the i−th call to EstSafety Subroutine.
In addition, let Ni denote the number of trajectories sampled for the j−th time of
calling Subroutine EstSafety, i.e., Ni = 1

2ϵ2 ln 2
λj(i)

for j(i) ≤ i.

For ease of presentation, we recall some of the definitions from the proof technique
description. We say that a trajectory τ is good if all the states in τ are in F ∗ and bad
if it escapes it. I.e., a trajectory is good if τ ⊆ F ∗ and bad if τ ̸⊆ F ∗. Additionally,
we say that a state s ∈ S is good if it is in F ∗ and bad otherwise. Namely, a state
s is good if s ∈ F ∗ and bad if s /∈ F ∗. Let Gi(Fi−1) and Bi(Fi−1) be the number of
good and bad states added to Fi−1 in iteration i, respectively (notice that Gi(Fi−1)
and Bi(Fi−1) are random variables that depends on Fi−1). For short, whenever it is
clear from the context, we write Gi and Bi respectively.

The following lemma bounds the error in approximating the escape probability.

Lemma 3.75. Let Fi−1 ⊆ S be a subset of of states and ϵ, λj > 0 be some parameters.
Let Si be a sample of Ni ≥ 1

2ϵ2 ln 2
λj(i)

i.i.d. random trajectories. Then,

Pr
Si

[∣∣∣∆̂(Fi−1)−∆(Fi−1)
∣∣∣ ≥ ϵ

]
≤ λj.
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Also, as λj = 3λ
2(πj)2 ,

Pr
[
∃i

∣∣∣∆̂(Fi−1)−∆(Fi−1)
∣∣∣ ≥ ϵ

]
≤ λ/4,

Where the last probability is over all the samples Si made by EstSafety Subroutine.

Proof. The first part follows directly from Hoeffding’s inequality by taking yi = I[τ ̸⊆
F ].

Assigning λj = 3λ
2(πj)2 and applying union bound, we get

Pr
[
∃i

∣∣∣∆̂(Fi−1)−∆(Fi−1)
∣∣∣ ≥ ϵ

]
≤
∑
i

Pr
Si

[∣∣∣∆̂(Fi−1)−∆(Fi−1)
∣∣∣ ≥ ϵ

]
≤(∗)

∑
j(i)

λj(i) ≤
∞∑
j=1

λj =
∞∑
j=1

3λ
2(πj)2 = λ

4 .

The inequality marked by (∗) follows from the fact that ∆(F ) is estimated once for
every time j increases.

We define the event that EstSafety always provides good estimations by

E = {∀i
∣∣∣∆̂(Fi−1)−∆(Fi−1)

∣∣∣ ≤ ϵ}.

By the above we have that Pr[E ] ≥ 1− λ/4.

In the following lemma we assume that if the current escape probability is at least
2ρ, then the fraction of bad trajectories that escape Fi−1 is bounded from above by
the fraction of good trajectories that escape Fi−1.

Lemma 3.76. Let ρ > 0 and assume that ∆(Fi−1) ≥ 2ρ. Then,

Pr
τ

[newFi−1(τ) ̸= 0 ∧ τ ̸⊆ F ∗] ≤ Pr
τ

[newFi−1(τ) ̸= 0 ∧ τ ⊆ F ∗],
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where the probabilities are over random trajectories.

Proof. To prove the lemma, we will bound the probability Prτ [newFi−1(τ) ̸= 0 ∧ τ ̸⊆
F ∗] from above and the probability Prτ [newFi−1(τ) ̸= 0 ∧ τ ⊆ F ∗] from below. Since
∆(F ∗) ≤ ρ,

Pr
τ

[newFi−1(τ) ̸= 0 ∧ τ ̸⊆ F ∗] ≤ Pr
τ

[τ ̸⊆ F ∗] ≤ ρ. (3.36)

The assumption ∆(Fi−1) ≥ 2ρ implies that

2ρ ≤ ∆(Fi−1) = Pr
τ

[newFi−1(τ) ̸= 0] = Pr
τ

[newFi−1(τ) ̸= 0 ∧ τ ⊆ F ∗] + Pr
τ

[newFi−1(τ) ̸= 0 ∧ τ ̸⊆ F ∗]

≤ Pr
τ

[newFi−1(τ) ̸= 0 ∧ τ ⊆ F ∗] + Pr
τ

[τ ̸⊆ F ∗] ≤ Pr
τ

[newFi−1(τ) ̸= 0 ∧ τ ⊆ F ∗] + ρ,

hence
ρ ≤ Pr

τ
[newFi−1(τ) ̸= 0 ∧ τ ⊆ F ∗]. (3.37)

Putting (3.36) and (3.37) together yields the statement.

Now, as long as the algorithm is inside the while–loop (i.e., the escape probability holds
∆̂(F ) > 2ρ+ ϵ), it follows that ∆(F ) ≥ 2ρ with high probability from lemma 3.75.
Combining it with lemma 3.76 would yield that with high probability over a random
trajectory, if the trajectory escapes F then in expectation it is at least as likely to be
good as it is to be bad.

We move on to show the main ingredient of the proof, namely that for any iteration,
with high probability, the expected number of good states added to the current set F
is larger or equal to the expected number of bad states.

For every iteration i in which we sample τi both Gi and Bi depends on the follow-
ing:
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1. The realizations of the sampled trajectory, τi, and in particular on newFi−1(τi).

2. The probability of adding it to F , i.e., 1/newFi−1(τi).

Next, we prove (3.35).

Lemma 3.77. Assume event E holds. Thus, for all iterations i inside the while–loop
we have

E[Bi|Fi−1] ≤ E[Gi|Fi−1],

where the expectation is over the trajectory τ that is sampled from the MC dynamics
and added to Fi−1 according to QFi−1.

Proof. Since event E holds, we have that ∆(Fi−1) ≥ 2ρ as long as we do not terminate
in iteration i.

We can use it to bound Eτ [Bi|Fi−1] by

Eτ [Bi|Fi−1] ≤
H∑
h=1

Prτ [newFi−1(τ) = h ∧ τ ̸⊆ F ∗]
h

· h

= Pr
τ

[newFi−1(τ) ̸= 0 ∧ τ ̸⊆ F ∗] ≤︸︷︷︸
lemma 3.76

Pr
τ

[newFi−1(τ) ̸= 0 ∧ τ ⊆ F ∗]

=
H∑
h=1

Prτ [newFi−1(τ) = h ∧ τ ⊆ F ∗]
h

· h ≤ Eτ [Gi|Fi−1].

Theorem 3.65. Given ρ, ϵ, λ ∈ (0, 1), Finding SafeZone Algorithm returns a
subset F ⊆ S such that:

1. The escape probability is bounded from above by ∆(F ) ≤ 2ρ+ 2ϵ, with probability
1− λ.

2. The expected size of F given E is bounded by E[|F | | E ] ≤ 2k∗.
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3. The sample complexity of the algorithm is bounded by O
(
k∗

λϵ2
ln k∗

λ
+ Hk∗

ρλ

)
, and

the running time is bounded by O
(
Hk∗

λϵ2
ln k∗

λ
+ H2k∗

ρλ

)
, with probability 1− λ.

Proof. Assume that the event E holds, and recall that

Pr[E ] ≥ 1− λ/4. (3.38)

We start with the first clause. Since event E holds, lemma 3.75 in particular implies
that ∆(F ) ≤ 2ρ+ 2ϵ, hence the first clause holds.

For second clause, we will bound E[|F | | E ] from above by 2k∗. Since E holds, we
have that ∆(Fi−1) ≥ 2ρ, for every i inside the while–loop, thus Lemma 3.77 yields

E[Bi|Fi−1] ≤ E[Gi|Fi−1].

This implies that

E[|F | | E ] ≤ 2
∑
i

EFi−1 [E[Gi|Fi−1]]|E ] ≤ 2k∗, (3.39)

where the last inequality follows from the definition of Gi, as ∑iGi ≤ |F ∗| = k∗.

We continue with the third clause of the theorem. Let M denote the sample complexity
of the algorithm, namely M = MF +ME where MF is the expected total number of
trajectories sampled within the Finding SafeZone Algorithm (without the samples
made by EstSafety Subroutine) and ME is total number of trajectories sampled using
EstSafety. We will bound each term separately.

Since E holds, whenever we are inside the while–loop, ∆(Fi) ≥ 2ρ, which implies that
it takes at most 1/2ρ trajectories in expectation to sample a trajectory that escapes
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Fi, and such trajectory is accepted with probability at least 1/H. Thus, from Wald’s
identity, it follows that

E [MF | E ] = H

2ρ · E[|F | |E ] ≤ Hk∗

ρ
.

From Markov’s inequality on the above inequality, with probability at least 1− λ
4 ,

Pr
[
MF ≥

4Hk∗

ρλ

∣∣∣E] ≤ λ

4 . (3.40)

Moving on to bound ME. Since E holds, it follows from (3.39) and Markov’s inequality
that

Pr
[
|F | ≥ 8k∗

λ

∣∣∣ E] = Pr
[
|F | ≥ 2k∗ · 4

λ

∣∣∣ E] = Pr
[
|F | ≥ E[|F | | E ] · 4

λ

∣∣∣ E] ≤ λ

4 .

(3.41)

If |F | ≤ 8k∗

λ
, the number of calls for Subroutine EstSafety is also bounded by 8πk∗/λ

(we only call EstSafety after we added states to F ). It also implies that 3λ3

2(8πk∗)2 ≤ λj

for every j ≥ 1. Thus, if |F | ≤ 8k∗

λ
,

ME =
|F |∑
j=1

Ni ≤
8k∗

λ∑
j

1
2ϵ2 ln 2

λj
≤

8k∗
λ∑
j

1
2ϵ2 ln 2

3λ3

2(8πk∗)2

≤
8k∗

λ∑
j

1
2ϵ2 ln 86(πk∗)2

λ3

= 8k∗

2λϵ2 ln 86(πk∗)2

λ3 = 4k∗

λϵ2 ln 86(πk∗)2

λ3

Combining the above with (3.41), we get

Pr
[
ME >

4k∗

λϵ2 ln 86(πk∗)2

λ3

∣∣∣ E] ≤ λ

4 (3.42)

As M = MF + ME, union bound over (3.38), (3.40) and (3.42) implies that with
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probability ≥ 1− 3λ/4 > 1− λ,

M = O

(
k∗

λϵ2 ln k
∗

λ
+ Hk∗

ρλ

)
(3.43)

For each trajectory we sample we run in time O(H), e.g., by using a lookup table for
maintaining the current set F . Consequently, if the event in (3.43) holds then the
running time of the algorithm is bounded by

O

(
Hk∗

λϵ2 ln k
∗

λ
+ H2k∗

ρλ

)
.

