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Abstract. We consider the problem of finding the minimal ǫ-equivalent
MDP for an MDP given in its tabular form. We show that the problem is
NP-Hard and then give a bicriteria approximation algorithm to the prob-
lem. We suggest that the right measure for finding minimal ǫ-equivalent
model is L1 rather than L∞ by giving both an example, which demon-
strates the drawback of using L∞, and performance guarantees for using
L1. In addition, we give a polynomial algorithm that decides whether
two MDPs are equivalent.

1 Introduction

In Reinforcement Learning, an agent wanders in an unknown environment and
tries to maximize its long term return by performing actions and receiving re-
wards. The challenge is to understand how a current action will affect future
rewards. A good way to model this task is the Markov Decision Process (MDP),
which has become the dominating approach in Reinforcement Learning [2, 10].

An MDP includes states, which abstract the environment, actions, which are
available to the agent, and for each state and action a distribution of next states,
the state reached after performing the action in the given state. In addition there
is a reward function that assigns a stochastic reward for each state and action;
we combine a sequence of rewards into a single value, the return. A policy assigns
a distribution over actions for each state.

We focus on the following problem: given an MDP compute an MDP, which
is similar to the original MDP and has smaller state space. Our major require-
ment is that a good policy in the reduced MDP should translate back to a good
policy in the original MDP. This will allow us to consider policies in the reduced
MDP, and be guaranteed a similar performance in the original MDP. This prob-
lem is clearly interesting from the theoretical perspective. Other benefits of a
reduced MDP might be, like any other reduced model, better understandability
by humans and better generalization ability.

A related line of research is using compact models such as factored MDPs
to represent MDPs. Factored MDPs [3] provide a compact representation of
MDPs by using state variables instead of enumerating the entire state space. This
compact representation has the potential of significantly reducing the number
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of states. However, this compact representation does not yield neither an effi-
cient method to compute optimal policies [8] nor an efficient way to represent
the optimal policy [1]. Givan et al. [5] derive an algorithm, which computes an
equivalent minimal model for an MDP, when the MDP is given in its tabular
form. For a factored MDP they show that the minimization problem is NP-Hard
[5] and supply a heuristic that calculates a reduced model, but does not have
any performance guarantee. In [4] they supply a method, which computes some
ǫ-equivalent model in factored MDPs, but they do not show any performance
guarantees or approximation ratio on the resulting MDP.

In this paper we study the problem of finding an ǫ-equivalent model for an
MDP in its tabular form. We show that the right measure of computing an ǫ-
equivalent model is L1, rather than L∞ that was used in [4, 5]. We show that an
optimal policy in an ǫ-equivalent model, with respect to L∞, might be arbitrarily
far from the optimal policy in the original MDP, independent of ǫ. On the other
hand we show that if a policy is optimal in an ǫ-equivalent model with respect to
L1, then its induced policy in the original model is close to the optimal policy.

We also show that computing the minimal ǫ-equivalent MDP for an MDP,
given in its tabular form, is NP-Hard. This holds for both L1 and L∞ norm, and is
done by a reduction from metric k cluster. Given that the problem is NP-Hard,
one would like to derive an approximate solution. Usually in approximation
algorithms we are given one objective function, which we try to minimize. In
bicriteria approximations we are given two objective functions that we try to
minimize. Thus, a bicriteria is an approximate solution in two parameters of the
problem. Our criteria are both the MDP size and the ǫ of the ǫ-equivalence. We
give an approximation algorithm for finding the ǫ-equivalent MDP and prove that
this is an (2

√

|S|,
√

|S|)-approximation. We actually prove that the resulting

MDP is either 0-equivalent and with size no more than 2
√

|S| times the size of

the minimal ǫ-equivalent MDP, or
√

|S|ǫ-equivalent and with size no larger than
the minimal ǫ-equivalent MDP.

Finally, we also present a simple polynomial algorithm which checks whether
two MDPs are equivalent based on the algorithm which computes the minimal
MDP [5].

