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Abstract Sliding mode control (SMC) is known for its efficacy and robustness, but
also features the notorious chattering effect both in applications and simulation.
The new control-discretization method diminishes the chattering while preserving
the system trajectories, accuracy and insensitivity to matched disturbances. The
unavoidable restrictions of low-chattering SMC discretization methods are discussed.
Computer simulation demonstrates visual chattering removal.

1 Introduction

Sliding-mode (SM) control (SMC) [56, 59, 60] is widely used in control of uncertain
systems. For this end a proper constraint σ = 0 is chosen to be exactly kept, where
σ is some (often virtual) output available in real time. The constraint σ = 0 is kept
by high-frequency control switching preventing any deviation of σ from 0, and the
closed system is said to be in SM. As a result, SMC suppresses system uncertainties
corresponding to bounded disturbances in the control channel, which results in the
high overall system performance. The relative degree of the output σ defines the SM
order [32, 33, 56].
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Unfortunately, SMC also can induce dangerous system vibrations (the chattering
effect) due to the switching combined with discrete noisy sampling and/or parasitic
dynamics [6, 8, 36]. Three main methods broadly used for alleviating these vibrations
are SM regularization, dynamic extension (artificially increasing the relative-degree
[27]), and SMC discretization specially adjusted to lower vibrations.

SM regularization replaces relays with some continuous (”sigmoid”) approxima-
tions [59]. It actually introduces a local singular perturbation. As the result the high
SM accuracy and the dynamics insensitivity to matched disturbances are partially
destroyed. Moreover, the chattering due to the discrete noisy sampling is amplified.

The second method, dynamic extension, adds integrators into the feedback, and
requires application of high-order SM (HOSM) control (HOSMC) [32, 57, 58].
Such HOSMC indeed establishes and keeps constraints of any relative degrees and is
capable of significantly diminishing the chattering [4, 33, 36]. In fact, in that case the
discontinuous control derivative suppresses the derivatives of the uncertain matched
disturbance. Correspondingly, only smooth matched disturbances are removable,
and higher-order derivatives of σ turn into new system states to be estimated in real
time. Also the recently proposed integral-action method [45] suffers of a similar
information deficiency.

This paper studies low-chattering discretization methods remaining ”faithfull” to
the original discontinuous system dynamics.

In the sequel by discretization we mean replacing the original continuous-time
dynamic system or some of its subsystems with discrete-time counterparts. The
ultimate requirement is that the solutions and the trajectories of the resulting hybrid
system converge to the solutions and the trajectories of the original system, as the
maximal discretization time interval vanishes.

That formulation is intentionally vague in order to cover most of currently avail-
able discretization methods. This paper studies finite-dimensional systems and the
corresponding discretized solutions uniformly converge to the theoretically estab-
lished ideal continuous-time solutions over each closed time interval. The explicit
dependence of the obtained solutions on the sampling/discretization time step sepa-
rates the discretization from the first two methods.

Note that, generally speaking, the chattering due to sampling noises [36] is only
reducible at the cost of significant performance degradation. Indeed, one cannot dis-
tinguish output varying due to sampling noises from the actual state variations. Also
high-frequency internal system vibrations all but assure its chattering independently
of applied chattering-reduction methods.

Traditional discretizations of discontinuous systems employ the (explicit) Eu-
ler method, and usually result in significant chattering [16]. Implicit discretization
methods [1, 9, 10, 12, 26, 49] develop special Euler-method modifications to resolve
the issue.

The traditional Euler discretization can be described as the one-step forwards-
in-time recursion, which is repeated at each sampling/discretization time step. That
discretization is used either for the numeric simulation of a closed-loop system,
or for determining the next control injection value in real-time applications. In the
latter case the input makes use of discretely sampled noisy outputs. Much more
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advanced methods, like Runge-Kutta methods, are not available if the dynamics are
discontinuous or even only non-smooth.

The implicit Euler procedure corresponds to the above Euler recursion repeatedly
applied backwards in time at each successive step in the normal forwards-in-time
direction. In practice it means solving the Euler recursion equation for the unknown
future system state at each integration/sampling time instant. The method theoreti-
cally requires the knowledge of the exact mathematical system model and numerically
solving nontrivial equations at each discretization time step. The algorithm indeed
suppresses the chattering of smooth switched systems in the absence of sampling
noises, since the moment when the trajectory enters the SM is predicted in advance,
and, starting from that moment, the SM motion is driven by the standard smooth
Filippov SM dynamics.

Unfortunately, in reality such exact model knowledge is mostly not possible. The
obstacle is overcome by some short-time approximate state prediction, and using
set-valued functions instead of discontinuities. The approach invokes some beautiful
mathematics [11, 26, 29, 30, 31, 47, 48, 61]. Such semi-implicit methods still in-
evitably assume a sufficiently detailed system model and the sampling step known in
advance. They are especially effective for the first-order SMs, but higher-order SM
applications are also known [9, 10, 50]. The realization for higher relative degrees
might become complicated due to repeated numeric solutions of nonlinear algebraic
equations. These numeric procedures often also prevent accurately estimating the
system accuracy due to sampling noises.

This paper further develops a novel simple discretization approach [23] to the Fil-
ippov dynamics [18]. The method preserves the continuous-time system trajectories
and accuracy asymptotics, it also does not cause performance degradation. Similarly
to the above methods it still depends on the control structure, but that dependence is
much weaker.

Only standard SMC uncertainty conditions are imposed for any relative degrees
and SM orders, the sampling periods can be unknown and variable. The real-time
discretization recursion step is always described by analytic formulas developed in
advance. The procedure does not involve on-line numerical solutions of equations.

Utilizing this approach, we have recently proposed simple low-chattering dis-
cretizations of SM-based filtering differentiators [25], and have found proper para-
metric sets for these differentiators up to the order 12.

In the following we develop low-chattering discretizations for two families of
arbitrary-order homogeneous SM controllers [14], as well as of the twisting con-
troller [32]. Furthermore, the method has been recently extended [24] to the compli-
cated case of ”recursive” (nested) SMs [33] (not covered by this chapter). In all cases
only the standard SMC uncertainty conditions are imposed. In the output-feedback
format the new scheme utilizes the above low-chattering discrete differentiators [25].
The simplicity and the efficacy of the method is validated by extensive computer
experiments.
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Notation1. Let sat s = max[−1,min(1, s)]. We use the widely-accepted special
power function ⌊·⌉m = | · |m sign(·), m ≥ 0. The norm ||x|| stays for the standard
Euclidean norm of x, Bε = {x| ||x|| ≤ ε}, correspondingly ||x||h is a homogeneous
norm, Bhε = {x| ||x||h ≤ ε}.

A function of a set is the set of function values on this set. Let a ⋄ b be a binary
operation for a ∈ A, b ∈ B, then A ⋄B = {a ⋄ b|a ∈ A, b ∈ B}.

Depending on the context, we use the same notation
→
ξ k for both (ξ, ξ̇, ..., ξ(k)) and

(ξ0, ξ1, ..., ξk). The finite-difference operator δjA = A(tj+1)−A(tj) is introduced
for any sampled function A(tj).

2 Discontinuous dynamic systems

Recall a few notions2.
Let TRnx stay for the tangent space to Rnx , and TxRnx denote the tangent space

at the point x ∈ Rnx . Consider the differential inclusion (DI)

ẋ ∈ F (x), x ∈ Rnx , F (x) ⊂ TxRnx . (1)

As usual, solutions of (1) are defined as locally absolutely-continuous functions x(t),
satisfying DI (1) for almost all t.

Note that whereas the right-hand side of (1) is often assumed embedded in Rnx

[27, 18, 52], we need the tangent-space formalism for the homogeneity considerations
(see the Appendix).

We call a differential inclusion (DI) (1) Filippov DI, if the right-hand vector set
F (x) is non-empty, compact and convex for any x, andF is an upper-semicontinuous
set-valued function of x [18, 34]. The upper-semicontinuity of F means that the
maximal distance of the vectors of F (x) from the vector set F (y) tends to zero as x
approaches y.

Solutions of the Filippov DIs feature most of the usual properties including the
existence of a local solution for the Couchy problem, and solutions’ extendability
till the boundary of a compact region. Naturally, solutions are not unique, but the
solutions still continuously depend on the right-hand side of (1). More important is
that, in fact, they continuously depend on the graph of the DI [18].

Consider a differential equation (DE) ẋ = f(x), x ∈ Rnx , with a locally es-
sentially bounded Lebesgue-measurable right-hand side f : Rnx → TRnx . It is
understood in the Filippov sense [18], if its solutions are defined as the solutions of
the special DI ẋ ∈ KF [f ](x) for

1 Notation is reprinted from the papers [21, 23] by authors with the permission by Springer Nature
and IEEE.
2 Notions and notation introduced here are standard and reprinted from the papers [21, 23] by
authors with the permission by Springer Nature and IEEE.
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KF [f ](x) =
⋂

µLN=0

⋂
δ>0

co f((x+Bδ)\N). (2)

Here co denotes the convex closure, whereas µL stays for the Lebesgue measure.
Formula (2) introduces the famous Filippov procedure, and the corresponding DI

ẋ ∈ KF [f ](x) is a Filippov DI [18]. In the sequel in the non-autonomous case we
add the virtual coordinate t, ṫ = 1.

Filippov solutions satisfy all widely accepted alternative definitions for solutions
of discontinuous dynamic systems. Actually they constitute the minimal set of such
solutions.

The graph Γ (F ) of the DI (1) over the domain G ⊂ Rnx is defined as the set of
pairs Γ (F ) = {(x, ξ) | x ∈ G, ξ ∈ F (x)}. In spite of Γ (F ) ⊂ Rnx × TRnx , it is
locally topologically isomorphically embedded in R2nx for any fixed coordinates.