Overall, all the clauses in the lemma hold with probability ≥ 1− λ.

Proof of Theorem 3.66

Theorem 3.66. (main theorem) Given ϵ, ρ, δ > 0, if we run Finding SafeZone

for Θ(1
δ
) times and return the smallest output set, F ⊆ S, then with probability ≥ 0.99

1. The escape probability is bounded by ∆(F ) ≤ 2ρ+ 2ϵ.
2. The size of F is bounded from above by |F | ≤ (2 + δ)k∗.

3. The total sample complexity and running time are bounded by O( k∗

δ2ϵ2
ln k∗

δ
+ Hk∗

ρδ2 ),
and O(Hk∗

δ2ϵ2
ln k∗

δ
+ H2k∗

ρδ2 ), respectively.

Proof. Assume we run Finding SafeZone Algorithm for m = 2 ln 300
δ

times and
denote each algorithm output by F i. Return the smallest set F = argminF i |F i|.

It follows from theorem 3.65 that for every λ ∈ (0, 1), each F i is of expected size
E[|F i|] ≤ 2k∗, and is (2ρ + 2ϵ)−safe with probability ≥ 1 − λ. Choosing λ = 0.01

3m
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implies

Pr[∆(F ) > 2ρ+ 2ϵ] ≤ 0.01
3 . (3.44)

In addition, from Markov’s inequality it follows that for every δ > 0,

Pr
[
|F i| > (2 + δ)k∗

]
≤ Pr

[
|F i| > (2 + δ)k∗|E

]
+ Pr[E ]

≤ 2k∗

(2 + δ)k∗ + λ

= 1− δ/2
1 + δ/2 + λ

= 1− δ/2− λ− λδ/2
1 + δ/2

From the independence of the algorithm runs, for m = 2 ln 300
δ

,

Pr[|F | > (2 + δ)k∗] ≤ Pr[∀i : (|F i| > (2 + δ)k∗)]

≤
∏
i∈[m]

Pr[|F i| > (2 + δ)k∗]

≤
(

1− δ/2− λ− λδ/2
1 + δ/2

)m
≤ e−m( δ/2−λ−λδ/2

1+δ/2 ) ≤ 0.01
3 .

Hence

Pr[|F | > (2 + δ)k∗] ≤ 0.01
3 . (3.45)

As for the sample complexity, let Mi denote the (random) sample complexity of the
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i−th run, and let us denote

M̄ = 4k∗

λϵ2 ln 86(πk∗)2

λ3 + 4Hk∗

ρλ
.

From theorem 3.65, Mi > M̄ with probability < λ.

By taking union bound on the sample complexity bound per one run, we get

Pr
[
∃i : Mi > M̄

]
≤

∑
i∈[m]

Pr
[
Mi > M̄

]
≤ m · λ = 0.01

3 .

Where the last inequality follows from theorem 3.65, and λ = 0.01
3m .

Assigning m = 2 ln 300
δ

and λ = 0.01
3m = 0.01δ

6 ln 300 , we get that with probability ≥ 1− 0.01
3 ,

m∑
i=1

Mi = O

(
mk∗

λϵ2 ln k
∗

λ
+ mHk∗

ρλ

)
= O

(
k∗

δ2ϵ2 ln k
∗

δ
+ Hk∗

ρδ2

)
(3.46)

Since the algorithm runs in time O(H) for every trajectory sampled, if the sample
complexity is bounded by the above term, then the total running time is bounded by
O
(
Hk∗

δ2ϵ2
ln Hk∗

δ
+ Hk∗

ρδ2

)
.

Finally, from union bound over (3.44), (3.45) and (3.46) all the theorem properties
hold with probability ≥ 0.99.

3.3.12 Hardness Proofs (Section 3.3.5)

Theorem 3.68. For every graph G = (V,E) and an integer kc there exists a clique
of size kc in G ⇐⇒ SafeZone(M(G), kc, ρ) answers YES.

Proof. (=⇒) If there is a clique of size kc, then we can take the corresponding k

states. The probability to remain in this subset is at least
(
k−1
d

)2
. Thus, an exact

solver for SafeZone must return YES.
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(⇐=) Suppose there is no clique of size k. Assume by contradiction that the reduction
(algorithm) returns YES. Let s0 be a vertex which was the starting state from the
running instance which the YES came from and let F̂ denote the output of SafeZone

. We will show that the probability to remain in any subset of size k is smaller than(
k−1
d

)2
.

Since there is no clique of size k in G, we know that F̂ is not a clique. It therefore
follows that there exists at least two vertexes, sa, sb ∈ V such that (sa, sb) /∈ E.

We will now bound the probability of escape from state s0 by exhaustion.

1. If s0 ̸= sa, then

Pr[escape from s0] ≥ Pr[t = 1 : (s0, s
′), s′ /∈ F̂ ]

+ Pr[t = 1 : (s0, s), s ̸= sa] · Pr[t = 2 : (s, s′), s′ /∈ F̂ |t = 1 : (s0, s), s ̸= sa]

+ Pr[t = 1 : (s0, sa)] · Pr[t = 2 : (sa, s′), s′ /∈ F̂ |t = 1 : (s0, sa)]

= d− (k − 1)
d

+ k − 2
d
· d− (k − 1)

d
+ 1
d
· d− (k − 2)

d

= 1− k − 1
d

+ k − 2
d
− (k − 2)(k − 1)

d2 + 1
d
− k − 2

d2 =

1− k − 2
d2 (k − 1 + 1) = 1− k(k − 2)

d2

Hence
Pr[staying] ≤ k(k − 2)

d2 <
(k − 1)2

d2 .

2. If s0 = sa, then

Pr[escape from s0] ≥ Pr[t = 1 : (s0, s
′), s′ /∈ F̂ ]
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+ Pr[t = 1 : (s0, s), s ∈ F̂ ] · Pr[t = 2 : (s, s′), s′ /∈ F̂ |t = 1 : (s0, s), s ∈ F̂ ]

= d− (k − 2)
d

+ k − 2
d
· d− (k − 1)

d

= 1− k − 2
d

+ k − 2
d
− (k − 2)(k − 1)

d2

= 1− (k − 2)(k − 1)
d2

Hence
Pr[staying] ≤ (k − 2)(k − 1)

d2 <
(k − 1)2

d2 .
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Chapter 4

Societal Challenges

Introduction

When we deal with decision-making that concerns individual people, ensuring societal
requirements in data-driven algorithms such as fairness or safety is a key ingredient in
making ML trustworthy thus making the practice of ML more acceptable. Fairness is
a societal concern that addresses potential discrimination by algorithms of individual
people or subgroup (of population) described by a protected feature - race, gender,
disability, etc. There is a wide variety of fairness definitions and it became a major
research area in ML (see, [13, 80, 99]).

Efficient Candidate Screening under Multiple Tests and Implications for Fairness

In a paper published in FORC 2020 [39], we analyzed how a complex hiring process
interacts with the requirements of fairness. When recruiting job candidates, employers
rarely observe their underlying skill level directly. Instead, they must administer a
series of interviews and/or collate other noisy signals in order to estimate the worker’s
skill. Traditional economics papers address screening models where employers access
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worker skill via a single noisy signal. In this paper, we extend this theoretical analysis
to a multi-test setting, considering both Bernoulli and Gaussian models. We analyze
the optimal employer policy both when the employer sets a fixed number of tests
per candidate and when the employer can set a dynamic policy, assigning further
tests adaptively based on results from the previous tests. To start, we characterize
the optimal policy when employees constitute a single group, demonstrating some
interesting trade-offs. Subsequently, we address the multi-group setting, demon-
strating that when the noise levels vary across groups, a fundamental impossibility
emerges whereby we cannot administer the same number of tests, subject candidates
to the same decision rule, and yet realize the same outcomes in both groups. We
consider the ramifications for fairness within our model when employees, despite
possessing similarly-distributed skills, are evaluated with different noise levels. We
show impossibility results as well as a solution to equalize confusion matrix entries
by adjusting the number of tests according to group parameters. Finally, we present
a simple way to estimate group parameters without knowing the true skill levels (i.e.,
unsupervised learning), and give bounds in terms of the number of candidates.

Biased algorithms can reinforce existing inequalities and create new ones. If certain
groups are consistently disadvantaged by screening systems, it can have significant
social consequences, leading to reduced opportunities, discrimination, and other
harms. In the final chapter of this thesis, we address this important topic through
the eyes of optimization and ML toolbox. We suggest efficient candidate screening
solutions and make sure they involve the consideration of different populations with
different characteristics while optimizing the system’s performance.
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4.1 Candidate Screening and Implications for Fairness

4.1.1 Introduction

Consider an employer seeking to hire new employees. Clearly, the employer would
like to hire the best employees for the task, but how will she know which are best
fit? Typically, the employee will gather information on each candidate, including
their education, work history, reference letters, and for many jobs, they will actively
conduct interviews. Altogether, this information can be viewed as the signal available
to the employer.

Suppose that candidates can be either skilled or unskilled. If the firm hires an
“unskilled” candidate, it will incur a significant cost on account of lost productivity.
For this reason, the employer would like to minimize the number of False Positive
mistakes, instances where unskilled candidates are hired. On the other hand, the
employer desires not to overspend on the hiring process, limiting the number of
interviews per hired candidate (either on average, or absolutely). However, fewer
interviews weakens the signal, causing the employer to make more mistakes. At the
heart of our model is this inherent trade-off between the quality of the signal and the
cost of obtaining the signal. This marks a departure from the classical economics
literature, in which the signal is commonly regarded as a given.