2 Model

We define a Markov Decision process (MDP) as follows

Definition 1. A Markov Decision process (MDP) M is a 4-tuple (S,A, P,R),
where S is a set of the states, A is a set of actions (A(i) is the set of actions
available at state i), PM (i, j, a) is the transition probability from state i to state j
when performing action a ∈ A(i) in state i, and RM (s, a) is the reward received
when performing action a in state s.

Whenever it is clear from the context we use V π instead of V π
M . Next we give a

definition of MDP equivalence and of an ǫ-homogenous partition.
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Definition 2. An MDP M1 = (S1, A,R1, P1) and MDP M2 = (S2, A,R2, P2)
are ǫ-equivalent with respect to Lk norm if there exist mappings φ1 : S1 → S and
φ2 : S2 → S to MDP M = (S,A,R, P ), such that φ1 and φ2 are surjective and
for every s1 ∈ S1, s2 ∈ S2 such that φ1(s1) = φ2(s2) = s the following holds:

1. ∀a ∈ A

(

∑

s′∈S

(

∑

ŝ;φi(ŝ)=s′ Pi(si, ŝ, a) − P (s, s′, a)
)k

)1/k

≤ ǫ i = 1, 2

2. ∀a ∈ A |Ri(si, a) − R(s, a)| ≤ ǫ i = 1, 2

Definition 3. An MDP M1 = (S1, A,R1, P1) is an ǫ-homogenous partition of
MDP M = (S,A,R, P ) with respect to Lk norm if there exists mapping φ : S →
S1, such that φ is surjective and for every s the following holds:

1. ∀a ∈ A

(

∑

s′∈S

(

∑

ŝ;φ(ŝ)=s′ P (s, ŝ, a) − P1(φ(s), s′, a)
)k

)1/k

≤ ǫ

2. ∀a ∈ A maxs̃:φ(s̃)=s |R(s̃, a) − R1(s, a)| ≤ ǫ

We note that if an MDP Mǫ is an ǫ-homogenous partition of MDP M then
they are ǫ-equivalent. We also note that the minimal equivalent MDP to an MDP
M must be an ǫ-homogenous partition of M with ǫ = 0, and that this MDP is
unique.

A stochastic stationary policy for an MDP assigns, for each state s a prob-
ability for performing action a ∈ A(s). While following a policy π we perform
at time t action at at state st and observe a reward rt (distributed according to
RM (s, a)), and the next state st+1 (distributed according to PM (st, st+1, at)). We
combine the sequence of rewards to a single value called the return, and our goal
is to maximize the return. The discounted return of policy π is V π

M =
∑∞

t=0 γtrt,
where rt is the reward observed at time t. Since all the rewards are bounded by
Rmax the discounted return is bounded by Vmax = Rmax

1−γ .

We define a value function for each state s, under policy π, as V π
M (s) =

E[
∑∞

i=0 riγ
i], where the expectation is over a run of policy π starting at state s.

We define a state-action value function Qπ(s, a) = R(s, a)+γ
∑

s̄ P (s, s̄, a)V π(s̄),
whose value is the return of initially performing action a at state s and then
following policy π.

Let π∗ be an optimal policy, which maximizes the return from any start state.
(It is well known that there exists an optimal strategy, which is a deterministic
policy, see [9].) This implies that for any policy π and any state s we have
V π∗

(s) ≥ V π(s), and π∗(s) = argmaxa(R(s, a)+γ(
∑

s′ P (s, s′, a)maxb Q(s′, b)).
We say that a policy π is an ǫ-optimal if ‖V ∗ − V π‖∞ ≤ ǫ.

