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1   Semantics for DP-Comparatives 

(1)  John is taller /shorter /three cm more tall /less than  three cm less short… than  
       Mary/ every girl/ at most three girl… 

 
DP-comparatives are shown in (1): comparatives with a noun phrase complement 
(DP).  In [3] I develop a theory which compositionally builds up the interpretations of 
the comparative expressions (italicized in (1)) as 2-place relations between degrees.  A 
sketch of the semantic composition is provided in the appendix.   
     For measure H (height) and measure unit cm (centimeters), the domain of height-
in-cm degrees is the set  ΔH,cm of all triples <r,cm,H>, with r a real number.  Relative 
to world w, the height-in-cm measure function Hcm,w is a partial function from in-
dividuals to height-in-cm degrees. For ease of presentation, I will assume throughout 
this paper a context which fixes the unit of measuring height as cm, even if the unit is 
not lexically present.  The composition derives the following sample interpretations: 
(for degree δ, δr is the first element of δ, the real value): 
 
     taller    λδ2λδ1 ∈ ΔH,cm:   δ1

r > δ2
r   

     shorter   λδ2λδ1:∈ ΔH,cm:   δ1
r < δ2

r 
more than  three cm taller λδ2λδ1: ∈ ΔH,cm:  δ1

r > δ2
r + 3 

less than three cm taller  λδ2λδ1: ∈ ΔH,cm:  δ1
r < δ2

r + 3 
more than three cm shorter λδ2λδ1: ∈ ΔH,cm:  δ1

r < δ2
r  ¡ 3 

 
The methodology of the theory is to keep the derivation at the level of degrees for 

as long as possible.  Thus, the above degree relations only turn into relations to in-
dividuals when they combine with individual arguments, like the complements in the 
examples in (1).  At that point, a type shifting operation of Composition with the 
Measure Function shifts them to relations to individuals:  
 



     Let  P and R be 1-place and 2-place predicates of height-in-cm degrees. 
     P ° Hcm,w = λx.P(Hcm,w(x)) 
     R ° Hcm,w = λyλδ1.R(δ1,Hcm,w(y)) 
 

For example, to combine wth complement every girl, taller shifts to: 
 
taller  λyλδ1.δ1

r > Hcm,w(y)r 
 

Importantly, at the point that the comparative combines with its DP complement it is 
an extensional relation from degrees to individuals.  We assume that all such relations 
fall under Montague's analysis in [4] for relations to individuals:  
 
     Montague's Principle: the interpretation of the DP-complement of a relation to  

individuals takes scope over that relation. 
 
This gives us  the following interpretation schema for DP-comparatives: 
 
α than DP λδ1.DP(λy.α(δ1,Hcm,w(y)) 
 
With this, the analysis of DP comparatives is in essence an extension of that of 

Hoeksema's in [2].  Examples of predicted interpretations are given in (2): 
 

(2)  a. taller than every girl  λδ.∀y[GIRLw(y) → δr > Hcm,w(y)r] 
      any height above the height of the tallest girl 
  b. taller than some girl     λδ.∃y[GIRLw(y) ∧ δr > Hcm,w(y)r] 
      any height above the height of the shortest girl 
  c.  less than 2 cm taller than Mary  λδ. δr < Hcm,w(Mary)r + 2 
       any height below Mary's height plus 2 cm 
  d. taller than exactly three girls    
      any height above height of the 3rd shortest girl and below that of any other girl. 
  e. more than 2 cm shorter than Mary λδ.δr < Hcm,w(Mary)r ¡ 2 
      any height below two cm below Mary's height 

2   Semantics for CP-Comparatives 

CP-comparatives are comparatives with a clausal complement, like in (3): 
 

(3) John is taller than Mary is ¡/ every girl is ¡/ at most three girls are ¡ 
 
The external comparative is the same as for DP comparatives.  In this paper, I res-

trict my attention to CP comparatives of the form in (3):  
 
α than [CP DP is [PRED¡ ]]  (where α is the comparative relation) 
 

     I will start by making some uncontroversial assumptions about CP comparatives. 



1. The CP complement is syntactically an operator-gap construction. 
2. The operator-gap construction is semantically interpreted.  This means that the gap 
     involves a semantic variable that is abstracted over at the CP level. 
3.  The variable abstracted over is a degree variable. 
4. The gap following the copula is a predicate gap. 