Let G be closed, and F (x) be nonempty, compact and locally bounded for any
x ∈ G, then F is upper-semicontinuous in G if and only if Γ (F ) is closed [18].
Furthermore, if F is upper-semicontinuous and G is compact, then also Γ (F ) is
compact [18]. In other words, Filippov’s procedure generates the minimal convex
closure of the original DE graph (Fig. 1).

Fig. 1 Filippov procedure. a: Graph Γ (f) of the DE ẋ = f(x) = 1 − 2 signx. b: Graph of the
corresponding Filippov inclusion.

The set of solutions for the Filippov DI (1) defined over the segment [a, b],
a ≤ 0 ≤ b, for initial conditions x(0) within a fixed compact set Ω ⊂ Rnx ,
x(0) ∈ Ω, is compact in the C-metric. Moreover, the points of the corresponding
trajectories constitute a compact set in Rnx .

In the usual case when a function ϕ is continuous almost everywhere, the set
KF [ϕ](x) is the convex closure of the limit values limk→∞ ϕ(yk) obtained along all
possible continuity-point sequences yk approaching x.
Approximation of solutions. A locally absolutely-continuous function ξ : I → G
is further called a δ-graph-approximating (δ-GA) solution of the Filippov DI (1) over
the closed domain G ⊂ Rnx , δ ≥ 0, I ⊂ R, if it satisfies (ξ(t), ξ̇(t)) ∈ Γ (F ) +Bδ

for almost all t ∈ I . The time interval I here can be open, one-side-open or closed,
finite or infinite.

In the case of the compact time interval I and any ε > 0 there exists δ > 0 such
that every δ-GA solution of the Filippov DI (1) defined over I in a closed region
G ⊂ Rnx is C-metric distanced by not more than ε from a solution of DI (1). Vice
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versa, if δk → 0, then any sequence of δk-GA solutions has a subsequence which
uniformly converges to a solution of (1) over I [18].

Stability Notions. A point x0 ∈ Rnx is termed the equilibrium of the Filippov DI
(1), if the constant function x(t) ≡ x0 satisfies it. The equilibrium x0 is (Lyapunov)
stable, if each solution starting in some its vicinity ||x(0) − x0|| < δ0 at t = 0 is
extendable till infinity in time, and for any ε > 0 there exists such δ > 0, δ ≤ δ0,
that any solution x(t) satisfying ||x(0)− x0|| < δ satisfies ||x(t)− x0|| < ε for any
t ≥ 0.

A stable equilibrium x0 is called asymptotically stable (AS), if any solution x(t)
starting in some its vicinity satisfies limt→∞ ||x(t) − x0|| = 0. It is globally AS if
limt→∞ ||x(t)− x0|| = 0 for any x(0) ∈ Rnx .

An AS equilibrium x0 is called finite-time (FT) stable (FTS), if x0 is AS, and
for each initial condition x(0) from some vicinity of x0 there exists such a number
T ≥ 0 that x(t) ≡ x0 for any t ≥ T . It is called globally FTS, if such T exists
for any initial condition x(0) ∈ Rnx . The equilibrium x0 is termed fixed-time (FxT)
stable (FxTS) [51, 55, 54], if it is globally FTS and there is an upper transient-time
constant bound T > 0 valid for all solutions and initial conditions.

Locally (globally) AS autonomous Filippov DIs possess proper local (global)
smooth Lyapunov functions [13].

3 Discretization of Filippov dynamic systems

In this section we introduce a new simple discretization method. Let the controlled
system ẋ = X(t, x, u) have the output σ ∈ Rns . Consider a general closed-loop
system

ẋ = X(t, x, u1, u2), x ∈ Rnx , u1 ∈ Rnu1 , u2 ∈ Rnu2 ,
u̇1 = U1(t, x, u1, u2, σ(t, x)), u2 = U2(t, u1, σ(t, x)),

(3)

with a general-form output feedback, locally bounded and Lebesgue-measurable X
locally bounded and Borel-measurable functions U1, U2.

Let the system be understood in the Filippov sense, and the corresponding Filippov
DI be

d
dt (t, x, u1)

T ∈ Ftxu(t, x, u1). (4)

Let td = {tj} = t0, t1, ... be the sequence of sampling time instants, tj <
tj+1, τj = tj+1 − tj , where tj ∈ [ta, tb]. Let supj τj ≤ τ , where τ is called the
discretization density of td. Assume that such sampling-time sequences exist for any
density τ > 0.

A discretization of the closed-loop system (3) is further defined as any algorithm
producing δ(td)-GA solutions of the corresponding Filippov DI (4) which converge
to its solutions as the sampling density τ vanishes.

There are two natural types of discretization: the discretization of the whole
system corresponding to the computer simulation, and the feedback discretization
leaving the continuous-time system dynamics intact. The latter models practical
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applications and results in a hybrid system of the form

ẋ = X(t, x, u1, u2), x ∈ Rnx , u1 ∈ Rnu1 , u2 ∈ Rnu2 ,
u̇1 = U1d(t, x, u1(tj), σ(tj , x(tj)), τ, τj), t ∈ [tj , tj+1), j = 0, 1, ...,
u2 = U2d(tj , u1(tj), σ(tj , x(tj)), τ, τj),

(5)

where U1d, U2d are some discretized controls replacing U1, U2. The following the-
orem is a direct corollary of the above Filippov results ( Fig. 2a).

Theorem 1. Let the right-hand side of (5) be distanced by not more than δτ ≥ 0
from the graph Γ (Ftxu) of the Filippov DI (4) over a compact set Ω ⊂ Rnx+nu1+1,
and δτ depend on the discretization density τ and tend to 0 as τ → 0. Consider
the set of solutions for (5) (discretized solutions) taking initial values in a compact
subset Ω0, (t0, x(t0), u1(t0)) ∈ Ω0 ⊂ Ω, defined over a fixed time segment [ta, tb],
t0 ∈ [ta, tb], and staying in the region, (t, x(t), y(t)) ∈ Ω, for t ∈ [ta, tb]. Then
these solutions uniformly converge to the set of solutions of (4) as τ → 0.

A theorem similar to Theorem 1 holds provided the discretization is extended to
the closed-loop dynamics of the whole state (computer simulation case).

Remark. It follows from Theorem 1 that one can try any reasonable discretization
of a system without risking its destruction or performance degradation. It is a great
feature for practical implementation.

On the other hand, the chattering attenuation proof is often complicated, since
the very chattering notion is vague, and the criteria are only qualitative [36].

Neither the vibration magnitude, nor its frequency, or both of them do determine
the chattering intensity. That is why all chattering reduction methods usually only
contain the proof of the system stability, and, sometimes, the convergence of the
solutions to the ideal ones. No general formal claims of the chattering removal can
be formulated. In particular, basic proven results for the implicit Euler discretization
are reducible to the system asymptotic-stability preservation and robustness with
respect to certain disturbances. The accuracy in the presence of noises is usually
experimentally estimated.

In the following we demonstrate that a proper simple feedback discretization can
significantly diminish the system chattering in the absence of noises, or when the
noises are small (usually very small). Note once more that in general it is not possible
to remove the chattering caused by sampling noises.

3.1 Example: alternative discretization of relay control

Note that a general discretization of the first-order SMC is considered as a simple
particular case in Section 5. Consider the scalar SMC scalar system

ẋ = h(t) + g(t)u, u = −2 signx; (6)
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The graph of the closed-loop system (6) for h = g = 1, f = h+ gu is shown in Fig.
1a, while the graph of the corresponding Filippov DI appears in 1b. It contains the
vertical segment [−1, 3] at x = 0.

According to Theorem 1 we are to choose a proper value (selector) of ẋ(tj) for
each Euler step

x(tj+1) = x(tj) + ẋ(tj)τj , 0 < τj ≤ τ,
(x(tj), ẋ(tj)) ∈ Γ (KF (f)) +Bε(τ), limτ→0 ε(τ) = 0,

(7)

providing for reasonably smooth convergence of (x(tj), ẋ(tj)) to an infinitesimally
small vicinity of 0 ∈ R2 or even asymptotic convergence to 0 for each sampling
density τ (Fig. 2a).

Let now τ > 0 be small, and choose some k0 ≥ 0. Replace the vertical segment
with a thin vertical rectangle of the width 2k0τ obtaining the new Filippov DI

h(t) = 1, g(t) = 1,

ẋ ∈

{−1} for x > k0τ,
[−1, 3] for |x| ≤ k0τ,
{3} for x < −k0τ.

(8)

The graph of the DI (8) obviously lies inside the ”swelled” graph Γ (KF (f))+Bε

for ε = k0τ (Fig. 2a).
Assign the values ẋ(tj) from the inclusion (8). According to Theorem 1 differently

choosing k0 ≥ 0 and ẋ(tj) obtain different discretization schemes.
The standard Euler discretization of (6) corresponds to k0 = 0 (Fig. 2b),

x(tj+1) = x(tj) + (1− 2 signx(tj))τj . (9)

The simple alternative discretization

x(tj+1) = x(tj) + sat
(

|x(tj)|
|2 sign x(tj)−1|τj

)
(1− 2 signx(tj))τj (10)

steers x(t) to 0 in finite time (FT) and corresponds to k0 ≥ 3 (Fig. 2c). It requires
the exact knowledge of the system.

Another alternative discretization,

x(tj+1) = x(tj) + [h(tj) + g(tj)u(tj)]τj , u(tj) = −2 sat
(

x(tj)
4τ

)
, (11)

corresponds to k0 ≥ 4 and asymptotically stabilizes the system (6) for h = g = 1
(Fig. 2d).