3 Markov Decision Process Minimization

Since we build on some of Givan et al. [5] techniques, we describe briefly their
minimization process. We first introduce a few notations and definitions. An
equivalence relation is defined as a transitive binary relation, E. The equivalence
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relation groups similar states in the original MDP and in the reduced MDP and
each equivalence class translates into one state. We often denote by a block
a group of states in a specific equivalence class. Given an MDP, M and an
equivalence relation E ⊆ S × S, an operator I is defined as

I(E) = {(i, j)|R(i) = R(j) ∧ E(i, j) ∧ P (i, i′|E, a) = P (j, i′|E, a)},
where P (i, j′|E, a) =

∑

j:E(j,j′)=1 P (i, j, a). The minimal model is the fixed point

of the process En+1 = I(En), where I(E) ⊆ E.
We define the reward partition as the equivalence relation, E(i, j) = {i, j|

‖R(i, ·) − R(j, ·)‖∞ = 0}. We say that a block B ⊆ S is stable with respect to
block C if every state in B has the same transition probability with respect to
C, i.e., for every i, i′ ∈ B we have P (i, C, a) = P (i′, C, a), where P (i′, C, a) =
∑

j∈C P (i′, j, a). Let B = (B1, . . . , Bm), where if i ∈ Bk then j ∈ Bk ⇐⇒
E(i, j) = 1. We define the procedure SPLIT (Bi, Bj , P ) that replaces the block
Bi by the uniquely determined sub-blocks of Bi, Bi1, . . . , Bik such that each
sub-block is the maximal stable sub-block with respect to Bj . In other words,
all the states s ∈ Bil have the same probability P (s,Bj , a) for every action a
and no two sub-blocks Bil and Bik have the same set of probabilities.

The algorithm of Givan et al. [5] works as follows. It begins by making E0

the reward partition. It then iterates and checks for every pair of blocks if they
are stable; if not, it performs the procedure SPLIT . The algorithm terminates
when all blocks are stable with respect to every other block. The algorithm
clearly terminates, since each SPLIT increases the number of blocks and the
number of blocks is bounded by |S|.
Theorem 1. [5] The minimization problem for MDP, given in its tabular form,
is in P.

4 Hardness of epsilon Equivalence

In [5] it was shown that finding the minimal model is in P . On the other hand
they have shown that finding the minimal (or minimal ǫ-equivalent) model is
NP-Hard for factored MDPs. We show that finding the minimal ǫ-equivalent
model is NP-Hard even for MDPs that are represented in a tabular form. We
use here a variant of the k-center problem known as metric k cluster.

Lemma 1. [6] Let G = (V,E) be a complete undirected graph with edge costs
satisfying the triangle inequality, and let k be a positive integer. Find a partition
of V into sets V1, ..., Vk such that the maximum cost of an edge between two
vertices in the same set is minimized.

We will use different notations and a more restricted problem to simplify the
reduction.

Corollary 1. The following ǫ-cover problem is NP-Complete. Given n points,
X = (x1, ..., xn), where xi is in ℜm, a positive number K and a norm distance,
Lq. Partition the points into K sets, X1, ...XK such that max1≤i≤K p,p′∈Xi

‖p−
p′‖q ≤ ǫ.
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We obtain our theorem by a reduction from the ǫ-cover problem.

Theorem 2. Given an MDP, M, and a positive number K the problem of de-
termining whether there exists an ǫ-homogenous partition, in Lq, of size no more
than K is NP-Complete.

Proof. The problem is clearly in NP. Next we show a reduction from metric
k cluster to this problem. We reduce the n points, x1, ..., xn to MDP M =
(s1, ..., sn) and keep K and ǫ identical in both problems. In M each state has
m actions, the reward function is R(si, aj) = xj

i , where xj
i is the jth coordinate

of xi, and the next state distribution is uniform, i.e. ∀i, j, k P (si, sj , ak) = 1
n .

We show that there exists an ǫ - homogenous partition of size no more than
K if and only if there exists a partition of X into sets X1, ..., XK such that
max1≤i≤K,p,p′∈Xi

‖p−p′‖q ≤ ǫ. We first prove that if there exists an ǫ - homoge-
nous partition of size K then there exists a K cluster. Since the next state distri-
bution is uniform for every state-action pair, then an ǫ - homogenous partition
of the MDP has to be according to the reward. Let B1, . . . , BK be the partition
for the MDP, then we have that max1≤i≤K,s,s′∈Bi

‖R(s, ·) − R(s′, ·)‖q ≤ ǫ and
let X1, . . . , XK be the matching partition in X. Now we show that the partition
that Xi induces on X is an ǫ cover. We observe that

max
1≤i≤K,u,v∈Xi

‖u − v‖q = max
1≤i≤K,u,v∈Xi

(

m
∑

j=1

|uj − vj |q)1/q

= max
1≤i≤K,s,s′∈Bi

(
m

∑

j=1

|R(s, aj) − R(s′, aj)|q)1/q ≤ ǫ.