(4) means that the gap will be interpreted as a predicate of individuals, to fit with 
the DP subject.  Since the gap is based on a degree variable, it is natural to assume that 
it is in fact interpreted as a degree predicate, which shifts to a predicate of individuals 
though Composition with the Measure Function. What else is part of the interpretation 
of the gap depends on one's theory; this is indicated by relation variable R to be fixed 
by one's theory.  This gives the following interpretation of the gap:   

 
[PRED ¡ ] λδ1.R(δ1,δ) with δ the variable bound at the CP level. 
 

We assume that α denotes  height-in-cm degree relation α, determining measure func-
tion Hcm,w.  We compose the predicate λδ1.R(δ1,δ) with Hcm,w, apply the DP subject, 
and abstract over degree variable δ at the CP level.   What else is part of the CP 
interpretation depends on one's theory, this is indicated by operation variable M to be 
fixed by one's theory. We have derived for the general case:  

 
α          than    [CP        DP is [PRED¡ ]]  
α       -       M(λδ.DP(λy.R(δ,Hcm,w(y)))   
 

The advantage of this schema is that different theories fit into it.  For instance, two in-
fluential approaches to comparatives are those by von Stechow and by Heim: 

 
    Von Stechow [6]:   M = t<  R  =   =  

                 α than [CP      DP is [PRED¡ ]]  
                        λδ1 α(δ1, t<(λδ.DP(λy.δr = Hcm,w(y)r))  

     Heim [1]:         M = t<  R = λδ2λδ1. 0 < δ1
r ≤ δ2

r 

                 α than [CP      DP is [PRED¡ ]]  
                                λδ1 α(δ1,  t<(λδ.DP(λy.0  < δr ≤ Hcm,w(y)r))  

Sample predictions:  von Stechow:   
taller than some girl is ¡      =   any height above the height of the tallest girl 

Heim: taller than every girl is  ¡    =   any height above the height of the shortest girl 
These approaches are critized in [5] and in [3].  

Central in the present paper is what I will call here the Internal Theory: 
 
The Internal Theory: M = λP.P R = α 

                            α than [CP  DP is [PRED – ]]  
                            λδ.DP(λy.α(δ,Hcm,w(y))   
 

In the Internal Theory, comparison relation α is interpreted inside the CP at the pos-
ition of the gap (and there is no M).  Inspection of the semantics for DP comparatives 
discussed above should convince one that: 

 



Prediction of the Internal Theory: (i) and (ii) are equivalent:  
(i)  α than DP  
(ii) α than [CP DP is ¡ ]  
 

For discussion of the advantages and disadvantages of this theory, and a proposal 
for improving it, see [3]. 

3   Internal Semantics and Interval Semantics  

So far, degrees have been point degrees: real numbers indexed for unit and measure, 
and the semantics has been a point degree semantics.   [5] develops an interval sem-
antics for CP-comparatives, based on interval degrees.   I will call the proposal SW.  I 
will show in this section that as a semantics for CP-comparatives SW is equivalent to 
the Internal Theory of CP-comparatives.  This means that, despite claims to the con-
trary, the merits of this approach to CP-comparatives are not due to the interval 
semantics.  On the positive side, the result will allow us to credit the Internal Theory 
of CP-comparatives to Schwarzschild and Wilkinson. 

In the course of the following argument, I will simplify, modify, even at one point 
improve SW, keeping in mind that I am only concerned with the theory as an analysis 
of CP-comparatives.  Also, I will explain the fine points of SW only as we go along.  

I start with a first simplifying assumption.  For SW, interval degrees are primitives, 
ordered in an interval structure. I will assume set theoretic interval structures, lifted 
from intervals as sets of points. A caveat:  SW deviate from standard terminology in 
not requiring intervals to be convex: interval degrees are sets of points, not nec-
essesarily uninterrupted. This issue will be important later. 
     My second simplifying assumption concerns vagueness: I ignore it here.  That is, 
changing from point degrees to interval degrees may be useful for vagueness:  I am 1 
meter 76 cm, according to a certain standard of precision.  We can let 1.76 be an 
interval containing the point 1.76 and the points around it that form the margin of 
error.  I do not object to such use of intervals, but will ignore it, because the problems 
concerning the semantics of quantificational DPs inside CP-comparatives are inde-
pendent of vagueness.  Thus, I will assume (with section 1) that the measure function 
assigns point degrees to individuals. 
 Thirdly, for ease of notation, I will ignore in this section the distinction 
between degree triples and their real value, writing δ where I should write δr. 