Complicating matters, hiring efficiency is not the only desiderata at play. In society,
candidates belong to various demographic groups, and we may strive to design policies
that are in some sense fair vis-a-vis group membership. While fairness can be
an elusive notion, regulators must translate it to concrete rules and laws. In the
United States, a body of anti-discrimination law dating to the Civil Rights act of
1964, subjects decisions that result in disparate outcomes (as delineated by race,
age, gender, religion, etc.) to extra scrutiny: employers must not only show that
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preference for some groups over others did not drive the decision (disparate treatment
doctrine) but also justify that any observed disparities arise from a business necessity
(disparate impact doctrine), whether or not those disparities were intentional.

In this section, we seek to understand how a complex hiring process would interact
with the requirements of fairness. We extend the theory on candidate screening
and statistical discrimination, addressing the setting in which employers can subject
employees to multiple tests, which we assume to be conditionally independent given
the worker’s skill level and group membership. To build intuition, most of our analysis
focuses on a Bernoulli model of both worker skill and screening. Additionally, we
extend the traditionally-studied Gaussian skill and screening models to the multi-test
setting (Section 4.1.5).

Unlike the classical papers, in which an employer’s hiring policy is given by a simple
thresholding rule, our setting requires greater care to derive the optimal employer
policy. In our setting, we imagine that the employer wishes to minimize the number
of tests performed subject to a constraint upper-bounding the false positive rate.
We characterize the optimal policy in this case as a randomized threshold policy.
Subsequently, we show that this is not always an optimal policy and consider the
setting in which employers can allocate tests dynamically. Namely, employers decide
after each result whether to (i) hire the candidate; (ii) reject the candidate and
move on to the next one; or (iii) administer a subsequent test. In the Bernoulli case,
the optimal policy consists of administering tests until each candidate’s posterior
likelihood of being a high-skilled worker either dips below the prior or rises above a
threshold determined by the tolerable false positive rate. We reduce the analysis of
this process to a random walk over the log posterior odds and derive the solution via
the corresponding Gambler’s ruin problem.

we consider the ramifications for fairness within our model when employees, despite
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possessing similarly-distributed skills, are evaluated with differing noise levels. We
show impossibility results, as well as, a solution to equalize confusion matrix entries
by adjusting the number of tests according to group parameters. Finally, we present
a simple way to estimate group parameters without knowing the true skill levels (i.e.,
unsupervised learning), and give bounds in terms of the number of candidates from a
group for good estimation.

Related work

The classical economics literature on discrimination in employment can broadly be
divided into two focuses. The taste-based discrimination model due to [15] models
the market outcomes in a setting where employers express an explicit preference for
hiring members of one group, acting as if an employee’s demographic membership
provides utility. This preference for certain groups induces a sorting of employees
from the disadvantaged group towards those employers who discriminate the least
with wages ultimately determined by the marginal discriminator. Subsequently, [107]
suggested a statistical mechanism by which similarly-skilled employees from different
groups might experience differential outcomes: the comparative difficulty of screening
from one group vs. another. Many subsequent works extend this analysis, typically
focusing on Gaussian models of worker quality and conditionally-Gaussian test scores
[6, 2]. These papers consider the setting where workers are assessed via a single test
characterized by a group-dependent noise level. Our work is differentiated from these
by considering richer mechanisms for acquiring signal.

In the more recent literature on fairness in machine learning, researchers often focus
on binary classification, with employees characterized by a protected characteristic
(group membership), and other (non-protected) covariates [104, 76, 77]. There, the
predictor is presumably used to guide a consequential decision, such as allocating
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some economic good (loans, jobs, etc.) [43] or assessing some penalty (e.g. risk
scores to guide bail decisions) [36]. Papers then focus on various interventions for
ensuring accurate prediction subject to various constraints such as demographic parity
(outcomes independent of group membership), blindness (model cannot observe group
membership), and equalized false negative and/or false positive rates [63]. Several
simple impossibility results preclude simultaneously satisfying several combinations of
these parities [20, 36, 84]. More recently, a number of papers have drawn inspiration
from economic modeling, extending the literature on fairness in classification to
consider longer-term dynamics, equilibria, and the emergence of feedback loops
[69, 63, 50]. Finally, [12, 126] provide a survey of definitions from the algorithmic
fairness literature.
Unrelated to fairness, [116] consider a model that is somehow resembles to ours in
the context of A/B testing. They minimize the expected time per discovery (which
can be viewed as hire) from an infinite pool of hypotheses (which can be viewed as
candidates) with a bounded false discovery rate.

4.1.2 Candidate Screening: The Bernoulli Model

We formalize our problem as follows. An employer accesses an infinite pool of
candidates (indexed by i ∈ N+), each of which has some (hidden) skill level yi ∈
{0,+1}, which denote unskilled and skilled, respectively. Underlying worker skill
levels yi are sampled independently from a Bernoulli distribution with parameter p.
An employer can access information about the i-th candidate through a sequence of
τ tests, which are conditionally independent given yi. Each test result, ŷi,j ∈ {0,+1}
disagrees with the ground truth skill with probability Pr[ŷi,j ≠ yi] = 1−σ

2 , where
σ ∈ (0, 1), i.e., ŷi,j = yi ⊕ Br(1−σ

2 )1. For convenience, we denote the noise level as
1⊕ is the XOR operation between two binary random variables, and therefore ŷi,j is also a random

variable.
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η = 1−σ
2 ∈ (0, 1

2). We say that a test result ŷi,j is flipped if ŷi,j ̸= yi, and the number
of flipped results for a given candidate is denoted by Zη

τ is Zη
τ = ∑τ

j=1 I(ŷi,j ≠ yi),
where I(·) is the indicator function.

The employer decides weather or not to hire the current candidate, but unlike the
secretary problem she can hire as many as she desires. A selection criterion is a
mapping between test results of a single candidate to actions: Select(ŷi,1, . . . , ŷi,τi

) ∈
{0, 1}, where 0 means reject and 1 means accept (hire). A policy π sets the selection
criteria based on σ, p and other possible constraints such as probability to hire, error
probability, etc. A randomized threshold policy is a policy π with parameters (τ, θ, r)
such that π(ŷi,1, . . . , ŷi,τi

) = 1 for Sτ := ∑τ
i=1 ŷi,j > θ, π(ŷi,1, . . . , ŷi,τi

) = 0 for Sτ < θ,
and for Sτ = θ the probability that π(ŷi,1, . . . , ŷi,τi

) = 1 is r. We call a policy π a
threshold policy if r = 1. In a dynamic policy, rather than setting a fixed number of
tests per candidate, the employer may decide after each test whether to accept, reject,
or to perform an additional test, i.e., π(ŷi,1, . . . , ŷi,τi

) ∈ {0, 1, more}. Note that for a
dynamic policy, the number of tests τ is a random variable determined based on the
tests’ outcomes. When designing a policy, one must carefully consider the balance
between the following desiderata:

1. Minimize False Discovery Rate (FDR)—the fraction of unskilled workers
among the accepted candidates, i.e., FDR := Pr[yi = 0|π(ŷi,1, . . . , ŷi,τ ) = +1].

2. Minimize False Omission Rate (FOR)—the fraction of skilled workers
among the rejected candidates, i.e., FOR := Pr[yi = +1|π(ŷi,1, . . . , ŷi,τ ) = 0].

3. Minimize False Negatives (FN)—the amount of skilled workers classified as
unskilled.

4. Minimize False Positives (FP)—the amount of unskilled workers classified
as skilled.
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5. Ratio of accept probability and number of tests—the number of tests
performed per candidate hired, using a parameter B > 1, we have τ

B
≤

Pr[π(ŷi,1, . . . , ŷi,τ ) = +1].

For any fixed number of tests τ , increasing the threshold θ of a threshold policy
decreases FDR while increasing FOR.

Loss: To handle the trade-off between the false positives, (i.e., when an unskilled
candidate is accepted) and false negatives (i.e., when a skilled candidate is rejected),
we introduce an α-loss, paramaterized by α ∈ [0, 1] and defined as follows:

ℓα(b1, b2) = α · I[b1 = 0, b2 = 1] + (1− α) · I[b1 = 1, b2 = 0]

where I[·] is the indicator function and b1, b2 ∈ {0, 1}. The expected loss of a policy
π is,

lα(π) = E[ℓα(yi, π(ŷi,1, . . . , ŷi,τ ))] (4.1)

where the expectation is over the type of the candidates yi, the test results ŷi,j, and
the decisions of π.

4.1.3 Analysis of the Bernoulli Model with One Group

To begin, we analyze this hiring model for a single group of candidates. The employer’s
goal is to minimize the expected loss, lα(π), while maintaining a given acceptance
probability.

The Simple Threshold Policy (Equal Number of Tests)

Consider the setting where the employer must subject all candidates to an equal
number of tests τ and threshold θ (these parameters are chosen by the employer but
thereafter constant across candidates). For a given threshold, we can relate the flip
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probability (error rate) of the test to the probability that a candidate is accepted as
follows:

Recall that ŷi,j = yi ⊕ Br(η), Sτ = ∑τ
j=1 ŷi,j, that Zη

τ = ∑τ
t=1 I(ŷi,j ̸= yi), and that

τ and θ are the only parameters of the threshold policy, π. Informally, Sτ is the
number of passed tests and Zη

τ is the number of flips (tests in error). The probability
of hiring an unskilled candidate is given by:

Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0] = Pr[Sτ ≥ θ|yi = 0] = Pr[Zη
τ ≥ θ].

Since Zη
τ is a binomial random variable with parameters τ and η, we can calculate

this probability precisely as:

Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0] = Pr[Zη
τ ≥ θ] =

τ∑
k=θ

(
τ

k

)
ηk(1− η)τ−k,

and the probability of rejecting a skilled candidate is the probability that they
encounter more than τ − θ flips, thus:

Pr[π(ŷi,1, . . . , ŷi,τ ) = 0|yi = +1] = Pr[Sτ < θ|y = +1] = Pr[Zη
τ > τ − θ]

=
τ∑

k=τ−θ+1

(
τ

k

)
ηk(1− η)τ−k.