Using the fact that every block is stable with respect to every block, the proof
of the other direction is identical. ⊓⊔

5 L1 versus L∞

In this section we present an example, which demonstrates the drawback of using
L∞ as measure for an ǫ-homogenous partition of the MDP. On the other hand
we derive performance guarantees for the L1 measure.

Lemma 2. For every ǫ > 0, there exists an MDP M with an ǫ-homogenous
partition, Mǫ, with respect to L∞, such that an optimal policy in Mǫ induces a
policy in M that is arbitrarily far from from the optimal policy.

Proof. Consider the MDPs in Figure 1, where M and Mǫ are ǫ-equivalent for
ǫ = 1/n. There are only two policies in M , πa, which performs action a in state
1 and πu, which performs action u in state 1. Note that in Mǫ both policies are
optimal. We consider in Mǫ the policy, πa, which performs action a in state 1.
The induced policy, πa in M , satisfies V πa

M (1) ≤ 6 for any γ. The optimal policy,

πu, satisfies V ∗
M (1) ≥ Rmaxγ3

1−γ = γ3Vmax. For constant γ the difference can be
arbitrarily large, independent of ǫ. ⊓⊔
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Fig. 1. An example in which two MDPs are ǫ-equivalent in L∞ norm but an optimal
policy in Mǫ is far from optimal in M. Let n = ⌈1/ǫ⌉. The rewards are R(1, u) =
R(1, a) = 0, R(2, a) = R(3, a) = 1, R(2n + 4, a) = Rmax, R(2n + 5, a) = 0 ∀k ∈
{4, 2n + 3} R(k, a) = 2ǫk. In states 2, 3 the next state distribution is uniform. We note
that there are only two policies in M , one performs a at state 1 and other performs u
at state 1. In Mǫ the two policies coincide.

In the next lemma we show that for every policy, πǫ in an ǫ-homogenous
partition of an MDP, with respect to L1 norm, its induced policy, π is at most
ǫVmax

1−γ from the value of πǫ in Mǫ for every state. The proof is done by relying
on the following fact:

Fact 3 For any phase in Value Iteration algorithm we have that if ‖Vt+1 −
Vt‖∞ ≤ ǫ then ‖Vt − V ∗‖∞ ≤ ǫ

1−γ

Lemma 3. Let Mǫ be an ǫ-homogenous partition of MDP M , with respect to
L1 norm, and π any policy in Mǫ, then the induced policy πM on M , that is
πM (s) = π(φ(s)), satisfies

∀s ∈ S |V πM

M (s) − V π
Mǫ

(φ(s))| ≤ ǫVmax

1 − γ

Proof. The proof is done by estimating the value of πM using Value Iteration

with initial value V πM

0 (s) = V π
Mǫ

(φ(s)). Since we use L1 norm, each state can

deviate only in ǫ from its representative state in Mǫ and the difference ‖V πM

0 −
V πM

1 ‖∞ is bounded by ǫVmax. Using the fact that ‖V πM

0 −V πM

1 ‖∞ ≤ ǫVmax and
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Fact 3 we can conclude that

max
s∈S

|V πM

M (s) − V π
Mǫ

(φ(s))| = ‖V πM

0 − V πM

M ‖∞ = ‖V πM

0 − V πM

∞ ‖∞ ≤ ǫVmax

1 − γ
,

where V πM

∞ = V πM

M is the value of πM in M . ⊓⊔

The next lemma shows that the optimal policy in Mǫ induces a nearly optimal
policy in M .