Moreover, scheme (11) remains effective for any h(t) ∈ [−1, 1], g(t) ∈ [1, 1.5],
in which case x(t) converges into a vicinity of zero. The equality x(t) = − τ

4
h(t)
g(t) +

O(τ2) is kept, provided the equivalent control ueq = −h/g and its derivatives
u̇eq, üeq are bounded, |ueq| ≤ const < 2. Any k0 > 3 corresponds to the scheme.
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Fig. 2 First-order SMC (6) for h = g = 1 and its discretizations. a: The proposed discretization
method for ẋ = f(x) = 1 − 2 signx. b: The standard Euler discretization (9). c: Alternative
discretization (10) utilizing the knowledge of the system provides for the FT stability. d: Alternative
discretization (11) is effective for any h, g, |h| ≤ 1, |g| ∈ [1, 1.5] and provides for the asymptotic
stability for h = g = 1.

The discretized control of (11) also stays effective for the continuous-time system
(6) (see Section 5). Obviously one can propose many other low-chattering discretiza-
tion schemes for the relay control.

4 Homogeneous output regulation

The natural way of implementing the proposed discretization method is local in time
and state (Theorem 1). A system homogeneity (see the Appendix) extends the system
features from any vicinity of the origin to the whole state space. Correspondingly the
homogeneity allows extending any system treatment including discretization to the
whole space [50]. Unfortunately effective discretization still depends on the structure
of the concrete systems and/or controllers.

In the following we introduce the standard SMC problem and the concrete homo-
geneous single-input single-output (SISO) SM controllers [14] to be discretized in
the sequel.
Standard SMC problem [33]. Let the dynamic system be

ẋ = a(t, x) + b(t, x)u, σ = σ(t, x), (12)

where x ∈ Rn, a : Rn+1 → TxRn, b : Rn+1 → TxRn and σ : Rn+1 → R are
uncertain smooth functions, u ∈ R is the control. The output σ might, for example,
be a tracking error.
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Solutions of (12) are understood in the Filippov sense, which allows application
of discontinuous controls u(t, x). For simplicity any solution of (12) is assumed
forward complete (i.e. extendable in time till infinity), provided the corresponding
control function of time u(t, x(t)) stays bounded along the solution x(t).

System (12) is assumed to have a constant relative degree r [27]. It means that

σ(r) = h(t, x) + g(t, x)u, (13)

holds, where the function g does never vanish [27]. Traditionally for SMC smooth
functions h(t, x) and g(t, x) are assumed unknown, but bounded and satisfying the
conditions

|h(t, x)| ≤ C, 0 < Km ≤ g(t, x) ≤ KM . (14)

where C,Km,KM > 0, as well as r ≥ 1, are the problem parameters.
The SMC task is to establish and keep the constraint σ ≡ 0.
Obviously, the uncertain dynamics (13), (14) imply the quite certain DI

σ(r) ∈ [−C,C] + [Km,KM ]u. (15)

Denote →
σ k = (σ, σ̇, . . . , σ(k)) ∈ Rk+1. Introduce some discontinuous SMC

u = αu∗r(
→
σ r−1). (16)

The mode σ(t, x(t)) ≡ 0 is further called rth-order SM (r-SM) [32, 33] if
the corresponding r-SM set →

σ r−1 = 0 locally or globally is the integral set of
the Filippov DE (12). Provided the r-SM set is an attracting forward-invariant
set, controller (16) is called r-SM controller (r-SMC further stays for both ”r-SM
controller” or ”r-SM control”) .

In particular, due to their form, the following control is called the ”rational”
r-SMC [14],

u∗r = uQr(
→
σ r−1) = −

⌊
σ(r−1)

⌉ 1
1 + βr−2

⌊
σ(r−2)

⌉ 1
2 + ...+ β0⌊σ⌉

1
r

|σ(r−1)| 11 + βr−2|σ(r−2)| 12 + ...+ β0|σ|
1
r

, (17)

whereas the next one is the ”relay” r-SMC [14],

u∗r = uSr(
→
σ r−1) = − sign

[⌊
σ(r−1)

⌉ 1
1

+ βr−2

⌊
σ(r−2)

⌉ 1
2

+ ...+ β0⌊σ⌉
1
r

]
.

(18)
Both controllers (17), (18) establish and keep the r-SM σ = 0 for the same properly
chosen parametric set β0, ..., βr−2 > 0, whereas the parameter α > 0 is taken large
enough, but different for uQr and uSr. Naturally, α > 0 equals the magnitude of the
control.

The value of uQr(0) is defined voluntarily, for it does not affect the Filippov
solutions (2). Note that in the both cases get u∗1 = − signσ for r = 1.
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Obviously the rational control (17) is continuous everywhere except →
σ r−1 = 0.

Such controls are called quasi-continuous (QC) [35] (see the Appendix). Contrary to
that the discontinuity set uQr = 0 of the relay controller is comprised of subsurfaces
occasionally possessing infinite gradients. Hence, during the transient control (18)
cannot keep uQr = 0 in SM at such points, nevertheless, temporary SMs uQr = 0
can arise over some time intervals.

Correspondingly, solutions of (12), (16), (14) satisfy the resulting Filippov DI

σ(r) ∈ [−C,C] + α[Km,KM ]KF [u∗r](
→
σ r−1). (19)

Obviously these controls require the availability or the real-time estimation of r− 1
derivatives σ̇, ..., σ(r−1).

Further any continuous-time (possibly discontinuous) feedback control in DIs is
assumed replaced by the result of its Filippov procedure (2).

Assigning the weights deg σ(i) = r − i renders DI (19) homogeneous of the
homogeneity degree (HD) −1, −deg t = −1 (see the Appendix [34]). Obviously
deg σ(r) = deg u∗r = 0. Assume that the sampling-noise magnitude and the sam-
pling time period do never exceed ε0 ≥ 0 and τ > 0 respectively. Then the homo-
geneity implies that the accuracy [34]

|σ(i)| ≤ µiρ
r−i (20)

is established in FT and kept for some constants µi > 0 and ρ = max[τ, ε
1/r
0 ].

Formula (20) is also correct for sampling in continuous time, τ = 0, for possibly-
different coefficients µi.

4.1 Differentiation and filtering based on SMs

SMC technique traditionally requires differentiation of the sliding variable3.
Let Lipnd

L stay for the set of all scalar functions ϕ : R+ → R, R+ = [0,∞),
possessing Lipschitzian ndth derivative with the Lipschitz constant L > 0. It implies
that |ϕ(nd+1)| ≤ L holds for almost all t ∈ R+.

Let the sampled input signal f(t), t ≥ 0, be of the form f(t) = f0(t) + η(t),
where f0 ∈ Lipnd

L is the unknown basic signal to be differentiated and η(t) is a
Lebesgue-measurable noise.

The numbers L, nd are assumed known, and the function f(t) is available (sam-
pled) in real time.

An ndth-order differentiator, nd ≥ 0, is defined as any algorithm producing
functions z0, ..., znd

: R+ → R. Functions zi(t), i = 0, 1, ..., nd, are assumed to
have the sense of the real-time estimations for f (i)

0 (t).

3 Some notions and notation introduced here are reprinted from the papers [21, 23] by authors with
the permission by Springer Nature and IEEE.
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Let a differentiator be exact after some FT transient on all inputs f = f0 ∈
Lipnd

L for η(t) ≡ 0. Then it is called asymptotically optimal [42], if for some
µi > 0, any f0 ∈ Lipnd

(L), any ε0 ≥ 0, and any bounded Lebesque-measurable
noise η, ess sup |η(t)| ≤ ε0, it in FT establishes the differentiation accuracy

|zi(t)− f
(i)
0 (t)| ≤ µiL

i
nd+1 ε

nd+1−i
nd+1

0 , i = 0, 1, ..., nd. (21)

Accuracy asymptotics (21) are proved to be the best possible for bounded noises [42].

It is also proved there that µi ≥ 2
i

nd+1 always holds, i = 0, ..., nd. Arbitrary-order
asymptotically-optimal differentiators were for the first time proposed in [33], and
they are SM-based.

The filtering differentiator [43, 41] of the differentiation order nd ≥ 0 and the
filtering order nf ≥ 0 has the form

ẇ1 = −λ̃nd+nf
L

1
nd+nf+1 ⌊w1⌉

nd+nf
nd+nf+1 + w2,

...

ẇnf−1 = −λ̃nd+2L
nf−1

nd+nf+1 ⌊w1⌉
nd+2

nd+nf+1 + wnf
,

ẇnf
= −λ̃nd+1L

nf
nd+nf+1 ⌊w1⌉

nd+1

nd+nf+1 + wnf+1,
wnf+1 = z0 − f(t),

(22)

ż0 = −λ̃nd
L

nf+1

nd+nf+1 ⌊w1⌉
nd

nd+nf+1 + z1,
...

żnd−1 = −λ̃1L
nd+nf

nd+nf+1 ⌊w1⌉
1

nd+nf+1 + znd
,

żnd
= −λ̃0L sign(w1), |f (nd+1)

0 | ≤ L.

(23)

It also features strong noise-filtering capabilities [41, 25]. In particular, it filters out
even unbounded noises, provided their local iterated integrals of an order not exceed-
ing nf are small [41]. Moreover, differentiator (27) directly extracts the equivalent
control and its derivatives from the chattering SMC u(t) [43]. It also filters out
random noises of small mean values [21, 22].

The variable wnf+1 = z0 − f(t) is fictitious and is only introduced to keep
the same formula for nf = 0. Indeed, in the case nf = 0 DEs (22) disappear
and z0 − f(t) is substituted for w1 in (23). The resulting derivative estimator is the
standard differentiator [33] mentioned above. In particular, nd = nf = 0 determines
the 0-order differentiator ż0 = −λ̃0L sign(z0 − f(t)), |ḟ0| ≤ L.