Similarly, given a candidate’s skill level, we can calculate the probability that they
obtain exactly k positive tests out of τ , i.e,

Pr[Sτ = k|yi = 0] = Pr[Zη
τ = k] =

(
τ

k

)
ηk(1− η)τ−k.

Pr[Sτ = k|yi = +1] = Pr[Zη
τ = τ − k] =

(
τ

k

)
ητ−k(1− η)k.
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Given these observations, we can now analyze the employer’s choices.

Optimal solution for any ratio α ∈ (0, 1)

The next theorem shows that for threshold policies, the expected loss lα(π) = lα(θ) is
minimized at θ∗

p,α such that |θ∗
p,α − τ/2| ≤

log( 1
p

)+log( 1
α

)
2 log(1+ 2σ

1−σ
) .

Theorem 4.1. The loss function lα(θ) is quasi-convex and a threshold of

θ∗
p,α = arg min

θ
lα(θ) =

τ2 −
log(1

p
− 1) + log( 1

α
− 1)

2 log(1 + 2σ
1−σ )


minimizes loss for any values of α, p, σ ∈ (0, 1).

Next, we bound the number of tests required to guarantee that the probability of
classification error by the majority decision rule (i.e., θ = ⌈ τ2⌉) does not exceed a
specified quantity δ.

Theorem 4.2. For every δ, p, α ∈ (0, 1), performing τ = Ω(α+p−2pα
σ2 ln(1

δ
)) tests per

candidate and using majority as a decision rule (i.e., θ = τ/2) guarantees lα(π) ≤ δ.

Equal cost for false positives and false negatives (α = 1
2)

Consider the simple loss consisting of the classification error rate (false positives
and false negatives count equally), expressed via our loss function by setting α = 1

2 .
When skilled and unskilled candidates occur with equal frequency, i.e., p = 1/2, we
can derive that the majority decision rule minimizes the classification error for any
number of tests.

Corollary 4.3. Assume p = 1/2 and α = 1/2. For any number of tests τ , the
majority decision rule minimizes loss lα. Namely, arg minθ l 1

2
(θ) = ⌈1

2τ⌉. In addition,
for every δ ∈ (0, 1), performing τ = Ω( 1

σ2 ln(1
δ
)) tests per candidate and using majority
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as a decision rule guarantees classification error with probability of at most δ.

FDR minimization with limited number of tests per hire for balanced groups

Again, assuming balanced groups (i.e., p = 1/2), suppose that an employer would
like to minimize the false discovery rate, subject to the constraint of lower bounding
the hiring probability. We can model this optimization problem by introducing a
budget parameter B > 1 to bound any predetermined (fixed) number of tests per
hired candidate as follows:

arg min
π

FDRπ = Pr[yi = 0|Pr[π(ŷi,1, . . . , ŷi,τ ) = 1]

subject to τπ
Pr[π(ŷi,1, . . . , ŷi,τ ) = 1] ≤ B

(4.2)

where τπ is the number of tests π performs. The following theorem shows that the
optimal policy is a randomized threshold policy.

Theorem 4.4. There exists a randomized threshold policy π which is an optimal
solution for (4.2).

The Dynamic Policy (Adaptively-Allocated Tests)

Recall that under a dynamic policy, the employer can decide after each test whether
to accept, reject, or perform another test. In general, dynamic policies are more
efficient than those that must set a fixed number of tests. To build intuition, consider
a candidate that has passed 2 out of 3 tests. As seen above, under an optimally-
constructed fixed-test policy, any candidate that fails a single test might be rejected.2

However, the posterior probability that this candidate is in fact skilled may still be
greater than that of a fresh candidate sampled from the pool. Thus we can improve
on the fixed-test policy by dynamically allocating more tests to candidates until their

2For example, if B = 18 and η = 1
3 , the lowest false discovery rate is achieved by τ = θ = 3.
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posterior odds either dip below the prior odds or rise above the threshold for hiring.
The following theorem formalizes this notion that it is better to administer more tests
to a candidate that passed the majority of previous tests than to start afresh with a
new candidate:

Theorem 4.5. For any p, σ, τ , a candidate i that passed θ > τ
2 out of τ tests is more

likely to be a skilled than a freshly-sampled candidate i′ for whom no test results are
yet available, i.e., Pr[yi′ = +1] = p < Pr[yi = +1|Sτ = θ].

Remark 4.6. If θ < τ
2 , the inequality would have been reversed.

The Greedy Policy We now present a greedy algorithm that continues to test a
candidate so long as the posterior probability that yi = +1 is greater than ϵ′ and
smaller than 1− ϵ, rejects a candidate whenever the posterior falls below ϵ′ (absent
fairness concerns, employers will set ϵ′ = p for all groups), and accepts whenever the
posterior rises above 1− ϵ. Given parameters ϵ, ϵ′ > 0, we show that the greedy policy
solves the optimization problem of minimizing the mean number of tests under these
constraints, i.e.,

minimize
τ

E[τ ]

subject to ∀iπ(ŷi,1, . . . , ŷi,τ ) = 1 iff Pr[yi = +1|ŷi,1, . . . , ŷi,τ ] ≥ 1− ϵ

∀iπ(ŷi,1, . . . , ŷi,τ ) = 0 iff Pr[yi = +1|ŷi,1, . . . , ŷi,τ ] < ϵ′

Our analysis of this policy builds upon the observation that conditioned on a worker’s
skill, the posterior log-odds after each test perform a one-dimensional random walk,
starting with the prior log-odds log( p

1−p) and moving, after each test result, either
left (upon a failed test) or right (upon a passed test). When (as in our model) the
probability of a flip are equal for skilled and unskilled candidates, our random walk
has a fixed step size. Moreover, our random walk has absorbing barriers corresponding
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to (when ϵ′ = p) falling below the prior log odds (on the left) and exceeding the
hiring threshold (on the right). Owing to the fixed step size and absorbing barriers,
our policy resembles the classic problem of Gambler’s ruin, in which a gambler wins
or loses a unit of currency at each step, and loses when crossing a threshold on the
left (going bankrupt) or on the right (bankrupting the opponent). We formalize the
random walk as follows where Xj is the position on the walk at time j:

1. X0 is the prior log-odds of the candidate, i.e., X0 = log p
1−p .

2. After each test result, ŷi,j is observed,

Xj = Xj−1 + (2ŷi,j − 1) · log
(

Pr[ŷi,j = +1|yi = +1]
Pr[ŷi,j = +1|yi = 0]

)
.

Let πGreedy be the policy that accepts a candidate if Pr[yi = +1|ŷi,1, . . . , ŷi,j] ≥ 1− ϵ,
rejects if Pr[yi = +1|ŷi,1, . . . , ŷi,j] < ϵ′, and otherwise conducts an additional test,
i.e.,

πGreedy(ŷi,1, . . . , ŷi,j) =



0 if Pr[yi = +1|ŷi,1, . . . , ŷi,j] < ϵ′

1 if Pr[yi = +1|ŷi,1, . . . , ŷi,j] ≥ 1− ϵ

retest else

.

An employer will generally set the lower absorbing barrier to reject all candidates
with posterior log odds less than p since a fresh candidate from the pool is expected
to be better. However, when noise levels differ across groups, we may prefer in the
interest of fairness to set ϵ′ lower than p for members of the noisier group, allowing
us to equalize the frequency of false negatives across groups (see Section 4.1.4).

Lemma 4.7. Let β, β′ ∈ R be the parameters that satisfy β
β+1 = 1− ϵ and β′

β′+1 = ϵ′

(i.e., β = 1−ϵ
ϵ

and β′ = ϵ′

1−ϵ′ ). Then Xτ ≥ log β iff Pr[yi = +1|ŷi,1, . . . , ŷi,τ ] ≥ 1 − ϵ
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(iff the candidate is accepted) and Xτ < log β′ iff Pr[yi = +1|ŷi,1, . . . , ŷi,τ ] < ϵ′ (iff the
candidate is rejected).

Corollary 4.8. The policy πGreedy can be described as follows.

πGreedy(ŷi,1, . . . , ŷi,τ ) =



0 if Xτ < log ϵ′

1−ϵ′

1 if Xτ ≥ log(1−ϵ
ϵ

)

retest else

We use the following parameters in the next theorems:

a =


log( (1−ϵ)(1−ϵ′)(1+σ)
ϵϵ′(1−σ) )

log(1+σ
1−σ )

≫ 1
σ

and z =


log(p(1−ϵ′)(1+σ)
ϵ′(1−p)(1−σ))

log(1+σ
1−σ )


Theorem 4.9 (Expected number of tests per type). The expected number of tests
until a decision (namely accept or reject) for skilled candidates is

E[τs] = 1
σ

(
a ·

1− (1−σ
1+σ )z

1− (1−σ
1+σ )a − z

)
≈ 2a

1 + σ
− z

σ
,

and
E[τu] = 1

σ

(
z − a ·

1− (1+σ
1−σ )z

1− (1+σ
1−σ )a

)
≈ z

σ

for unskilled candidates.

For the probabilities of the candidates to be accepted or rejected, conditioned on
their true skill level, we present the results in a form of confusion matrix in Table
4.1.

Theorem 4.10. The expected number of tests until deciding whether to accept or
reject a candidate is E[τ |π(yi,τ ) ∈ {0, 1}] ≈ ap

σ
, where a≫ 1

σ
.

228



Table 4.1: Confusion matrix for πgreedy assuming ϵ ≤ 1/4 and ϵ′ ≤ p ≤ 1/2.
General ϵ′ When ϵ′ = p

Skilled (yi = +1) Unskilled (yi = 0) Skilled Unskilled

accept TPR = Θ
(

1− ϵ′

p (1− σ)
)

FPR = Θ (ϵ(p− ϵ′ + ϵ′σ)) Θ(σ) Θ(ϵpσ)

reject FNR = Θ
(

ϵ′

p (1− σ)
)

TNR = Θ (1− ϵ(p− ϵ′ + ϵ′σ)) Θ(1− σ) Θ(1− ϵpσ)

4.1.4 Fairness Considerations in the Two-Group Setting

Two Groups—Threshold Policies We now discuss the effects of a threshold policy
when candidates belong to two groups, G1 and G2 whose skill level is distributed
identically, but whose tests are characterized by different noise levels. Without loss of
generality, we assume that η1 < η2, where ηi is the probability that a test result of a
candidate from Gi is different from his skill level. To begin, we note the fundamental
irreconcilability of equalizing either the false positive or the false negative rates across
groups with subjecting candidates to the same policy.