Lemma 4. Let Mǫ be an ǫ-homogenous partition of MDP M , with respect to
L1 norm, then the optimal policy in Mǫ induces an 2ǫVmax

1−γ -optimal policy in M .

Proof. Let σ be the optimal policy in Mǫ and σM be the induced policy in M .

By Lemma 3 we have that maxs |V σM

M (s) − V σ
Mǫ

(φ(s))| ≤ ǫVmax

1−γ . Next we show

that if we use a Value Iteration on M with initial value V M
0 (s) = V σ

Mǫ
(φ(s)) then

we have that

‖V M
0 − V M

∞ ‖∞ = ‖V M
0 − V ∗

M‖∞ ≤ ǫVmax

1 − γ
.

Since we use L1 norm, once again we have that ‖V M
0 − V M

1 ‖∞ is bounded by
ǫVmax. Combining the two parts, we obtain that σM is an 2ǫVmax

1−γ -optimal policy
in M . ⊓⊔

6 Approximation scheme

Since finding the minimal ǫ-equivalent MDP is NP-Hard, we would like to find
an approximate solution to the problem. The natural approximation is to give an
MDP, which is ǫ-equivalent and is K times larger than the minimal ǫ-equivalent
MDP. Unfortunately, we do not present such approximation. We present a bi-
criteria approximation algorithm for finding an ǫ-equivalent model for an MDP.
Usually in approximation algorithms we are given one objective function, which
we try to minimize. In bicriteria approximations two objective functions that we
try to minimize are given. Thus, a bicriteria is an approximate solution in two pa-
rameters of the problem. Our criteria are both the MDP size and the parameter
ǫ in the ǫ-equivalence. We prove that our algorithm is (2

√

|S|,
√

|S|) approxima-

tion with respect to (size, ǫ), that is our MDP might be
√

|S|ǫ-equivalent and

2
√

|S| times larger than the minimal ǫ-equivalent MDP. In fact, for our algorithm

either (1) produces an equivalent MDP, which is 2
√

|S| larger than the mini-

mal size ǫ-equivalent MDP, or (2) produces an MDP which is
√

|S|ǫ-equivalent,
whose size is at most the size of the minimal ǫ-equivalent MDP.

We first give a high level description of our approximation algorithm. We
initially build a graph G = (S,E), where the vertices are the MDP states and
there is an edge between states if their rewards are ǫ-close. After the initialization,
we run in phases. In each phase we check for each edge if it is consistent with
some legal partition. A partition is legal with respect to G if every vertex in it
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Input : MDP M , ǫ > 0 precision

Output : A partition of M to Equivalence Relations

Build a graph G = (S, E), where (s, t) ∈ E if ∀a ∈ A |R(s, a) − R(t, a)| ≤ ǫ;
repeat

Deleted = FALSE;
foreach (s, t) ∈ E do

foreach a ∈ A do

if CheckConsistent(s,t,a,E,S,P) = FALSE then

Deleted = TRUE ;
E = E − (s, t) ;

end
end

end
until Deleted = FALSE ;
Compute C1, . . . , Cl the connected components of G= (S,E);
if maxi Diameter(Ci) ≥

√
S then

Return S
else

Return C = ∪iCi

end

Algorithm 1: An algorithm which calculates an ǫ-equivalent MDP

is connected to every other vertex. If we observe that the edge is not consistent
with any legal partition, then we delete that edge. To check whether an edge
(s, t) is consistent, we compute the connected components of G and see if s and t
have similar next state transition with respect to them. (The detailed procedure
CheckConsistent is formally described in Alg. 2.) We terminate when we cannot
delete any edges. Clearly the algorithm terminates after at most |S|2 phases.
(The Algorithm is formally described in Alg. 1)

Since our algorithm returns an MDP partition, we show how to construct an
MDP from an MDP partition. We note that for an MDP M a partition of S
by itself does not define a unique MDP, but a family of MDPs. This family can
be viewed also as a bounded MDP [7]; we take a different approach and choose
arbitrarily representative MDP for each partition.