With SW, we are concerned with the semantics of the following schema: 
 

(4)  DP1 is β-taller than DP2 is –.  
  where β is: at least two cm, at most two cm, exactly two cm, Ø….. 
 

The semantics SW propose for (4) is (5) (based on their example (82), p. 23): 
 

(5)  ∃j[ DPi is j-tall ∧ DP2 is max(λi. β(j¡i))-tall ] 
  



Here i and j are variables over interval degrees,  j¡i, the difference of j and i, is an 
interval degree, and β is a predicate of interval degrees.   With this, λi. β(j¡i) is also a 
predicate of interval degrees, and max(λi. β(j¡i)) is again an interval degree. 
     Thus, John is at least two cm taller than Mary is true if for some interval degrees j 
and k, John is j-tall and Mary is k-tall, and k is interval degree max(λi. at least two 
cm(j¡i)), whatever that is.  
     Schwarzschild and Wilkinson in [5] are not concerned with the external subject, 
only with quantificational DPs inside the CP-comparative.  I will follow them, ignore 
the external subject and focus on the predicate: 

 
(6)   β-taller than DP is –.  

   λx.∃j[ x is j-tall ∧ DP is max(λi. β(j¡i))-tall ] 
   
We look at the expression x is j-tall.  I will write j-tall(x).   ...-tall(…) is a relation 

between individuals and interval degrees; hence j-tall(…) is a predicate of individuals, 
and …–tall(x) a predicate of degrees. SW constrains  …–tall(x) as follows: 

 
Set of interval degrees I is a proper filter iff   
1. if i ∈ I and i ⊆ j then j ∈ I   (persistence) 
2. if i ∈ I and j ∈ I then i ∩ j ∈ I (overlap) 
3. Ø ∉ I    (properness) 
Constraint:  for every individual x:  …-tall(x) is a proper filter. 
 
Persistence allows us to introduce a notion of height-ballpark.  Suppose the heights 

of the girls vary from 1 meter 55 cm to 1 meter 72 cm.  Then the smallest girl is [1.55, 
1.55]-tall and the tallest girls is [1.72, 1.72]-tall.  With persistence, each of the girls is 
[1.55, 1.72]-tall. 
     Thus the interval [1.55, 1.72] is the semantic ballpark within which we find the 
height of all the girls.  The idea is:  we compare John's height with that of the girls by 
comparing John's height with the ballpark interval for the girls. 

Overlap and properness express degree-consistency.  For instance, you cannot be 
both [1.72,1.72]-tall and [1.74,174]-tall, since then, by overlap, you should be 
[1.72,1.72] ∩ [1.74,174]-tall, which is Ø-tall, and the latter is ruled out by properness. 
     Our assumption that for individual x, Hcm,w(x) is a point allows a simplification: for 
individual x we just define λi. i-tall(x) as the proper-filter generated by Hcm,w(x): 

 
Ultrafilter:  For every individual x:  λi. i-tall(x) = {i: Hcm,w(x) ∈ i} 
 

With this, (6) becomes (7):  
 

(7)    β-taller than DP is –.  
   λx.∃j[ Hcm,w(x) ∈ j ∧ DP is max(λi. β(j¡i))-tall ] 
 
I will now argue that this account needs a correction.  Look at (8): 

 
(8)   John is exactly two cm taller than Mary is ¡.  

   ∃j[ Hcm,w(JOHN) ∈ j  ∧  Mary is max(λi. 2 cm(j¡i))-tall ] 



What we need to understand at this point about the meaning of the second conjunct 
is that it associates with Mary a height-interval max(λi. 2 cm(j¡i)), the upperbound of 
which is  exactly two cm below the lower bound of interval j and which has 
Hcm,w(MARY) as upper bound (maximum).    Let us set up the problem.   