Theorem 4.11 (Impossibility result). When noise levels differ between two groups
with identical skill level distribution, a single Threshold Policy π (with the same
number of tests τ and the same threshold θ for both groups) cannot have equality
in either the false negative rates or in the false positive rates across the groups.
Particularly, there is a higher false positive rate in the noisier group, as an unskilled
candidate from G2 is more likely to be accepted by the threshold policy than an unskilled
candidate from G1:

FPRη1
θ,τ = Pr

η1
[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0] < Pr

η2
[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0] = FPRη2

θ,τ ,

and also a higher false negative rate, as a skilled candidate from G2 is more likely to
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be rejected than a skilled candidate from G1:

FNRη1
θ,τ = Pr

η1
[π(ŷi,1, . . . , ŷi,τ ) = 0|yi = +1]

< Pr
η2

[π(ŷi,1, . . . , ŷi,τ ) = 0|yi = +1] = FNRη2
θ,τ .

Connection to Economics LiteratureAigner and Cain [2] discuss a similar case
under a Gaussian screening model where the variance (noise level) of the single test
differs across the two groups. Similarly, they note that qualified candidates fare worse
in the noisy group but that unqualified candidates fare better in the noisier group.
Our work differs from theirs in that we consider the effect of multiple tests and the
ability to optimize over the number of tests.

Two Groups–Dynamic policy We now consider the (dynamic) hiring policy in the
setting when employees belong to two groups, G1 and G2 with identically-distributed
skills but different noise levels η1 < η2. We note that there are two ingredients that
explain the differences among the groups: (i) The step size, log

(
Pr[ŷi,j=+1|yi=+1]
Pr[ŷi,j=+1|yi=0]

)
=

log
(

1−η
η

)
of G2 (the noisier group) is smaller than the step size of G1. Thus these

candidates must typically pass more tests before they are accepted; and (ii) Skilled
candidates in group G2 exhibit less drift to the right (they have a higher probability
of failing a test). Consequently, when an employer (rationally) sets ϵ′ = p for all
groups, a skilled candidate from G2 is more likely to be fail a test in step 1, at
which point the dynamic policy summarily rejects them. These two facts explain
both the higher false negative rates for G2 and the longer expected duration until
acceptance. By setting ϵ′ < p for members of the noisier group, we can equalize false
negative rates. Precisely, setting ϵ′ = η1

η2
p achieves the desired parity. The cost of this

intervention is that it requires more tests for candidates from the noisier group. Here,
our random walk analysis can be leveraged to determine exactly how many more.
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Once again, we cannot provide equality across the groups in all desired ways—the
same acceptance criterion, the same expected number of tests, and the same false
negative rates between groups—with the noise differs across groups.

4.1.5 Candidate Screening: Gaussian Model

In this section, we work out the analytic solutions for the conditional expectation of
worker qualities given a series of conditionally independent tests Y1, ...Yn s.t. ∀i, j,
Yi ⊥ Yj|Q. We assume that the worker quality Q normally distributed with mean
µQ and variance σ2

Q, so instead of binary skill level we have continuous quality of
candidates. Conditioned on Q = q, each test is generated according to the structural
equation yi = q + η, where η is a normally distributed noise term with mean 0 and
variance σ2

η. Equivalently, we can say that the conditional distribution for each test
P (Y |Q = q) is Gaussian with mean q and variance σ2

η. We refer the reader to the
full version [38] for further details.

We show that we can equalize conditional variance between the two groups by
giving more interviews to noisier group, and that it yields the same conditional
expectations.

Theorem 4.12. For two groups, G1, G2 with the same worker quality Q, that differ
only in the variance of their noise σ2

η1 < σ2
η2, the variance can be equalized by using

n2 = σ2
η2
σ2

η1
n1 interviews (or tests) for G2, where n1 is the number of interviews for each

candidate from G1.

Theorem 4.13. When equalizing conditional variances between G1, G2 by using n2 =
σ2

η2
σ2

η1
n1, we get the same conditional expectations, Eη1 [Q|Y1, ..., Yn1 ] = Eη2 [Q|Y1, ..., Yn2 ].

231



4.1.6 Unsupervised Parameter Estimation

Now, under the assumption of realizable case, we explain how one can estimate the
parameters p and σ given tests results from a homogeneous population. Surprisingly,
we discover that parameter recovery in this model does not require any ground truth
labels indicating whether an employee is skilled or unskilled. We use Hoeffding’s
inequality to bound the absolute difference between the estimated parameters and
the true parameters by choosing δ as the wanted upper bound and solving for the
number of samples or ϵ.

Lemma 4.14 (Hoeffding’s inequality). Let y1, . . . , ym be σ2−sub–gaussian random
variables. Then, for any ϵ > 0,

Pr
[∣∣∣∣∣ 1
m

m∑
i=1

yi − E[yi]
∣∣∣∣∣ ≥ ϵ

]
≤ 2e−mϵ2/2σ2

.

If y1, . . . , ym are Bernoulli random variables with parameter p,

Pr
[∣∣∣∣∣ 1
m

m∑
i=1

yi − p
∣∣∣∣∣ ≥ ϵ

]
≤ 2e−2mϵ2 .

We start by estimating σ and then use it to derive an estimate for p. The estimated
parameters are denoted by σ̂ and p̂. Notice that in order to have any information
regarding the true value of σ, we need to have candidates with at least two tests.
Hence, from now on we assume exactly that, i.e., ∀iπGreedy(ŷi,1) = more for dynamic
policies and τ ≥ 2 for fixed number of tests policies.

Now, in both policies we have showed that the optimal rule is to reject candidates
that fail their first test. Therefore inconsistencies between the first two tests are seen
only in cases where ŷi,1 = 1, ŷi,2 = 0.

Let c be the number of inconsistencies in the first two tests, i.e., c = |{(ŷi,1, ŷi,2) :
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yi,1 ≠ yi,2}|, and let m be the number of candidates with at least two tests. Since c is
generated by sampling m times, the distribution Br((1+σ

2 )(1−σ
2 )) = Br(1−σ2

4 ) and we
can estimate σ as stated in the next theorem:

Theorem 4.15. If we have results from m ≥ 1
2ϵ2 ln 2

δ
candidates, by using σ̂ =√

1− 4 c
m

, then with probability 1− δ we have that |σ̂ − σ| ≤ ϵ.

Having an estimation of the parameter σ̂, we can calculate the estimated p as follows:
Let pŷ∗,1=1 :=

∑
i
I(ŷi,1=1)
m

be the percentage of positive first tests. Since this number is
generated by the distribution Br(1

2(p(1 + σ) + (1− p)(1− σ))) = Br(1
2 + (2p− 1)σ2 ),

we can estimate p̂ using the estimated value of σ̂.

Theorem 4.16. If we have results from m ≥ 1
2ϵ2 ln 2

δ
candidates, by using p̂ =

2(py∗,1=1−1)+σ̂
σ̂

, we get that with probability 1− δ we have that |p̂− p| ≤ 2ϵ.

Under the Gaussian screening model, the parameter estimation is also straightforward
(assuming realizability) without access to the true skill level of the employees. We
start by looking at a single candidate, i. Each of his test results, ŷi,j is generated
from a conditional distribution P (Yi|Qi = qi) which is a Gaussian with mean qi

and variance σ2
η. Since this variance is common among all the candidates, we can

simply average the estimated variance of every candidate to get an approximation
for σ2

η. Suppose ŷi,1, . . . , ŷi,n is a sequence of n i.i.d tests of candidate i, and let
yi = 1

n

∑n
j=1 yi,j be the empirical mean of candidate i’s tests.

The following theorem is a result from Hoeffding’s Inequality, in which we use to
bound the error of our estimated parameters.

Theorem 4.17. By using the following as estimators for Gaussian parameters
µ̂Q = 1

m

∑m
i=1 yi, σ̂2

η = 1
m

∑m
i=1

1
n

∑n
j=1(yi,j − yi)2 and σ̂2

Q = 1
m

∑m
i=1(µ̂Q − yi)2 (notice

that E[σ̂2
η] = σ2

η and E[σ̂2
Q] = σ2

Q), the difference between each parameter and it’s
estimator is bounded by O(

√
1
m

ln(1
δ
)).

233



4.1.7 Proofs for One Group Setting (Section 4.1.3)

Proof of Theorem 4.1. To prove the theorem, we show that the loss function lα(τ, θ),
as a function of θ is quasi-convex and achieves its minimum value at

1
2(τ −

log(1
p
− 1) + log( 1

α
− 1)

log(1 + 2σ
1−σ ) )

 .
Namely, we show that the loss is monotone increasing for

1
2(τ −

log(1
p
− 1) + log( 1

α
− 1)

log(1 + 2σ
1−σ ) )

 ≤ θ ≤ τ − 1,

i.e., increasing θ increases the loss: lα(θ) < lα(θ + 1).
Similarly, we show that for

1 ≤ θ ≤

1
2(τ −

log(1
p
− 1) + log( 1

α
− 1)

log(1 + 2σ
1−σ ) )

 ,
we have lα(θ) < lα(θ − 1).
Indeed,

lα(θ + 1, τ)− lα(θ, τ) = −αPr[y = 0, Sτ = θ] + (1− α) Pr[y = +1, Sτ = θ]

= −αPr[Sτ = θ|y = 0] Pr[y = 0] + (1− α) Pr[Sτ = θ|y = +1] Pr[y = +1]

Since Pr[y = 0] = 1− p and Pr[y = +1] = p, we have

l 1
2
(θ + 1, τ)− l 1

2
(θ, τ) = −(1− p)αPr[Sτ = θ|y = 0] + p(1− α) Pr[Sτ = θ|y = +1].
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The above expression is positive iff

(1− p)αPr[Sτ = θ|y = 0] < p(1− α) Pr[Sτ = θ|y = +1] (4.3)

Since Pr[Sτ = θ|y = 0] is the probability of exactly θ flips, and Pr[Sτ = θ|y = +1] is
the probability of exactly τ − θ flips, we can calculate those probabilities as follows:

Pr[Sτ = θ|y = 0] =
(
τ

θ

)
(1− σ

2 )θ(1 + σ

2 )τ−θ

Pr[Sτ = θ|y = +1] =
(

τ

τ − θ

)
(1− σ

2 )τ−θ(1 + σ

2 )θ

Substituting expression in (4.3), we get

(1− p)α
(
τ

θ

)
(1− σ

2 )θ(1 + σ

2 )τ−θ < p(1− α)
(

τ

τ − θ

)
(1− σ

2 )τ−θ(1 + σ

2 )θ.