Introduce the short notation for (22), (23)

ẇ = Ωnd,nf
(w, z0 − f, L), ż = Dnd,nf

(w1, z, L), (24)

for the proper parameters λ̃ = (λ̃0, ..., λ̃nd+nf
) (Fig. 3).

Let ess sup η(t) = ε0 and the maximal allowed sampling-time interval be τ > 0.
It is proved in [33, 40] that in that case differentiator (24) in FT provides and holds



Low-Chattering Discretization of Sliding Modes 13

the accuracy

|zi(t)− f
(i)
0 (t)| ≤ µiLρ

nd+1−i, i = 0, 1, ..., nd,
|w1(t)| ≤ µw1Lρ

nd+nf+1 (25)

for
ρ = max[(ε0/L)

1/(nd+1), τ ], (26)

and some constants µw1 > 0, µi > 0 only depending on the choice of λ̃.
In fact, also internal variableswk satisfy inequalities |wk(t)| ≤ µwkLρ

nd+nf+2−k,
k = 2, .., nf , for some µwk > 0. Note that these internal variables actually become
quite large for general, possibly not bounded, filterable noises [41], but they do not
directly influence the outputs zi. We do not consider such noises in this paper.

Formulas (25) formally stay true for τ = 0 and ρ = (ε0/L)
1/(n+1) corresponding

to continuous-time noisy sampling. Thus, differentiator (27) is exact and asymptoti-
cally optimal in spite of its filtering capabilities.
Notation. Recall that for any sampled vector signal ϕ(tj) its increment is denoted
by δjϕ = ϕ(tj+1)− ϕ(tj).
The discrete differentiator [3]. The discrete version of (24)

δjw = Ωnd,nf
(w(tj), z0(tj)− f(tj), L)τj ,

δjz = Dnd,nf
(w1(tj), z(tj), L)τj + Tnd

(z(tj), τj),
(27)

where the Taylor-like term Tnd
∈ Rnd+1 is defined as

Tnd,0 = 1
2!z2(tj)τ

2
j + ...+ 1

nd!
znd

(tj)τ
nd
j ,

Tnd,1 = 1
2!z3(tj)τ

2
j + ...+ 1

(nd−1)!znd
(tj)τ

nd−1
j ,

...
Tnd,nd−2 = 1

2!znd
(tj)τ

2
j ,

Tnd,nd−1 = 0, Tnd,nd
= 0,

(28)

has the same features as its continuous-time counterpart (24). Terms Tnd
are needed

in the stand-alone numeric-differentiation applications in order to ensure the homo-
geneity of the discrete error dynamics and the standard continuous-time accuracy
(25), (26) with possibly different coefficients µi.

4.2 Output feedback stabilization in continuous time

First let σ be only available by its noisy measurements σ̂(t) = σ(t, x(t)) + η(t),
|η| ≤ ε0. The corresponding FT stabilization is obtained for α > 0 large enough
and the closed-loop system
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σ(r) ∈ [−C,C] + α[Km,KM ]KF [u∗r](z(t)),
ẇ = Ωnd,nf

(w, z0 − σ − η(t), L),
ż = Dr−1,nf

(w1, z, L),
L ≥ C +KMα.

(29)

The stabilization is exact for η = 0. Note that in the case η(t) ≡ 0 system (29)
is homogeneous of the HD −1 and the weights deg zi = deg σ(i) = r − i, i =
0, 1, ..., nd, degwk = r+nf+1−k, k = 1, 2, ..., nf+1. Recall thatwnf+1 = z0−σ̂
is a fictitious variable. The steady-state system accuracy in the presence of noises is
well-known [21, 22, 28] and is described by (20) for ρ = ε

1/(nd+1)
0 .

4.3 Output feedback stabilization using discrete differentiators

Let now σ be discretely sampled as σ̂(tj) = σ(tj , x(tj)) + η(tj) for some sampling
instants t0, t1, .., τj = tj+1 − tj ≤ τ , and the bounded noise |η| ≤ ε0.

Denote (27), (28) by δj(w, z)
T = ∆nd,nf

(w, z, z0 − f, L, τj)(tj).
Consider the stabilization of the DI (15) which still evolves in continuous time by

the feedback zero-hold r-SMC (16) exploiting the discrete differentiator. The closed-
loop system contains continuous-time and discrete-time subsystems. Therefore it is
a hybrid system. It gets the form

σ(r) ∈ [−C,C] + α[Km,KM ]KF [u∗r](z(tj)), t ∈ [tj , tj+1),
δj(w, z)

T = ∆r−1,nf
(w, z, z0 − σ − η, L, τj)(tj),

L ≥ C +KMα, |u∗r| ≤ 1, 0 < τj = tj+1 − tj ≤ τ.
(30)

Now consider the original system (12) of the relative degree r closed by the same
feedback. The corresponding closed-loop hybrid system gets the form

ẋ = a(t, x) + b(t, x)u(tj), σ̂(tj) = σ(tj , x(tj)) + η(tj),
u = αu∗r(z(tj)), L ≥ C +KMα sup |u∗r|, L > 0, t ∈ [tj , tj+1),
δj(w, z)

T = ∆r−1,nf
(w(tj), z0(tj)− σ̂(tj), z(tj), L)τj .

(31)

Theorem 2. Let the sampling noise satisfy |η(t)| ≤ ε0, the sampling interval be
bounded, 0 < tj+1 − tj ≤ τ , nf ≥ 0. Then the discrete output feedback control
stabilizes both systems (30) and (31) in FT providing the accuracy |σ(i)| ≤ γiρ

r−i,
i = 0, 1, ..., r − 1, for ρ = max[ε

1/(nd+1)
0 , τ ] and some γ0, ..., γr−1 > 0.

Addition of the terms Tnf ,nd
(z(tj), τj) is optional and not required in the output

feedbacks (31), (30). Unbounded noises are considered in [41].
Note that this theorem is formally extendable also to the limit case τ = 0 corre-

sponding to the continuous sampling ofσ in the presence of the Lebesgue-measurable
noise η(t), |η(t)| ≤ ε0. The proof of Theorem 2 is based on the accuracy estimation
(66) of the disturbed homogeneous systems (see the Appendix). Also the computer
simulation case (complete discretization) is covered there [39, 40].
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5 Low-chattering discretization of HOSMs

It is not possible to reasonably define the chattering of a separate signal [36]. Indeed,
only the time scaling distinguishes between sin(106t) and sin(10−6t). Therefore,
we intentionally bound ourselves to the intuitive chattering understanding.

It is well-known that SM control u in average approximates the equivalent control
ueq = −h/g|σ≡0 [60, 43]. Correspondingly in order to exclude the chattering of the
ideal Filippov solution for (19), one needs the equivalent ueq itself not to chatter.
For the same reason, since measurement noises can mimic the chattering of ueq , one
cannot in general remove the control chattering in the presence of noises [36]. We
also do not consider the chattering due to parasitic dynamics [7].

Thus our goal is to diminish the high-frequency significant-magnitude vibrations
of the SMC (30) in the case of exact discrete measurements for small enough sampling
step τ and relatively slowly changing h, g.

All available problem solutions are obtained under the same assumptions and
prove the system practical stability in the absence of noises. The widespread dis-
continuity regularization [59] is highly sensitive to noises [36]. Artificial increase of
the relative degree [4, 15] raises the sensitivity to noises due to the required higher-
order differentiation. Also continuous SM controllers with integral action [45] have
differentiation issues and some chattering due to the non-Lipschitzian control.

All Euler-based discretization methods for the discontinuous ODE ẋ = f(t, x)
require to select a proper value of ẋ(tj) for each sampling/integration time step
x(tj+1) = ẋ(tj)(tj+1 − tj). The natural choice ẋ(tj) = f(tj , x(tj)) inevitably
leads to chattering.

The implicit discretization schemes [1, 9] propose a feasible choice of ẋ(tj).
The idea is that the knowledge or a proper estimation of the ideal Filippov solu-
tion at the next sampling step will allow to choose ẋ(tj) fitting that prediction.
The value of ẋ(tj) is chosen in correspondence with the Filippov procedure. It re-
quires numeric solution of nonlinear equations for the proper value of ẋ(tj) at each
sampling/integration step. It can be computationally difficult and requires some con-
crete knowledge of the system. The performance of such algorithms in the presence
of noises usually cannot be theoretically established due to the involved numeric
procedure.

Our method enlarges the Filippov inclusion, significantly expanding the set of
available selections for ẋ(tj) so that no choice affects the standard limit performance
of the system as the sampling intervals vanish. Some of these choices significantly
reduce the chattering of the approximating solutions. Therefore, one needs to choose
such a proper selector algorithm for all time instants tj .

In the following we suggest a simple discretization of the output-feedback SMC
(30) featuring significantly less chattering in the absence of noises and preserving the
system performance in the presence of noises. The case of the direct measurements
of →

σ r−1 is obtained by trivially removing the observer from the feedback.
Also in the sequel the upper bound τ of the sampling step is assumed available,

whereas the actual sampling steps are variable and unknown.
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The proposed alternative discretization should include discretization of both the
differentiator [25] and the controller.

5.1 Low-chattering discretization of differentiators

Low chattering discretization of SM-based differentiators is a well-known problem.
Until recently it was only solvable by implicit discretization methods [12, 49].