Definition 4. Let M = (S,A, P,R) and φ be a mapping from S to S1. Then the
MDP, M1 = (S1, A, P1, R1) induced by (M,φ) is defined as follows. For each s ∈
S1 we choose arbitrarily s′ such that φ(s′) = s. The reward in s ∈ S1 is R1(s, a) =
R(s′, a) and the next state distribution is P1(s, t, a) =

∑

φ(t′)=t P (s′, t′, a).

In the following lemmas we provide correctness proof of Algorithm 1. We first
prove that if s and t are in the same equivalence class in some ǫ-homogenous
partition, then the edge (s, t) is never removed from the graph during Algorithm.
1.

Lemma 5. Let s and t be two states such that there exists an ǫ-homogenous
partition MDP in which s and t are in the same equivalence class, then the edge
(s, t) is never removed from the graph in Algorithm 1.
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Input : state s , state t, action a, Edges between states E, MDP states S,
Next state distribution P

Output : Boolean answer whether s and t are consistent

Compute the connected components of G = (S, E), C1, . . . , Cl;

if
∑

l

i=1
|P (s, Ci, a) − P (t, Ci, a)| ≤ ǫ then

Return TRUE;
else

Return FALSE;
end

Algorithm 2: CheckConsistent(s,t,E,S,P) Procedure

Proof. Let Ck
1 , . . . , Ck

l be the connected components of G at the kth stage and
EC1, . . . , ECm be the equivalence classes of an ǫ-homogenous partition MDP
in which s and t are in the same equivalence class. We prove by induction on
the algorithm steps (number of calls to CheckConsistent) that (1) the edge
(s, t) is never removed (2) Ck

i = ∪ECj⊆Ck
i
ECj for every i, i.e., each connected

component is a union of equivalence classes from an ǫ-homogenous partition
MDP. The basis is due to the fact that the first stage is the reward partition.
We assume that the induction hypothesis holds for the first k stages and prove
for the k + 1 stage. WLOG, we assume that the edge (s, t) is checked at this
stage. By the induction assumption we have that Ck

i = ∪j:ECj⊆Ck
i
ECj for every

i. Therefore, for every action a we obtain the following

l
∑

i=1

|P (s, Ck
i , a) − P (t, Ck

i , a)| =

l
∑

i=1

∣

∣

∣

∣

∣

∣

∑

j:ECj⊆Ck
i

P (s,ECj , a) − P (t, ECj , a)

∣

∣

∣

∣

∣

∣

≤
l

∑

i=1

∑

j:ECj⊆Ck
i

|P (s,ECj , a) − P (t, ECj , a)|

=
m

∑

j=1

|P (s,ECj , a) − P (t, ECj , a)| ≤ ǫ.

We conclude that (s, t) is never removed from the graph if (s, t) are in the same
equivalence class in some ǫ-homogenous partition MDP. Therefore, all states in
an equivalence class form a clique at every stage and each equivalence class is
contained in a single connected component. ⊓⊔

Next we prove that at the end of the algorithm we have a (2
√

S,
√

S)-
approximation. We first show that the size of the resulting MDP is no larger
than 2

√
S the minimal ǫ-equivalent MDP.

Lemma 6. If maxi Diameter(Ci) ≥
√

|S| then there are at least

√
|S|

2 states in
the minimal ǫ-equivalent MDP.
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Proof. Consider the diameter’s path, s1, ..., s√|S|
, of a connected component

C. By Lemma 5 we have that no three states in the path can be in the same
equivalence class. (Otherwise the diameter would have been smaller.) Thus there

are at least
⌊

√

|S|/2
⌋

states in the minimal ǫ-equivalent MDP. ⊓⊔

Next we claim that if we take each connected component as an equivalence
class, then they are ǫD-stable, where D = maxi Diameter(Ci).

Lemma 7. Consider an MDP, M1, which is induced by (M,φ), such that if
s, s′ ∈ Ci in Algorithm 1 then φ(s) = φ(s′). Then we have that M1 is ǫD-
equivalent to M , where D = maxi Diameter(Ci).