Rearranging, we get

(1− σ
1 + σ

)2θ < (1− σ
1 + σ

)τ ( p

1− p)(1− α
α

).

Applying log on both sides gets us

2θ log(1− σ
1 + σ

) < τ log(1− σ
1 + σ

) + log( p

1− p) + log(1− α
α

).

Solving for θ, we find that the inequality holds if

θ >
τ log(1−σ

1+σ ) + log( p
1−p) + log(1−α

α
)

2 log(1−σ
1+σ ) =

1
2(τ −

log(1
p
− 1) + log( 1

α
− 1)

log(1 + 2σ
1−σ ) )
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For θ ≥
⌈

1
2(τ − log( 1

p
−1)+log( 1

α
−1)

log(1+ 2σ
1−σ

) )
⌉
, we have

(1− p)αPr[Sτ = θ|y = 0] < p(1− α) Pr[Sτ = θ|y = +1],

and for θ ≤
⌈

1
2(τ − log( 1

p
−1)+log( 1

α
−1)

log(1+ 2σ
1−σ

) )
⌉
, we have

α(1− p) Pr[Sτ = θ|y = 0] > (1− α)pPr[Sτ = θ|y = +1].

This implies that the maximum is θ∗
p,α =

⌈
1
2(τ − log( 1

p
−1)+log( 1

α
−1)

log(1+ 2σ
1−σ

) )
⌉
.

Proof of Theorem 4.2. We start with a skilled candidate. The expected number of
tests that a skilled candidate passes is E[Sτ |y = +1] = τ(1+σ

2 ) > τ
2 .

By using Hoeffding’s inequality for Bernoulli distributions, for every ϵ > 0,

Pr[E[Sτ ]− Sτ ≥ ϵ|y = +1] = Pr[τ(1 + σ

2 )− Sτ ≥ ϵ|y = +1] ≤ e−2ϵ2τ < δ.

Choosing ϵ = σ
2 yields Sτ ≤ τ

2 < ⌈
τ
2⌉ (as τ is odd), which holds iff a majority threshold

policy would predict that this is an unskilled candidate (false negative). Solving for
τ , we get τ > 1

σ2 ln(1
δ
).

We now repeat the process for an unskilled candidate. The expected number of tests
that an unskilled candidate passes is E[Sτ |y = 0] = τ(1−σ

2 ) < τ
2 .

By using Hoeffding’s inequality again, we have

Pr[Sτ − E[Sτ ] ≥ ϵ|y = 0] = Pr[Sτ − τ(1− σ
2 ) ≥ ϵ|y = 0] ≤ e−2ϵ2τ < δ

Choosing ϵ = σ
2 yields Sτ > τ

2 , which holds iff a majority threshold falsely predicts that
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this is a skilled candidate (false positive). Solving for τ again, we get τ > 1
σ2 ln(1

δ
).

Overall, τ > α(1−p)
σ2 ln(1

δ
) + p(1−α)

σ2 ln(1
δ
) = Ω(α+p−2pα

σ2 ln(1
δ
))

Proof of Theorem 4.4. Let π′ be any optimal policy for (4.2) (not necessarily thresh-
old) with a fixed number of tests, τ . We will show, in two steps, how to transform it
into an optimal randomized threshold policy. The first step is to symmetrize π′. Let
rk = Pr[π(ŷ) = 1|Sτ = k]. Define a policy π′′, which performs τ tests, and accepts
with probability rk where k = Sτ . Clearly, both π′ and π′′ have the same accept
probability. In addition, since condition on Sτ = k, any sequence of outcomes is
equally likely. Furthermore, and the probability that y = 1 given any sequence of
outcomes with Sτ = k, is identical. (Technically, Sτ is a sufficient statistics.) This
implies that the false discovery rate is also unchanged.

This yields that π with the randomization vector r is also optimal.

The second step is to suppose—for sake of contradiction—that π′′ is not a randomized
threshold policy. We will show that we can improve the FDR of π′′ while keeping the
probability of acceptance unchanged. This will contradict the hypothesis that π′ is
optimal.

If π′′ is not a randomized threshold policy, then there is no θ and k, such that

rk = Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|Sτ = k ̸= θ] =


0, if k < θ

1 if k > θ
.

Now, let k be the minimal value such that rk > 0 and let 0 < i < τ − k be the
minimal value for which 0 < rk+i < 1. Clearly, the FDR is lower at Sτ = k + i than
at Sτ = k. Intuitively, we can shift some probability mass, ϵk > 0 from rk to rk+i in
a way that maintains the acceptance probability of π and decreases the false positive

237



rates.

Let ϵk+i > 0 be such that ϵk · rk = ϵk+i · rk+i. Let r′ be a modified randomization
vector for π such that r′

k = rk(1− ϵk), r′
k+i = rk+i(1 + ϵk+i) and for every l /∈ {k, k+ i}

r′
l = rl. Since Pr[π(ŷi,1, . . . , ŷi,τ ) = 1] = ∑τ

l=1 rl = ∑
l /∈{k,k+i} rl + r′

k + r′
k+i, the

acceptance probability remains the same. As for the false discovery rate, since
Pr[yi = 0|Sτ = k + i] < Pr[yi = 0|Sτ = k], Pr[Sτ = k + i] is higher with r′ than with
r, Pr[Sτ = k] is lower with r′ than with r and for any l /∈ {k, k + i}, Pr[Sτ = l] with
r′ is the same as with r, the false discovery rate with r′ is lower, which contradicts
the optimality of π with r as the randomization vector.

Proof of Theorem 4.5. Using Bayes’ theorem, the conditional probability can be
decomposed as

Pr[yi = +1|Sτ = θ] = Pr[yi = +1] Pr[Sτ = θ|yi = +1]
Pr[Sτ = θ] =

p
(
τ
θ

)
(1−σ

2 )τ−θ(1+σ
2 )θ

p
(
τ
θ

)
(1−σ

2 )τ−θ(1+σ
2 )θ + (1− p)

(
τ
τ−θ

)
(1+σ

2 )τ−θ(1−σ
2 )θ

.

Since τ − θ < θ and
(
τ
θ

)
=
(

τ
τ−θ

)
, we get

p(1 + σ)2θ−τ

p(1 + σ)2θ−τ + (1− p)(1− σ)2θ−τ =
p(1+σ

1−σ )2θ−τ

p(1+σ
1−σ )2θ−τ + 1− p.

Since (1+σ
1−σ ) > 1 it holds that (1+σ

1−σ )2θ−τ > 1,

(1 + σ

1− σ )2θ−τ (1− p) > 1− p.

So,
(1 + σ

1− σ )2θ−τ > p(1 + σ

1− σ )2θ−τ + 1− p,
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And finally,

Pr[yi′ = +1] = p <
p(1+σ

1−σ )2θ−τ

p(1+σ
1−σ )2θ−τ + 1− p = Pr[yi = +1|Sτ = θ].

Proof of Lemma 4.7. Let S ′
τ = ∑τ

j=1(2ŷi,j − 1), and let sτ ∈ {−τ, . . . , τ} be any of
the possible values of S ′

τ . Note that

Pr[ŷi,j = 1|yi = 1]
Pr[ŷi,j = 1|yi = 0] = 1 + σ

1− σ .

Since the ŷi,j are i.i.d., we have

Xτ =X0 +
τ∑
j=1

(2ŷi,j − 1) · log(Pr[ŷi,j = +1|yi = +1]
Pr[ŷi,j = +1|yi = 0] )

= log( p

1− p) + Sτ log(1 + σ

1− σ )

= log(( p

1− p)(1 + σ

1− σ )Sτ ).

Since
Pr[Sτ = sτ |yi = 1]
Pr[Sτ = sτ |yi = 0] = (1 + σ

1− σ )sτ ,

we have
Xτ = log(( p

1− p)(Pr[Sτ = sτ |yi = 1]
Pr[Sτ = sτ |yi = 0])). (4.4)

Since
Pr[Sτ = sτ |yi = 1] = Pr[Sτ = sτ ] · Pr[yi = 1|Sτ = sτ ]

Pr[yi = 1]

and
Pr[Sτ = sτ |yi = 0] = Pr[Sτ = sτ ] · Pr[yi = 0|Sτ = sτ ]

Pr[yi = 0] ,
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assigning Pr[yi = 0] = 1− p and Pr[yi = 1] = p, we get

Pr[Sτ = sτ |yi = 1]
Pr[Sτ = sτ |yi = 0] = (1− p) · Pr[yi = 1|Sτ = sτ ]

p · Pr[yi = 0|Sτ = sτ ]
. (4.5)

Applying (4.5) in (4.4) and adding Xτ ≥ log β gives us

Xτ = log
(

Pr[yi = 1|Sτ = sτ ]
Pr[yi = 0|Sτ = sτ ]

)
= log

(
Pr[yi = 1|Sτ = sτ ]

1− Pr[yi = 1|Sτ = sτ ]

)
≥ log β

Pr[yi = 1|Sτ = sτ ]
1− Pr[yi = 1|Sτ = sτ ]

≥ β

Pr[yi = 1|Sτ = sτ ] ≥ β(1− Pr[yi = 1|Sτ = sτ ])

Pr[yi = 1|Sτ = sτ ] ≥
β

1 + β

Applying (4.5) in (4.4) and adding Xτ < log β′ gives us

Pr[yi = 1|Sτ = sτ ]
1− Pr[yi = 1|Sτ = sτ ]

< β′

Hence
Pr[yi = 1|Sτ = sτ ] <

β′

1 + β′

Proof of Theorem 4.9. First recall that given a skilled candidate, for every test j,

Pr[ŷi,j = +1|yi = +1] = 1 + σ

2

Pr[ŷi,j = 0|yi = +1] = 1− σ
2
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Hence
Pr[ŷi,j = 0|yi = 1]− Pr[ŷi,j = +1|yi = 1] = −σ.