Let kL > 0 be the parameter of the low-chattering differentiator discretization
chosen as in [25]. The following is the low-chattering discrete filtering differentiator
[20]:

δj(w, z)
T = ∆nd,nf

(w, z, z0 − f, L̂, τj)(tj),

L̂(tj) = L sat
(

|w1(tj)|
Lwτ

)
, wτ = kLτ

nd+nf+1.
(32)

Let |fnd+1
0 | ≤ Lf ≤ L. According to [25] it in FT provides for the accuracy of the

form |zi − σ(i)| ≤ µdiLρ
r−i, i = 0, ..., r − 1, ρ = max[τ, (ε0/L)

1/(nd+1)]. Here
ε0 ≥ 0 is the (unknown) maximal noise amplitude, and ρ = τ in the absence of
noises.

Moreover, if ε0 = 0, then the new accuracy is |zi−σ(i)| ≤ µ̃diLfτ
r−i, i.e. overes-

timated values of L do not affect it. Furthermore, if lims→∞ supt≥s |f
nd+1
0 (t)| = 0

then differentiation errors asymptotically converge to zero, |zi − σ(i)| → 0 [25].
Note that the accuracy estimation holds for any bounded sampling steps and

noises, i.e. for any ρ ≥ 0. In particular, in the limit case of exact continuous-
time-measurements τ = ε0 = 0 the differentiator becomes exact. Moreover, such
differentiator of the differention order 3 and the filtering order 9 is numerically
demonstrated to produce 3 asymptotically exact derivatives for the input cos(3 ln(t+
1)), the constant sampling step τ = 5 (five), and L = 1000 [25].

An optional choice of parameters [25] valid for any nd, nf ≥ 0, nd + nf =
0, 1, ..., 12, is provided in Figs. 3, 4 which correspond to the sequence of recursive-
form [33] parameters 1.1, 1.5, 2, 3, 5, 7, 10, 12, 14, 17, 20, 26, 32, .... Recall that in-
creasing kL preserves the validity of the parameters [25].

Fig. 3 Parameters λ̃0, λ̃1, ..., λ̃nd+nf
of differentiator (22), (23) for nd + nf = 0, 1, ..., 12
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Fig. 4 Valid parameters kL of the discrete differentiator (32) corresponding to Fig. 3

5.2 Low-chattering Discretization of Higher Order SMC.

Consider the closed-loop SMC DI obtained from (31) using controller Ur,

σ(r) ∈ [−C,C] + [Km,KM ]u(tj), σ̂(tj) = σ(tj) + η(tj),
u = αUr(z(tj)), L ≥ C +KMα sup |Ur|, L > 0, t ∈ [tj , tj+1),

δj(w, z)
T = ∆r−1,nf

(w(tj), z0(tj)− σ̂(tj), z(tj), L̂(tj))τj .

(33)

Here L̂(tj) is defined by (32). The task is to develop a proper discretization Ur for
controllers u∗r from (17) and (18).

The main idea is to complement the powers of coordinates σ(i) up to one turning
controllers u∗r defined by (17) or (18) into a linear high-gain control in the infini-
tisemally small vicinity of the origin depending on τ << 1. Note that similarly to
the low-chattering differentiation the results are to hold for any τ > 0.

Each term
⌊
σ(i)

⌉γ ,γ ∈ (0, 1), is replaced with the term sat1−γ(|σ(i)|/ζτi)
⌊
σ(i)

⌉γ .
The transformation is performed in infinitesimally thin layers |σ(i)| ≤ ζτi along the
surfaces of discontinuity and/or non-smoothness, which keeps the velocity vectors
close to the graph of the Filippov inclusion (19). Since limτ→0 ζτi = 0 the distance
of the vectors from the graph vanishes as τ → 0, producing a valid discretization
(Theorem 1).

Assigning the weights deg τ = deg t = 1, deg σ(i) = deg z(i) = r − i,
degwj = r + nf , and taking ζτi = kr−i

i τ r−i for some ki > 0, obtain a homoge-
neously disturbed r-SMC system [39, 40]. It is natural to call such a discretization
homogeneous. As the result the accuracy of the discretization is established by
[40, 39] and coincides with the standard worst-case accuracy of the homogeneous
r-SM (20). That worst-case accuracy is improved in the degenerate case when the
parameter C from (15) vanishes, which corresponds to the vanishing of the equiva-
lent control. In that particular case, in a small vicinity of the origin z =

→
σ r−1 = 0

the system becomes alternatively homogeneous of the zero homogeneity degree
and asymptotically stable for correspondingly chosen parameters. That asymptotic
stability becomes global, provided parameters are properly assigned.
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Discretization of quasi-continuous controllers (17). Outputs zi of differentiator
(32) are substituted for σ(i), i = 0, 1, ..., r − 1,

δj(w, z)
T = ∆nd,nf

(w, z, z0 − σ, L̂, τj)(tj),

L̂(tj) = L sat
(

|w1(tj)|
Lwτ

)
, wτ = kLτ

nd+nf+1, L ≥ C +KMα.
(34)

producing the output feedback control. Pick some numbers k̂0, ..., k̂r−1, kh > 0,
kh ∈ (0, 1], κ∗ > 0, to define the width of the layer ζτi = kr−i

i τ r−i, ki = κ∗k̂i,

u(t) = α Ur(z(tj)), t ∈ [tj , tj+1),

Ur(z) = − sat
[

Q(z)
khQτ

]
P (z)
Q(z) ,

Q(z) = |zr−1|
1
1 + βr−2 sat(

|zr−2|
ζτr−2

)
1
2 |zr−2|

1
2 + ...

+β0 sat(
|z0|
ζτ0

)
r−1
r |z0|

1
r ,

P (z) = zr−1 + βr−2 sat(
|zr−2|
ζτr−2

)
1
2 ⌊zr−2⌉

1
2 + ...

+β0 sat(
|z0|
ζτ0

)
r−1
r ⌊z0⌉

1
r ,

ζτi = kr−i
i τ r−i, ki = κ∗k̂i, k̂i > 0, i = 0, 1, ..., r − 1, κ∗ > 0

Qτ = ζ
1
1
τr−1 + βr−2ζ

1
2
τr−2 + ...+ β0ζ

1
r
τ0.

(35)

If →
σ r−1 are directly measured, system coordinates σ(i) are substituted back for zi in

(35), i = 0.1, ..., r − 1, and (34) is excluded.
After some calculation get

Qτ = qττ, qτ = kr−1 + βr−2kr−2 + ...+ β0k0.

Therefore, in the set |zi| ≤ (kiτ)
r−i, Q(z) ≤ khqττ the control function Ur from

(35) gets the form

Ur(z) = −(khqττ)
−1[zr−1 + β̃r−2τ

−1zr−2 + ...+ β̃0τ
−(r−1)z0],

β̃i = βik
−(r−1−i)
i = βi(κ∗k̂i)

−(r−1−i), i = 0, 1...., r − 2,
(36)

which corresponds to the local output-feedback high-gain control with the small
parameters τ , κ−1

∗ . Note that it only takes place in the discrete form of the control
and in a vicinity of →

σ r−1 = z = 0 of the diameter proportional to τ .

Discretization of the relay r-SMC (18). Choose the discretization

u(t) = α Ur(z(tj)), t ∈ [tj , tj+1),

Ur(z) = − sat
[

P (z)
khQτ

]
,

(37)

It is easy to see that in the set |zi| < (kiτ)
r−i = ζr−i

τi the control once more gets the
form (36) of the local output-feedback high-gain control with the small parameters
τ , κ−1

∗ . That is also a homogeneous discretization.
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Clearly any set of β̂0, ..., β̂r−2 > 0 is obtainable by a proper choice of k̂0, ..., k̂r−1.
Also, substituting κki for ki, κ > 0, causes the division of the roots by κ for the
polynomial sr−1 + β̃r−2s

r−2 + ...+ β̃0.

Theorem 3. Let α > 0, β0, ..., βr−2 > 0 be properly chosen ensuring the FT
stability of the DI (15) under the QC control (17) (respectively the ”relay” control
(18)), the differentiator parameters be also properly chosen [41, 25], in particular,
L > C+KMα holds. Then for any choice of positive numbers k0, ..., kr−1 > 0 (i.e.
any corresponding kh, κ∗ ) and τ > 0 the system (15), (34), (35) (respectively (37))
establishes the standard accuracy (20) for bounded sampling noises, and features
the standard filtering capabilities for noises of the filtering orders not larger than
nf ≥ 0 [41].

Thus Theorem 3 guaranties the preservation of the standard properties of the
homogeneous r-SMC. The following theorem deals with chattering-attenuation ca-
pabilities.

Theorem 4. Let the conditions of Theorem 3 hold, and let ki = κ∗k̂i, i = 0, ..., r−1,
for some κ∗ > 0, k̂0, ..., k̂r−1 > 0, also let k̂0, ..., k̂r−2 > 0 generate the Hurwitz
polynomial sr−1 + β̂r−2s

r−2 + ...+ β̂0, β̂i = βik̂
−(r−1−i)
i . Let also k̂r−1 be small

enough with respect to k̂0, ..., k̂r−2. Then, provided κ∗ and kh be chosen respectively
sufficiently large and sufficiently small and there are no sampling noises the following
statements are true for any τ > 0:

• The choice ki = κ∗k̂i, i = 0, 1, ..., r − 1, ensures that the system (15), (32), (35)
in FT stabilizes in the set |σ(i)| ≤ kr−i

i τ r−i, |zi| ≤ kr−i
i τ r−i.

• System (15), (32), (35) which results from discretization, is exponentially stable
for C = 0 (i.e. →σ r−1, z → 0) for any kh ∈ (0, 1] small enough.

Hence, the steady-state chattering removal is obtained in the absence of noises
in the rather rare case, when the equivalent control is identical zero, ueq =
−h(t, x)/g(t, x) ≡ 0. In general, when ueq ̸= 0, control u tracks ueq , provided
ueq is smooth and slow.

