Problem 1

The system is composed of a linear system to be stabilized, a non-linear actuator and some fast stable unmodeled dynamics of the actuator. The general detailed problem description is singled out.

1. The system to be stabilized: $\dot{w}=A w+B v, \quad w \in \mathbb{R}^{3}, v \in \mathbb{R}$ is the input,

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
2 & -1 & 1 \\
1 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

2. The actuator output is defined as $v=x_{1}$, where the actuator equations are

$$
\begin{aligned}
& \dot{x}_{1}=\cos t+1-x_{2}, \\
& \dot{x}_{2}=a\left(x_{1}, x_{2}, x_{3}, t\right)+\left(2+\cos x_{3}\right) u_{d}, \\
& \dot{x}_{3}=\sin \left(2 x_{1}+x_{3}+4 t\right)-x_{3}+u_{d} .
\end{aligned}
$$

3. The "unmodeled" (singular) dynamics (actually a part of the actuator) is for the simulation presented by the equation

$$
\dddot{u}_{d}=-2 \varepsilon^{-1} \ddot{u}_{d}-\varepsilon^{-2} \dot{u}_{d}-\varepsilon^{-3}\left(u_{d}-u\right) .
$$

Here $\varepsilon>0$ is a small parameter. The smaller $\varepsilon>0$ the faster the dynamics is, and the closer its output u_{d} is to the input u.
4. $a(x, t)$ represents the system uncertainty. For a single student (I) and for a pair of students (II): for both $a=\cos \left(x_{1}+x_{3}\right)$ and $a=\cos \left(x_{1}-x_{3}\right)$ the same controller is to provide for the exact actuator tracking of the two command signals

$$
\begin{align*}
& v_{c}(t)=\cos 2 t-\sin t+1 \tag{1}\\
& v_{c}(t)=\cos t-0.5 \sin 2 t+0.01 \cos 20 t
\end{align*}
$$