The lower absorbing barrier is reached when a candidate’s posterior skill level is lower
than the prior of the skill level, i.e.,

log ϵ′

1− ϵ′ − log
(1 + σ

1− σ

)

and the starting point is just one step away from the lower absorbing barrier:

X0 = log p

1− p.

According to Corollary 4.8, the upper absorbing barrier is in

log(1− ϵ
ϵ

).

To derive the results for the expected duration of the random walk for skilled and
unskilled candidates, we shift the locations of the absorbing points so that the lower
barrier would be in 0 and also divide them by a step size (so now we have that every
step is of size 1). The new upper absorbing barrier is at

a =
 log(1−ϵ

ϵ
)− (log ϵ′

1−ϵ′ − log(1+σ
1−σ ))

log(1+σ
1−σ )

 =


log( (1−ϵ)(1−ϵ′)(1+σ)
ϵϵ′(1−σ) )

log(1+σ
1−σ )

 .
And we also shift the starting point:

z =


log p
1−p − (log ϵ′

1−ϵ′ − log(1+σ
1−σ ))

log(1+σ
1−σ )

 =


log(p(1−ϵ′)(1+σ)
ϵ′(1−p)(1−σ))

log(1+σ
1−σ )


As stated in [55], the expected duration of a random walk with absorbing barriers of
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0 and a from z = 1 is (equation 3.4, chapter XIV [page 348]):

E[τs] = E[Dz=1] = 1
q − p

z − a · 1− ( q
p
)z

1− ( q
p
)a

 = 1
−σ

(
z − a ·

1− (1−σ
1+σ )z

1− (1−σ
1+σ )a

)
.

Hence,

E[τs] = 1
σ

(
a ·

1− (1−σ
1+σ )z

1− (1−σ
1+σ )a − z

)
.

As for unskilled candidates, the absorbing points and the starting point are the same,
the only difference is that

Pr[ŷi,j = +1|yi] = 1− σ
2

and
Pr[ŷi,j = 0|yi = +1] = 1 + σ

2 .

Therefore,
Pr[ŷi,j = 0|yi = 0]− Pr[ŷi,j = +1|yi = 0] = σ

and we deduce
E[τu] = 1

σ

(
z − a ·

1− (1+σ
1−σ )z

1− (1+σ
1−σ )a

)
.

Deviations for the confusion matrix (Table 4.1). We split the claim in the confusion
matrix (Table 4.1) into two parts. First, using equation (2.4) from chapter XIV [page
345] in [55], we get

FNR = Pr[πGreedy(ŷi,1, . . . , ŷi,τ ) = 0|yi = +1] =
(1−σ

1+σ )a − (1−σ
1+σ )z

(1−σ
1+σ )a − 1
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and
TNR = Pr[πGreedy(ŷi,1, . . . , ŷi,τ ) = 0|yi = 0] =

(1+σ
1−σ )a − (1+σ

1−σ )z

(1+σ
1−σ )a − 1 .

The second part follows from the fact the gambler’s ruin must end in case of absorbing
barriers.

TPR = Pr[πGreedy(ŷi,1, . . . , ŷi,τ ) = 1|yi = +1] = 1−
(1−σ

1+σ )a − (1−σ
1+σ )z

(1−σ
1+σ )a − 1 =

(1−σ
1+σ )z − 1

(1−σ
1+σ )a − 1 =

ϵ′(1−p)(1−σ)
p(1−ϵ′)(1+σ) − 1
ϵ′ϵ(1−σ)

(1−ϵ′)(1−ϵ)(1+σ) − 1
=

µ(1−p)
p
− 1

ϵµ
(1−ϵ) − 1 = (1− ϵ)(µ(1− p)− p)

p(ϵµ− (1− ϵ)) ,

Where µ := ϵ′(1−σ)
(1−ϵ′)(1+σ) . For ϵ ≤ 1/4 and p < 1/2 we get 0 ≤ µ ≤ 1/3 and

µ = Θ(ϵ′(1− σ)), therefore

TPR = Θ
(
p− µ
p

)
= Θ

(
1− ϵ′

p
(1− σ)

)
.

Hence FNR = Θ( ϵ′
p
(1− σ)).

FPR = Pr[πGreedy(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0] =
(1+σ

1−σ )z − 1
(1+σ

1−σ )a − 1 =
p(1−ϵ′)(1+σ)
(1−p)ϵ′(1−σ) − 1

(1−ϵ′)(1−ϵ)(1+σ)
ϵ′ϵ(1−σ) − 1

=

=
p

(1−p)µ − 1
(1−ϵ)
ϵµ
− 1

ϵ(p− (1− p)µ)
(1− p)(1− ϵ− ϵµ) = Θ (ϵ(p− µ)) = Θ (ϵ(p− ϵ′ + ϵ′σ))

Hence TNR = Θ (1− ϵ(p− ϵ′ + ϵ′σ)).

Proof of Theorem 4.10.
E[τ ] = E[τs]p+ E[τu](1− p) =
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= 1
σ

(
a ·

1− (1−σ
1+σ )z

1− (1−σ
1+σ )a − z

)
p+ 1

σ

(
z − a ·

1− (1+σ
1−σ )z

1− (1+σ
1−σ )a

)
(1− p) =

≈ 1
σ

(
a · (1− ϵ′

p
(1− σ))− z

)
p+ 1

σ
(z − a(ϵ(p− ϵ′ + ϵ′σ)))(1− p) ≈ ap

σ

4.1.8 Proofs for Two Groups Setting (Section 4.1.4)

The next lemma aids in the proof of Theorem 4.11.

Lemma 4.18. Let Zη
n be a Binomial random variable with parameters n ∈ N and

η ∈ (0, 1). Given a number of successes, k ∈ {0, . . . , n}, we know that the probability
mass function of Zη

n is fk(η) := Pr[Zη
n = k] =

(
n
k

)
ηk(1 − η)n−k. Let L(η|k) be the

likelihood function of the event Zη
n = k. Then the maximum likelihood of fk(η) is

η = k
n
. I.e.,

L(η|k) = argmaxηfk(η) = argmaxη
(
n

k

)
ηk(1− η)n−k = k

n
.

Proof of Lemma 4.18. We notice that
(
n
k

)
does not depend on η, thus

argmaxηfk(η) = argmaxη
(
n

k

)
ηk(1− η)n−k = argmaxηηk(1− η)n−k

The log-likelihood is particularly convenient for maximum likelihood estimation.
Logarithms are strictly increasing functions, as a result, maximizing the likelihood is
equivalent to maximizing the log-likelihood, i.e.,

argmaxηηk(1−η)n−k = argmaxη ln(ηk(1−η)n−k) = argmaxηk ln(η)+(n−k) ln(1−η)
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Differentiating (with respect to η) and comparing to zero we get

d ln(fk(η))
dη

= k

η
− n− k

1− η = 0.

And after refactoring,
k(1− η) = (n− k)η

The function ln(fk(η)) is a strictly concave as its second derivative is negative,

d2 ln(fk(η))
dη2 = − k

η2 −
n− k

(1− η)2 < 0,

And since the derivative of a strictly concave function is zero at k
n
, then η̂ = k

n
is a

global maximum. Therefore, η̂ = k
n

obtains absolute maximum in fk(η).

Proof of Theorem 4.11. Let Zηi
τ be a random variable that represents the number of

flips out of a τ -tests sequence with a noise level of ηi, i.e., Zηi
τ is the number of times

when yj ̸= y for 1 ≤ j ≤ τ . We use Zηi
τ to express Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0, η =

ηi] as the probability that at least θ flips,

Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0, η = ηi] = Pr[Zηi
τ ≥ θ]

and the probability of Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|q = +1, η = ηi] as at most τ − θ flips,
thus

Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = +1, η = ηi] = Pr[Zηi
τ ≤ τ − θ].

From Lemma (4.18) and since probability density function (pdf) are is monotone
increasing, we derive that the pdf of Zη2

n satisfies monotone likelihood ratio property
over the pdf of Zη1

n . This implies that the pdf of Zη2
n also has first-order stochastic

dominance over Zη1
n by Theorem 1.1 in [128]. From stochastic dominance, we can
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derive the desired inequalities

FP η1
θ,τ = Pr[θ ≤ Zη1

n ] < Pr[θ ≤ Zη2
n ] = FP η2

θ,τ

and
FNη1

θ,τ = Pr[Zη1
n ≤ τ − θ] < Pr[Zη2

n ≤ τ − θ] = FNη2
θ,τ .

4.1.9 Proofs for the Gaussian Setting (Section 4.1.5)

Proof of Theorem 4.12. First, recall that

Var[Q|Y1, ..., Yn] = 1
1
σ2

Q
+ n

σ2
η

=
σ2
Qσ

2
η

σ2
η + nσ2

Q

.

Solving for n2 in the equation Var1[Q|Y1, ..., Yn1 ] = Var2[Q|Y1, ..., Yn2 ],

σ2
Qσ

2
η1

σ2
η1 + n1σ2

Q

=
σ2
Qσ

2
η2

σ2
η2 + n2σ2

Q

we get
σ2
η1(σ2

η2 + n2σ
2
Q) = σ2

η2(σ2
η1 + n1σ

2
Q)

and hence
σ2
η1n2 = σ2

η2n1.

Extracting n2, we find that n2 = σ2
η2
σ2

η1
n1.

Proof of Theorem 4.13. First, recall that

E[Q|Y1, ..., Yn] = µQ +

 1
σ2

η

σ2
Q

+ n
, . . .

 · (y− µy) = µQ +
[

σ2
Q

σ2
η + nσ2

Q

, . . .

]
· (y− µy)
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Now,
E1[Q|Y1, ..., Yn1 ]−E2[Q|Y1, ..., Yn2 ] =[

σ2
Q

σ2
η1 + n1σ2

Q

, . . .