The QC control (17) is smooth outside of the coordinate planes zi = 0 (σ(i) =
0 for direct measurements) and continuous everywhere except the origin z = 0

(respectively →
σ r−1 = 0), correspondingly the proposed discretization is expected

to significantly diminish the chattering in the whole state space. In the case of the
”relay” control (18) the theorem does not ensure chattering reduction during the
transient even for h ≡ 0. Indeed, no special discretization is applied along the
discontinuity set of (18).

5.3 Proof sketch

Consider the case of the control (17). The similar case of (18) is simpler.
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Consider the auxiliary set-valued homogeneous control function

u ∈ α Ûr(z, ϵ, ϵ1), Ûr(z, ϵ, ϵ1) = −[1− ϵ1, 1]Ur(z, ϵ), ϵ1, ϵ ∈ (0, 1),

ϖ(
→
z r−2) = βr−2|zr−2|

1
2 + ...+ β0|z0|

1
r ,

ϖ̃s(
→
z r−2,

→
s r−2) = βr−2 sat(

|zr−2|
s2r−2

)
1
2 |zr−2|

1
2 + ...+ β0 sat(

|z0|
sr0

)
r−1
r |z0|

1
r ,

ωs(
→
z r−2,

→
s r−2) = βr−2 sat(

|zr−2|
s2r−2

)
1
2 ⌊zr−2⌉

1
2 + ...+ β0 sat(

|z0|
sr0

)
r−1
r ⌊z0⌉

1
r ,

ω(z, ϵ) = { zr−1+ωs

|zr−1|+ϖ̃s

∣∣∣s0, ..., sr−2 ∈ [0, ϵϖ(
→
z r−2)]},

Ur(z, ϵ) =


u∗r(z) for ϵϖ < |zr−1| < ϖ/ϵ,
[1− ϵ, 1] sign zr−1 for ϵ|zr−1| ≥ ϖ, zr−1 ̸= 0,

ω(z, ϵ) for |zr−1| ≤ ϵϖ,
→
z r−2 ̸= 0,

[−1, 1] for z = 0.
(38)

It is easy to see that the graph of (38) is close to the graph of u∗r(z) over any
homogeneous ball for ϵ, ϵ1 > 0 small enough. Thus, since (29) is FT stable for
η = 0, also the additionally modified homogeneous system

σ(r) ∈ [−C,C] + α[Km,KM ] co(Ûr(z, ϵ, ϵ1) + signu∗r(z)),
ẇ = Ωnd,nf

(w, z0 − σ, L),
ż = Dr−1,nf

(w1, z, L)
(39)

is FT stable for sufficiently small ϵ, ϵ1 > 0. Recall that after a FT transient →σ r−1 ≡ z
is kept.

Now Theorem 3 directly follows from the properties of homogeneous perturba-
tions of system (39) [40].

Prove Theorem 4. Fix any ζτi > 0, i = 0, ..., r − 1. Consider the perturbation of
system (39)

σ(r) ∈ [−C,C] + α[Km,KM ] co Ũr(z),
ẇ = Ωnd,nf

(w, z0 − σ, L),
ż = Dr−1,nf

(w1, z, L),

Ũr(z) =

{
Ûr(z) + signu∗r(z) for |zr−1| > ζτ r−1 or |zr−1| ≤ ϵϖ(

→
z r−2),

[−1, 1] for |zr−1| ≤ ζτ r−1 and |zr−1| > ϵϖ(
→
z r−2).

(40)
System (40) differs from (39) only in a small vicinity of z =

→
σ r−1 = 0. Choosing

sufficiently small ζτ r−1 > 0 obtain that the system trajectories stabilize in a small
vicinity of the origin inside the set |zi| ≤ ζτ i, zi = σ(i), i = 0, ..., r − 2.

It is easy to see that for sufficiently small kh > 0 we also obtain that α Ur(z) ∈
co Ũr(z). Thus the continuous analogue of the system (15), (34), (35) also stabilizes
in the same set.

Let now |zi| ≤ ζτ i, zi = σ(i), i = 0, ..., r − 2 be kept. Opening the saturation
functions obtain that in that vicinity of the origin the control gets the form
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u = −α sat( Q(z)
khQτ

) zr−1+β̂r−2zr−2+...+β̂0z0
|zr−1|+β̂r−2|zr−2|+...+β̂0|z0|

,

β̂i = βi(
1
ζτi

)r−1−i, i = 0, 1...., r − 2,
(41)

The corresponding polynomial is Hurwitz, which implies that for C = 0 the system
(15), (41) is always locally AS for sufficiently small kh [38]. Otherwise, if C ̸= 0, it
converges to a vicinity of zero proportional to C.

LetC = 0 then the system converges into the vicinity of zero |zi| ≤ ζτ i, zi = σ(i),
i = 0, ..., r − 1. Now all saturation functions can be opened and one gets the
equivalent AS linear system. By time transformation one can replace τ with 1
obtaining

żi = zi+1, i = 0, ..., r − 2,

żr−1 = −(khqτ )
−1[zr−1 + β̃r−2zr−2 + ...+ β̃0z0],

β̃i = βik
−(r−1−i)
i = βi(κ∗k̂i)

−(r−1−i).

(42)

It is AS for sufficiently small kh > 0. Although that by itself does not automatically
cause the AS of the Euler discretization for the time steps not exceeding 1, the AS
is ensured for κ∗ large enough. The same choice also provides the corresponding
features of the discretized original homogeneous system [39, 40].

6 Discretization examples for the sliding orders 3, 4

The proposed low-chattering output-feedback SMC discretization is demonstrated
here for the kinematic car model (r = 3) and the integrator chain (academic example,
r = 4) 4.

6.1 Discretization of the 3-SM car control

The example from [23] is studied here for other sampling periods and initial condi-
tions. Consider the kinematic ”bicycle” model of the vehicle motion [53]

ẋ = V cos(φ), ẏ = V sin(φ)

φ̇ = V
l tan θ, θ̇ = u,

(43)

where x and y are Cartesian coordinates of the rear-axle middle point (Fig. 5 ),
l = 5m is the distance between the axles, φ is the orientation angle, V = 10 m/s
is the constant longitudinal velocity, θ is the steering angle (i.e. the actual real-life
control), and u = θ̇ is the auxiliary computer-based control.

The goal is to track some smooth trajectory y = g(x), unknown in advance,
whereas g(x(t)), y(t) are sampled in real time. Therefore the task is to make

4 The model and some parameters are reprinted from the paper [23] by authors with the permission
by IEEE.
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Fig. 5 Kinematic car model and the desired trajectory y = g(x).

σ(x, y) = y − g(x) as small as possible. The tracking error σ is measured with
the constant sampling step τ . The function g(x) = 10 sin(0.05x) + 5 is chosen for
the simulation. The output relative degree obviously equals 3.

Control (32), (35) is applied for r = 3, α = 1, β1 = 2, β0 = 1, k0 = 105/3, k1 =
40001/2, k2 = 300, kh = 0.3, L = 50, nf = 2, kL = 5. The control is kept at 0 till
t = 1 which provides some time for the differentiator convergence, and is applied
according to the formula only for t > 1.

The initial conditions (x(0), y(0), φ(0), θ(0)) = (0,−5,−1,−0.4), z(0) =
0, w(0) = 0 are set. The simulation is performed by the Euler integration method for
the integration step 10−4. The discretization time interval τ of the output-feedback
control is different and is naturally never less than the integration step.

Note that since the differentiator has nd + nf +1 = 2+ 2+ 1 = 5 variables, the
closed-loop system is of the dimension 4+5=9 and keeps second-order SMs both in
the control and the observation contours.

First take τ = 0.0001 and apply control (30) using the standard Euler discretiza-
tion (5) (Fig. 6a,b,c). The resulting accuracy is described by the component-wise
inequality (|σ|, |σ̇|, |σ̈|) ≤ (3.4 · 10−8m, 1.4 · 10−4m/s, 0.024m/s2). Now apply
the proposed new discretization. The performance is shown on the left of Fig. 6 in
Fig. 6d,e,f. The corresponding accuracies are (|σ|, |σ̇|, |σ̈|) ≤ (1.4 · 10−8m, 1.3 ·
10−4m/s, 1.0 · 10−5m/s2). One observes that the trajectories are exactly the same,
whereas the chattering is practically removed.

The performance of the both standard and new discretizations for the sampling
step τ = 0.03 is shown in Fig. 7. Recall that the integration step of the whole
system is still 10−4 mimicking the continuous-time dynamics of the controlled
process. The resulting accuracy for the standard discretization is (|σ|, |σ̇|, |σ̈|) ≤
(0.45m, 1.2m/s, 6.3m/s2). The new discretization yields the accuracy (|σ|, |σ̇|, |σ̈|) ≤
(0.37m, 0.23m/s, 0.16m/s2). Also here no visible chattering is present in spite of
the large discretization step. The proposed discretization actually preserves the sys-
tem performance from 6d,e,f.

6.2 Integrator Chain Control, r = 4

Consider the standard integrator chain
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Fig. 6 a: 3-SM car control, car trajectory and control for the coinciding sampling step τ = 10−4

and the integration step. a,b,c: standard Euler discretization, d,e,f: new discretization.

Fig. 7 a: 3-SM car control, car trajectory and control (steering angle derivative), sampling step
τ = 0.03, integration step 10−4. a,b,c: standard Euler discretization, d,e,f: new discretization.
New discretization keeps the performance from Fig. 6 in spite of the much larger sampling step.
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σ(4) = h(t,
→
σ 3) + (1.5− cos(σσ̇))u, |h| ≤ 1. (44)

Let the whole state →
σ 3 be available. The initial value →

σ 3(0) = (4,−7, 9,−3) is
taken. The integration/sampling step is τ = 10−4 in all simulations.