Proof. Since φ maps all the states in a connected component Ci to a single state
in M, we let the states of M1 be the connected components. This implies that if
s ∈ Ci then φ(s) = Ci. First we show that for every connected component

∀a∀s, t ∈ Ci |R(s, a) − R(t, a)| ≤ ǫD

We prove it by induction on the length of the path between the states in Ci. For
the basis we have that if the path length between s and t is one, then there is an
edge between them. This implies that maxa|R(s, a) − R(t, a)| ≤ ǫ. Assume the
induction assumption holds for k − 1 and prove for k and let s = s1, . . . , sk = t
be the path between s and t. From the induction assumption we have that
maxa|R(s1, a)−R(sk−1, a)| ≤ (k−1)ǫ and since there is an edge between sk−1 to
sk we have that maxa|R(sk−1, a)−R(sk, a)| ≤ ǫ. Using the triangle inequality we
complete the induction. Next we prove that for any s, t in a connected component
the following holds:

max
a∈A

∑

Ci

∣

∣

∣

∣

∣

∣

∑

ŝ;φ(ŝ)=Ci

PM (s, ŝ, a) −
∑

ŝ;φ(ŝ)=Ci

PM (t, ŝ, a)

∣

∣

∣

∣

∣

∣

≤ ǫD

Fix an action a. We prove by induction on the path length that
∑m

i=1 |P (s1, Ci, a)
−P (sj , Ci, a)| ≤ jǫ, where m is the number of connected component. The basis
of the induction is due to the fact that when the algorithm terminates, it cannot
delete more edges, and therefore for every edge we have that

∑m
i=1 |P (sj , Ci, a)−

P (sj+1, Ci, a)| ≤ ǫ. We assume that the induction assumption holds for k−1 and
prove for k. For a path s = s1, . . . , sk = t in G, we show that

∑m
i=1 |P (s1, Ci, a)−

P (sk, Ci, a)| ≤ kǫ. Since
∑m

i=1 |P (sk−1, Ci, a) − P (sk, Ci, a)| ≤ ǫ and by the
induction assumption we have that

∑m
i=1 |P (s1, Ci, a)−P (sk−1, Ci, a)| ≤ (k−1)ǫ,

we can conclude that
∑m

i=1 |P (s1, Ci, a) − P (sk, Ci, a)| ≤ kǫ. ⊓⊔

Combining Lemma 6 and Lemma 7 we obtain our main theorem.

Theorem 4. Given an MDP M , Algorithm 1 terminates in polynomial time
and returns an MDP partition, φ with induced MDP, Mǫ = (M,φ), that is at
most

√

|S|ǫ-equivalent and with size no larger than 2
√

|S| time the size of the
minimal ǫ-equivalent MDP.
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Input : state s , state t, action a, Edges between states E, MDP states S,
Next state distribution P

Output : Answer whether s and t are consistent

Build a graph with four layres;
The first layer contains s ;
The second layer contains S ;
The third layer contains S ;
The fourth layer contains t;
Connect s to every vertex s′ in the second layer with capacity c(s, s′) =
P (s, s′, a);
If (s′, s′′) ∈ E then connect s′ in the second layer to a vertex s′′ in the third
layer with capacity c(s′, s′′) = 1 ;
Connect every vertex in the third layer to t with capacity c(s′, t) = P (t, s′, a);
Calculate the max flow from s to t;
if max flow < 1 − ǫ/2 then

Return FALSE;
else

Return TRUE;
end

Algorithm 3: CheckConsistent1(s,t,E,S,P) Procedure

6.1 A heuristic Finer Partition

In this section, we suggest a ”better” CheckConsistent procedure. This proce-
dure always performs at least as good as the original CheckConsistent proce-
dure. However, this procedure is more complicated and we could not provide a
better performance grantees using it. The procedure CheckConsistent1 checks
whether an edge (s, t) is consistent by building the graph (in Fig. 2) for each ac-
tion and check if the max flow is close to 1, more precisely if it is at least 1−ǫ/2.
(The detailed procedure CheckConsistent1 is formally described in Alg. 3.) We
also note that the difference between the procedures is that in CheckConsistent
procedure we connect states between the second and the third layer if they are
in the same connected component, while in CheckConsistent1 procedure we
connect them only if they have an edge in G.