]
· (y1 − µy)−

[
σ2
Q

σ2
η2 + n2σ2

Q

, . . .

]
· (y2 − µy)

=
σ2
Q

σ2
η1 + n1σ2

Q

n1(ȳ1)−
σ2
Q

σ2
η2 + n2σ2

Q

n2(ȳ2)

=
σ2
Qn1

σ2
η1 + n1σ2

Q

(ȳ1)−
σ2
Qn2

σ2
η2 + n2σ2

Q

(ȳ2)

=
σ2
Qn1

σ2
η1 + n1σ2

Q

(ȳ1)−
σ2
Q

σ2
η2
σ2

η1
n1

σ2
η2 + σ2

η2
σ2

η1
n1σ2

Q

(ȳ2)

=
σ2
Qn1

σ2
η1 + n1σ2

Q

(ȳ1)−
σ2
Qn1

σ2
η1 + n1σ2

Q

(ȳ2)
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Chapter 5

Conclusion and Future Work

5.1 Generalization

In this thesis, we derived uniform convergence for multicalibration notion. We
improved lower bounds from [117] on the sample size needed to guarantee uniform
convergence of multicalibration for both finite and infinite predictor classes. For finite
classes, the bounds now logarithmically depends on the size of the class (as in the
case of uniform convergence for learning). As a result, a dependence of log(|H|) is
essential for the sample complexity, similar to lower bounds on sample complexity for
agnostic PAC learning. For infinite classes, We have improved the lower bounds and
show that it depends linearly in the Natarajan dimension of the class (as in the case
of uniform convergence for multi-class learning).

Moreover, we have demonstrated how to apply the techniques to obtain uniform
convergence of another commonly notions used in Data Science, F-scores, and in
particular for an adjusted notion of F-Scores for subpopulations.

An interesting problem for future work is to enable an infinite number of subpopula-
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tions defined by a class of binary functions with bounded VC-dimension. Deriving
uniform convergence bounds in this setting will require overcoming some new chal-
lenges, since one cannot simply enumerate all subpopulations.

5.2 Reinforcement Learning

5.2.1 Dueling Teams

In the following we discuss several implications of our results as well as directions for
future work.

Checking Condorcet winners beyond additive linear orders As we have briefly
discussed within Section 3.1.5, the question how many duels are necessary to prove
(or disprove) that a given team is a Condorcet winning team (even in an instance with
3k players) remains open for total orders that are not additive linear. A polynomial
upper bound for this number would, together with our algorithm of Theorem 3.8,
yield an algorithm with a polynomial number of duels. We formalize this observation
within the following Corollary.

Corollary 5.1. Let q be the number of duels required to check whether a given team
is a Condorcet winning team within an instance with O(k) players. Then, there exists
an algorithm that identifies a Condorcet winning team within O(kn log(k)+k2log(k)q)
duels.

Lower Bounds For the stochastic and the deterministic setting, there exists a lower
bound of Ω(n− 2k) duels in order to identify a Condorcet winning team: Consider an
adversary that fixes, over time, a reverse lexicographical order, i.e., a duel is decided
against the worst player participating. When the algorithm performs its first duel,
the adversary picks an arbitrary player from the duel, makes him player n and answer
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the query accordingly. Then, whenever the algorithm performs a duel containing a
player which has already been fixed, the adversary decides the duel against the worst
fixed player participating. Otherwise, he picks an arbitrary player from the duel and
fixes him to become player n− t, where t is the number of so far fixed players. As long
as t < n− 2k, the algorithm cannot not identify a Condorcet winning team.

Theorem 5.2. Any algorithm that identifies a Condorcet winning team performs at
least n− 2k duels.

Note that the above theorem is tight in the dependency on n, for small team size
k = o(n). Deriving tighter lower bounds for our team setting, especially the depen-
dency on the team size, is an interesting question for future work.

Regret Bound In this section we provided algorithms to identify, with high proba-
bility, a Condorcet winning team. However, there exist other performance metrics for
online learning theory, which apply in particular in MAB and dueling bandits.
As there exists more than a single Condorcet winning team, it is reasonable to define
regret w.r.t. the best possible team, i.e., A∗

k for our setting, i.e.,

RT =
T∑
t=1

min {PA∗
k
,At − 1/2, PA∗

k
,Bt − 1/2},

where (At, Bt) is the selected duel at time t and T is the time horizon1.
Using the second part of Theorem 3.7, one can choose δ = 1/(Tn) and achieve a
regret bound of

RT = (1−(Tn)−1)·n(∆−2(log(T )+log log ∆−1)+(Tn)−1 = O(n(∆−2(log(T )+log log ∆−1)).
1This definition is based on weak regret for dueling bandits, as defined in [134].
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This follows from the SST of the distinguibilities (Lemma 3.4) implies ∆i ≥ ∆ for all
i ∈ [n].

5.2.2 Departing Bandits

This section introduces a MAB model in which the recommender system influences
both the rewards accrued and the length of interaction. We dealt with two classes
of problems: A single user type with general departure probabilities (Section 3.2.4)
and the two user types, two categories where each user departs after her first no-click
(Section 3.2.5). For each problem class, we started with analyzing the planning task,
then characterized a small set of candidates for the optimal policy, and then applied
Algorithm 11 to achieve sublinear regret.

In the full version [17], we also consider a third class of problems: Two categories,
multiple user types (M ≥ 2) where user departs with their first no-click. We use the
closed-form expected return derived in Theorem 3.42 to show how to use dynamic
programming to find approximately optimal planning policies. We formulate the
problem of finding an optimal policy for a finite horizon H in a recursive manner.
Particularly, we show how to find a 1/2O(H) additive approximation in run-time of
O(H2). Unfortunately, this approach cannot assist us in the learning task. Dynamic
programming relies on skipping sub-optimal solutions to sub-problems (shorter hori-
zons in our case), but this happens on the fly; thus, we cannot a-priori define a small
set of candidates like what Algorithm 11 requires. More broadly, we could use this
dynamic programming approach for more than two categories, namely for K ≥ 2, but
then the run-time becomes O(HK).

There are several interesting future directions. First, achieving low regret for the
setup in Section 3.2.5 with K ≥ 2. We suspect that this class of problems could
enjoy a solution similar to ours, where candidates for optimal policies are mixing
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two categories solely. Second, achieving low regret for the setup in Section 3.2.5
with uncertain departure (i.e., Λ ̸= 1). Our approach fails in such a case since we
cannot use belief-category walks; these are no longer deterministic. Consequently,
the closed-form formula is much more complex and optimal planning becomes more
intricate. These two challenges are left open for future work.

5.2.3 SafeZone

In this section, we have introduced the SafeZone problem. We have shown the it is
NP-hard even when the model is known, and designed a nearly (2ρ, 2k∗) approximation
algorithm for the case where the model and policy are unknown to the algorithm.
Beyond improving the approximation factors (or showing that it cannot be done
unless P = NP ), a natural direction for future work is the following. Given ρ > 0
and an MDP (known or unknown to the learner), find a policy with a small ρ−safe
set, with nearly optimal value. In fact, an efficient solution for this could pave the
way to improve compactness of the policy representation. An interesting observation
that comes up from the empirical demonstration is that different policies result in
different sizes of SafeZones, and that the optimal policy does not necessarily has
the smallest SafeZone.

5.3 Societal Challenges

5.3.1 Candidate Screening

Consider two groups with identically-distributed skills and characterized by different
noise levels in screening. Our results demonstrate that if a regulatory body (e.g.,
policymakers or a regulator) insists on the same number of tests and the same decision
rule for both groups, this would yield higher false positive rates in any threshold

252



policy. As a result, hired candidates from the noisier group would suffer higher rates
of firing. In turn, this might lead employers to erroneously conclude that this group’s
skill level is lower than it actually is. This section presents a policy that handles
this problem by minimizing the false positive rates of both groups, in the form of
a greedy policy. Moreover, the greedy policy is efficient, minimizing the expected
number of tests per hire among all policies that achieve a specified false positive
rate and continue testing every candidates that appear better than the a new one.
However, the dynamic policy will still suffer (as does the simple threshold policy)
from higher false negative rates for the noisier group, violating a notion of fairness
dubbed equality of opportunity in the recent literature on fairness in machine learning
[63]. We addressed this problem by modifying the greedy policy to reject candidate
iff Pr[yi = +1|ŷi,1 . . . ŷi,τ ] < ϵ′ by setting ϵ′ < p. Our greedy policy can be made
forgiving and equalize false negative rates across groups.

Implications for Fairness When it comes to ”business justification”, Civil Rights
regulation in the United States might be open to more than one interpretation
regarding group-based disparities. In disparate impact doctrine, the statistical
disparity of interest, e.g., in the famous 4/5 test concerns the decisions itself. In our
model, if one were to apply a uniform hiring policy, administering the same number
of tests to all applicants and applying the same threshold, a disparate impact might
emerge. By subjecting members of noisier groups to more tests, we can equalize the
confusion matrix entries across groups, seemingly eliminating any disparate impact
concerning outcomes.

However, in this case, both the number of tests administered, and the inferences
drawn from the results depend explicitly on group membership, potentially raising
concerns about disparate treatment and procedural fairness. Another interesting
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question might be to consider what disparate doctrine might have to say about
disparities not in outcomes but in testing procedures.

Our setup motivates a new dimension to the discussion—even when members of the
two groups have statistically identical outcomes, and even putting aside concerns
about group-blindness, members of the more heavily-tested group may experience
adversity. For example, perhaps these candidates, subject to more interviews, would
not be able to interview with as many employers, thus lowering their overall likelihood
of finding employment.

It would be interesting to introduce strategic behavior to our setting and understand
the implications. For example, the candidates might have a utility that depends on
whether they received the job, and disutility associated with how long their interview
process was. Their overall utility can simply the difference between the two. Such a
strategic model will cause some candidates not to apply, and the stream of candidates
applying would have significant different characteristics than the overall population.
Such a strategic setting would pose additional fairness challenges, since the mechanism
would also control applies and not only who is hired.
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כבירה, ומהשפעה אדירה על חיי היום יום שלנו עם השלכות על מגוון  
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