Choose the 4-SM ”relay” control

u = −10 sign(
...
σ + 2⌊σ̈⌉

1
2 + 2⌊σ̇⌉

1
3 + ⌊σ⌉

1
4 ). (45)

Let k0 = 102, k1 = (23 )
1
2 · 102, k2 = 2

3 · 102, k3 = 1, and kh = 0.3, ζτi =

k4−i
i τ4−i, i = 0, 1, 2, 3. According to (37) the proposed new discretization of the

control is

u = −10 sat

 ...
σ +2 sat(

|σ̈|
ζτ2

)
1
2 ⌊σ̈⌉

1
2 +2 sat(

|σ̇|
ζτ1

)
2
3 ⌊σ̇⌉

1
3 +sat(

|σ|
ζτ0

)
3
4 ⌊σ⌉

1
4

kh

(
ζτ3+2ζ

1
2
τ2+2ζ

1
3
τ1+ζ

1
4
τ0

)
 (46)

First consider the case when h ̸= 0, Fig. 8,

h = 0.5 cos(t+ σ̇). (47)

Starting from t = 20 the standard discretization produces the accuracy

(|σ|, |σ̇|, |σ̈|, | ...
σ |) ≤ (1.5 · 10−11, 8 · 10−9, 8 · 10−6, 8 · 10−3). (48)

whereas the new discretization leads to the accuracy

(|σ|, |σ̇|, |σ̈|, | ...
σ |) ≤ (1.5 · 10−9, 1.5 · 10−9, 1.5 · 10−9, 1.5 · 10−9). (49)

The case h = 0, Fig. 9. In that case, the standard dicretization starting from t = 20
implies the same accuracy (48), whereas the new discretization implies asymptotic
convergence and the accuracy

(|σ|, |σ̇|, |σ̈|, | ...
σ |) ≤ (3 · 10−20, 10−19, 3 · 10−19, 7 · 10−18) for t ≥ 20. (50)

Note that as we note in Section 5.2, discretization (46) is not intended to remove the
chattering during the transient.

7 Discretization of the Twisting Controller

Let r = 2. Then (15) gets the form

σ̈ ∈ [−C,C] + α[Km,KM ]KF [u∗2](σ, σ̇), (51)
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Fig. 8 4-SM stabilization of the system (44) for h = 0.5 · cos(t+ σ̇).

Fig. 9 Asymptotic stabilization of the system (44) for h ≡ 0 by the new discretization.
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where the control can be, in particular, chosen in the form (17) or (18). The second
one coincides with the homogeneous version of the popular terminal SMC [44].

Another option is to apply the twisting controller [32]

u∗2 = UTw = −β0 signσ − β1 sign σ̇, β0 > β1 > 0;

α(β0 − β1)Km > C, α(β0+β1)Km−C
α(β0−β1)KM+C > 1.

(52)

Here the second line contains practically necessary and sufficient conditions for its
FT convergence [32, 33] (only the equality cases are excluded).

Choose any k0, k1 > 0. Then the obvious discretization is

Utwd(t) = −β0 sat
(

σ(tj)

k2
0τ

2

)
− β1 sat

(
σ̇(tj)
k1τ

)
, t ∈ [tj , tj+1). (53)

It is also a homogeneous discretization, since defining deg τ = deg t renders
(53) homogeneous. Correspondingly in a small vicinity of σ = σ̇ = 0 the control
becomes a linear Hurwitz controller. In the case C = 0 an AS system of the zero
homogeneity degree is produced. The corresponding theorems and the proofs are
very similar to Section 5, but are much simpler.

7.1 Case study: targeting

In the following example discretization (53) is modified in order to account for the
targeting-dynamics specifics: both h and g from (13) escape to infinity as the target
is approached.

Consider the geometry of the relative motion of missile (M) and target (T) in
the vertical interception plane x, y (Fig. 10). Both objects are formally described as
point masses.

The planar missile-target engagement kinematics is described by the relative
displacement vector r⃗R and its derivatives v⃗R, a⃗R

r⃗R = r⃗T − r⃗M , v⃗R = v⃗T − v⃗M , a⃗R = a⃗T − a⃗M ,
˙⃗vM = a⃗M , ˙⃗vT = a⃗T , ˙⃗vR = a⃗R,
˙⃗rM = v⃗M , ˙⃗rT = v⃗T , ˙⃗rR = v⃗R.

(54)

Here indexes M , T and R mean ”missile”, ”target” and ”relative”, r⃗T , v⃗T , a⃗T , r⃗M ,
v⃗M , a⃗M , r⃗R, v⃗R, a⃗R ∈ R2.

Consider the polar coordinates (r, λ), where r is the range from the missile to
the target along the line of sight (LOS), and λ is the LOS angle with respect to the
horizontal plane ( the axis x). During the attack the impact angle is quite small, and
the dynamic equation for λ(t) is obtained from the plane kinematics of rigid bodies
[46],

λ̈ = −2

r
λ̇ṙ +

1

r
(aTλ − aMλ). (55)
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Fig. 10 Planar engagement geometry

Here aTλ, aMλ are the target and the missile acceleration components orthogonal
to the LOS.

It is well known that the direct hit is assured, provided λ̇ = 0 is kept. Correspond-
ingly, the goal is to make λ̇ vanish and keep it at zero.

Assume real-time direct measurements ofλ and r (from a seeker). Let the controlu
be the derivative of the missile acceleration component am orthogonal to the missile
velocity v⃗M . Let γM be the angle between v⃗M and the axis x. The corresponding
dynamics are

λ̈ = − 2
r λ̇ṙ +

1
r (aTλ

− am cos(λ− γM )),
ȧm = u.

(56)

Correspondingly the guidance task is reduced to steering the system (56) to the
manifold λ̇ = 0. I.e. let σ = λ̇. Obviously the system relative degree is 2.

Apply a second-order filtering differentiator (22), (23) of some filtering order
nf with the input λ and the outputs z0, z1, z2 estimating λ, λ̇, λ̈ respectively. The
corresponding structure of the output-feedback twisting controller is

u = α(β0 sign z1 + β1 sign z2). (57)

The differentiator parameter L is chosen so as to provide for the inequality |
...
λ | ≤ L

during the targeting mission. In the close proximity of the target the differentiator
inevitably diverges.

While the standard discretization of the control is obvious, the proposed alterna-
tive controller discretization is

ũ = α(β0 sat
z1 · r
K1τ2α

+ β1 sat
z2 · r
K2τα

), (58)
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where τ > 0 is once more the upper bound of the sampling step and K1,K2 > 0
are some proper gains.

7.2 Simulation of Targeting Control

Let the initial position of the missile be at the origin x = 0[m], y = 0[m], and the
initial position of the target be at the point x = 4000[m], y = 2500[m]. The initial
velocities of the missile and the target are 200[m/s] and 150[m/s], respectively.
The initial velocity angles of the missile and the target are 45[deg] and 180[deg],
respectively. The maximal normal acceleration of the missile is 20[m/sec2], both
the missile and the target are subjects to the gravitation. The Euler integration step
is 10−6 in all simulations.

Let at be the component of the missile acceleration along the missile velocity.
Correspondingly one gets

ȧm = u,
˙⃗vM = [am cos(γM + π

2 ), am sin(γM + π
2 ) + g]T ,

˙⃗rM = v⃗M (t),
˙⃗vT = a⃗T = [at cos(γT (t) +

π
2 ), at sin(γT (t) +

π
2 ) + g]T ,

˙⃗rT = v⃗T (t).

(59)

Here r, λ, γ satisfy the relations

r = ∥rR∥, λ = tan−1(
rRy

rRx
), γM = tan−1(

vMy

vMx
), γT = tan−1(

vTy

vTx
). (60)

Intercepting maneuvering target. Let the target maneuver with the acceleration

at(t) = 75 cos(2πft) (61)

of the amplitude 75[m/s2] and the frequency 0.5[Hz]. The maximal lateral acceler-
ation of the missile is 100[m/s2].

Let the controller parameters be β0 = 5, β1 = 2, α = 50. Apply the filtering
differentiator (24) of the differentiation order nd = 2, the filtering order nf = 2
with the Lipschitz parameter L = 100.

First assume that r, λ are sampled with the sampling time step τ = 10−6 which
equals the integration step. The standard discretization of the controller produces the
missing distance of 2·10−5[m]. The interception trajectories, the missile acceleration,
and the missile acceleration derivative (the control) are shown in Fig. 11 on the left.

Taking the sampling step τ = 10−3 get a miss distance of 1.35 · 10−4[m]. The
interception geometry, the missile acceleration and the control (missile acceleration
command derivative) are shown in the middle of Fig. 11.
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The performance of the proposed new discretization (58) for K1 = 2000, K2 =
100 is shown on the right of Fig. 11. The corresponding miss distance is 1.63 ·
10−4[m].

Fig. 11 Intercepting maneuvering target. Standard discretization: τ = 10−6, τ = 10−3. New
discretization: τ = 10−3.

Intercepting ballistic target. Change the setup assuming that the target does not
maneuver, i.e. at(t) ≡ 0. Take α = 20 and the larger sampling step τ = 10−2. The
standard discretization results in the miss distance of 0.0675[m]. The corresponding
targeting performance is shown on the left of Fig. 12. The proposed new discretization
results in the miss distance of 1.63 · 10−4[m] (Fig. 12 on the right). The new
discretization leads to much smoother missile acceleration am and u = ȧm.

8 Conclusions

The proposed low-chattering discretization of Filippov discontinuous systems is
computationally simple, guaranties the preservation of system trajectories, stability
and accuracy.