7 Markov Decision Process Equivalence

We present a polynomial method to check whether two MDPs are equivalent.
Our algorithm is very simple and uses any procedure to compute the minimal
MDP, which we call minimal equivalent MDP. For instance such a procedure is
given in [5].

Assuming the algorithm for finding the minimal equivalent model is polyno-
mial in the MDP size as in [5], then our algorithm is polynomial as well.

Lemma 8. Algorithm 4 runs in polynomial time in the MDP size.
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....

(a)

s’

S

s

..............

..............

S

Fig. 2. The graph built by CheckConsistent procedure

Next we show the correctness of the algorithm. We first show that any two
states from the same minimal MDP D1 or D2 have to be in the same equivalence
relation of M .

Lemma 9. No equivalence relation in the minimal partition of M contains two
states from either D1 or D2.

Proof. We let D1 = (s1
1, ..., s

m
1 ) and let D2 = (s1

2, ..., s
m
2 ). The proof is done

by contradiction. Assume there are two states from D1, si
1 and sj

1, in the same
equivalence class in M , then we can construct to M1 an equivalent model, which
consists of at most size(D1) − 1 states. Since si

1 and sj
1 are stable with respect

to any other block in D, then they are stable with respect to the projection of D
to D1 and can be in the same equivalence class. This contradicts the minimality
of D1. ⊓⊔

Lemma 10. MDPs M1 and M2 are equivalent if and only if all the equivalence
relations of D consists only pairs (si, sj) for which si ∈ D1 and sj ∈ D2, i.e.
size(D) = size(D1) = size(D2).

Proof. (a) ⇐
Trivial and we have a mapping from M1 and M2 to D.
(b)⇒
We assume that M1 and M2 are equivalent; thus their minimal models, D1 =
(s1

1, ..., s
m
1 ) and D2 = (s1

2, ..., s
m
2 ), satisfy ∀i si

1 ≡ si
2. (we do not assume that we

know which state in D1 corresponds to which state in D2).
Now we follow the construction of the minimal model as appears in [5]. We

prove by induction on the construction steps that for each block B the following
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Input : MDPs M1, M2

Output : Answer whether the MDPs are equivalent

Calculate D1, the minimal Equivalent MDP of M1;
Calculate D2, the minimal Equivalent MDP of M2;
if (size(D1) 6= size(D2)) then

Return FALSE;
end

Calculate D, the minimal Equivalent MDP of M = D1 ∪ D2 = (S1 ∪ S2, R1 ∪
R2, P1 ∪ P2, A);
if (size(D) = size(D1)) then

Return TRUE;
else

Return FALSE;
end

Algorithm 4: An algorithm which finds whether two MDPs are equivalent

holds
∀i : si

1 ∈ B ⇐⇒ si
2 ∈ B

For the induction basis. Since for any i states si
1 and si

2 must have the same
reward, then they must be in the same block in the initial reward partition.
Next we assume that the claim holds for any j < k and prove for k. We assume
that in the kth step we check the stability of block B which consists si

1 and
si
2 with respect to block C. By the induction assumption for every action a we

have P (si
1, C, a) = P (si

2, C, a) and since SPLIT (B,C, P ) replaces the block B
by the uniquely determined sub-blocks Bi, we have that si

1 and si
2 will be in

the same sub block after the kth step. Together with Lemma 9 we conclude the
lemma. ⊓⊔

By Lemma 10 we have that Algorithm 4 checks whether two MDPs are
equivalent and by Lemma 8 we have that it is polynomial. Therefore, we derive
the following theorem.

Theorem 5. The equivalence problem for MDPs, given in their tabular form,
is in P.
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