Contrary to other known discretization approaches the standard HOSM uncer-
tainty conditions are enough, the sampling steps are not required to be equal or to
be known in advance.

Only an upper bound for the sampling intervals is required to be known, but there
are no restrictions on its value, and it can be very rough. The control or system
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Fig. 12 Intercepting ballistic target. The standard discretization (on the left) and the new discretiza-
tion (on the right) are performed with the sampling step τ = 10−2.

discretization are performed by the formulas known in advance. No solution of any
equation is required at each sampling step.

Sampling noises do not destroy the system performance, and the theoretical system
accuracy estimations are preserved. At the same time the attenuation of chattering
in the presence of significant noise in general is impossible.

The main result of the paper is Theorem 1 which establishes the new discretization
approach. Its proof is almost trivial, but it opens infinitely many practical options for
the low-chattering practical SMC discretization in real-life industrial applications.

The approach has been applied for the low-chattering dicretization of general
single-input single-output nonlinear systems of any relative degree. Two families of
homogeneous SM controllers were considered and the corresponding discretizations
were proposed. Theorem 3 assures that no choice of parameters can destroy the stan-
dard system performance, whereas possibly leaving the chattering intact, Theorem
4 establishes the chattering attenuation for suitable controlled processes.

Simulation of the 3-SM car control and 4-SMC stabilization of an integrator
chain are demonstrated. The new control discretization successfully suppresses the
chattering of the 3-SM car control and keeps the trajectories visually the same for the
sampling periods 0.0001 and 0.03. The SMC chattering is significantly reduced, at
the same time improving the system accuracy in the absence of noises, and preserving
the standard system accuracy in their presence.

Another example is the low-chattering discretization of the twisting controller.
The discretization is applied for targetting maneuvering and ballistic missiles.
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Appendix: Introduction to the weighted homogeneity

Following is the brief presentation of the homogeneity theory 5. Assign the weights
(degrees) m1,m2, . . . ,mnx > 0 to the coordinates x1, x2, . . . , xnx of Rnx , and
denote deg xi = mi. Dilations [2] are defined as the simplest linear transformations

dκ(x) = (κm1x1, κ
m2x2, ..., κ

mnxxnx), (62)

depending on the parameter κ ≥ 0.
It is said that the function f : Rnx → Rm is of the homogeneity degree (HD)

(weight) q ∈ R, deg f = q, if the equality f(x) = κ−qf(dκx) holds identically for
any x ∈ Rnx , κ > 0.

The notions of a vector function f : Rnx → Rnx , f : x 7→ f(x) ∈ Rnx , and a
vector field f : Rnx → TRnx , f : x 7→ f(x) ∈ TxRnx are distinguished [56].

A vector-set function F (x) ⊂ Rm is termed homogeneous of the HD q ∈ R, if
the equality F (x) = κ−qF (dκx) holds identically for any x ∈ Rnx , κ > 0 [34].

On the other hand, a vector-set field F (x) ⊂ TxRnx (DI (1), ẋ ∈ F (x)) is termed
homogeneous of the HD q ∈ R, if the equality F (x) = κ−qd−1

κ F (dκx) holds
identically for any x and κ > 0 [34].

That definition implies that d
d(κ−qt)dκx ∈ F (dκx) holds, i.e. DI (1) does

not change under the homogeneous time-coordinate transformation (t, x) 7→
(κ−qt, dκx), κ > 0. Correspondingly we often interpret −q as the weight of
the time t, deg t = −q, and the weight deg t can be positive, negative or zero.

The weight deg 0 is not defined (can be any number), whereas for any constant
a ̸= 0 get deg a = 0.

One easily checks the simple rules of the homogeneous arithmetic: degAa =
adegA, deg(AB) = degA+degB, deg ∂

∂αA = degA−degα, deg Ȧ = degA−
deg t.

A vector field f(x) ∈ TxRnx is treated as a particular case of a vector-set
field F (x) ⊂ TxRnx when the set F (x) has only one element, F (x) = {f(x)}.
Thus, in the case of the vector field f(x) and the differential equation (DE) ẋ =
f(x) = (f1(x), f2(x), ..., fnx

(x))T the classical weighted homogeneity deg ẋi =
deg xi − deg t, i = 1, 2, ..., nx is obtained.

Homogeneous norm is defined as any continuous positive-definite function of the
HD 1. It is not a norm in the standard sense. In this paper homogeneous norms are
denoted as ||x||h. Each two homogeneous norms || · ||h and || · ||h∗ are equivalent in
the proportionality sense: there exist such γ∗, γ

∗ > 0 that inequalities γ∗||x||h∗ ≤
||x||h ≤ γ∗||x||h∗ hold any x ∈ Rnx .

Two standard homogeneous norms are

||x||h∞ = max
1≤i≤nx

{|xi|
1

mi }, ||x||hϖ = (
∑
i

|x|
ϖ
mi )

1
ϖ
.

5 Standard notions introduced here are partially reprinted from the papers [21, 23] by authors with
the permission by Springer Nature and IEEE.
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Note that ||x||hϖ is continuously differentiable for x ̸= 0, if ϖ > max{mi}.
The weights and HDs are defined up to proportionality. Letdeg xi = mi,−deg t =

q, then for any γ > 0 the redefinition deg xi = γmi,−deg t = γq implies that HDs
of all functions/fields/inclusions are simply multiplied by γ. Correspondingly ho-
mogeneous norms are not preserved.
r-SM homogeneity. Under assumptions (14) system (12) of the relative degree r
satisfies (13). Choose any control (16). The corresponding closed-loop DI (15)

σ(r) ∈ [−C,C] + [Km,KM ]u,

u = −αu∗r(
→
σ r−1).

(63)

can be made homogeneous by a proper weights asignment.
The presence of the segment [−C,C], C > 0, on the right-hand side of (63)

implies that deg σ(r) = 0. On the other hand deg σ(r) = deg σ − r deg t. It implies
that deg t > 0. Let deg t = 1 and the system HD be −1. Then the only possible
weights are deg σ = r, deg σ̇ = r − 1, ..., deg σ(r−1) = 1.

Furthermore, deg u∗r = 0 is necessarily to hold, which implies that

∀κ > 0 ∀→σ r−1 ∈ Rr : u∗r(
→
σ r−1) ≡ u∗r(d̂κ

→
σ r−1),

d̂κ
→
σ r−1 = (κrσ, κr−1σ̇, ..., κσ(r−1)).

(64)

A function f : Rnx → Rmx is quasi-continuous (QC) [35], if it is continuous
everywhere except the origin x = 0. In particular, all continuous functions are QC.

A homogeneous DI (1) is AS (FTS, FxTS), if the origin x = 0 is its global AS
(FTS, FxTS) equilibrium.

A set D0 is termed homogeneously retractable if dκD0 ⊂ D0 for any κ ∈ [0, 1].
A Filippov DI (1) is called contractive [34], if for some numbers T, ε > 0, there

exist such a retractable compact D0 and a compact D1, 0 ∈ D1, D1 + Bε ⊂ D0

that for any solution x(t) the starting-point placement x(0) ∈ D0 implies that
x(T ) ∈ D1.

A Filippov DI ẋ ∈ F̃ (x) is termed a small homogeneous perturbation of the
homogeneous Filippov DI ẋ ∈ F (x), if the set F̃ (x) is close toF (x) in some vicinity
of x = 0. It formally means that whenever x ∈ B1 the relation F̃ (x) ⊂ F (x) +Bε

holds for some small ε ≥ 0.
The following theorem [39, 40, 19] describes the relations between the contrac-

tivity, stability and the HD sign.

Theorem 5. Consider the homogeneous Filippov DI (1) of the HD q. Then its asymp-
totic stability (AS) and contractivity features are equivalent and robust to small
homogeneous perturbations. Moreover,

• AS implies FT stability if q < 0, and FT stability implies that q < 0 ;
• if q = 0 AS is exponential;
• if q > 0 AS implies the FxT attractivity of any ball Bε, ε > 0, but the convergence

to the origin is slower than exponential.
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Any AS homogeneous Filippov DI possesses a differentiable homogeneous Lya-
punov function [2, 5].
Accuracy of perturbed homogeneus DIs. Consider the retarded “noisy” perturba-
tion of the AS Filippov homogeneous DI (1) of the negative HD q < 0 [34]

ẋ ∈ F (x(t− [0, τ ]) +Bhε), x ∈ Rnx , (65)

where τ, ε ≥ 0, Bhε = {x ∈ Rnx | ||x||h ≤ ε}.
In principle DI (65) requires some functional initial conditions for t ∈ [−τ, 0].

Correspondingly the following result [33] imposes some homogeneity assumptions
on these conditions [17, 40] which are always satisfied provided the solutions do not
depend on the solution prehistory for t < 0. That assumption usually holds in the
case of sampled systems comprised of smooth dynamic systems closed by digital
dynamic controllers, which in their turn exploit discrete output sampling starting at
t = 0.

So assume that the solutions of (65) are independ of the values x(t) for t < 0,
and fix any homogeneous norm || · ||h. Then the accuracy

x ∈ γBhρ, ρ = max[ε, τ−1/q], (66)

is established in FT for some γ > 0 independent of ε, τ and initial conditions.
That accuracy is established for ρ = ε and any sufficiently small τ [17]. If

q > 0 one still takes ρ = ε, but the initial value x(0) and ε are to be uniformly
bounded, whereas τ is to be sufficiently small for each fixed R, x(0) ∈ BR (it is the
most problematic case [17], since the system can escape to infinity faster than any
exponent [37]). A similar result is also true for the implicit Euler discretization with
the sampling step τ [17].
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