Assume that Hcm,w(JOHN)  = 1.78 and Hcm,w(MARY) = 1.72.  
This means that [1.78, 1.78]-tall(JOHN) and [1.72, 1.72]-tall(MARY). 
Take the interval [1.74, 178].  Since [1.78, 1.78]-tall(JOHN), by persistence   
[1.74, 1.78]-tall(JOHN). 
Given the meaning of max(λi. 2 cm(j¡i))-tall, it follow that: 
Hcm,w(JOHN) ∈ [1.74, 178]  ∧  Mary is max(λi. 2 cm([1.74, 178]¡i))-tall ] 
Hence (9) is true:  

 
(9)  ∃j[ Hcm,w(JOHN) ∈ j  ∧  Mary is max(λi. 2 cm(j¡i))-tall ] 

 
And so (8) is predicted to be true, incorrectly, because (8) is false in this context. 
     Clearly, the statement Hcm,w(x) ∈ j in (8) is too weak: it needs to be replaced by a 
statement that makes  Hcm,w(x) the lower bound of the interval j in (8).  In fact, since x 
is an individual,  and we ignore vagueness, we solve the problem by requiring that j is 
the point Hcm,w(x).  To simplify notation, I will set: [r,r] = r, for real number r (thus r 
itself counts as an interval) and we get: 

 
(10)    β-taller than DP is –.  

      λx. DP is max(λi. β(Hcm,w(x)¡i))-tall ] 
 
(11)   John is exactly two cm taller than Mary is ¡.  

     Mary is max(λi. 2 cm(Hcm,w(JOHN)¡i))-tall ] 
 

Given the description of the intended meaning of max(λi. 2 cm(Hcm,w(JOHN)¡i))-tall, 
this means that the interval with Mary's height as maximum is 2 cm below John's 
height, which is, of course, what we want. 

We assume that (10) is derived through Composition with the Measure Func-
tion, and get (12), where δ is a point degree: 

 
(12)    β-taller than DP is –.  

      λδ. DP is max(λi. β(δ¡i))-tall ] 
 

While it is clear from [5] what (12) means, it is not clear how (12) is derived, since [5] 
does not give an implementation of the grammar.  This means that we can apply some 
charity:  the obvious implementation is (13); (13) assigns to all examples discussed in 
[5] the same truth conditions as assigned in [5]; hence we take (12) to mean (13): 

 
(13)   β-taller than DP is ¡.  

     λδ. DP(λy. max(λi. β(δ¡i))-tall(y)) 
 

With the ultrafilter analysis of the degree predicates we have: 
 
max(λi. β(δ¡i))-tall(y) iff Hcm,w(y) ∈ max(λi. β(δ¡i)) 



Hence, (13) is equivalent to (14): 
 

(14)   β-taller than DP is ¡.  
     λδ. DP(λy. Hcm,w(y) ∈ max(λi. β(δ¡i))) 
 

This we can rewrite as (15): 
 

(15)   β-taller than DP is ¡.  
     λδ.(DP(λy. R(δ, Hcm,w(y)) 
 where R = λδ2λδ1 ∈ ΔH,cm: δ2∈ max(λi. β(δ1¡i))  
 

It should be clear at this point that if we can show that R in (15) is the same relation as 
the Internal Theory uses, we have proved the equivalence between SW and the 
Internal theory.  We will show this in two stages.   
We start with SW's definitions of interval subtraction and max: 

 
        (j ∪ i)cc ¡ (j ∪ i)  if i < j  (where Xcc is the convex closure of X) 

j¡i    =  
        Ø    otherwise 

 
The intuition is simple:  j ¡ i is the interval between the lower bound of j and the 
upper bound of i, if j > i,  otherwise it is undefined. 

 
max(λi. β(j¡i))) is the unique interval k such that: 
 1. for every non-zero m μ k: β(j¡m)   
 2. for every m à k: there is a p μ m: ¬β(j¡p) 
 

Instead of attempting to explain this notion, I will prove the following prop-
osition,which is the first (and most important) step in the proof that R in (15) is the 
relation of the Internal Theory: 

 
Let δ1,δ2 ∈ Δcm,w. 
Proposition: δ2 ∈ max(λi.β(δ1¡i)) iff  β(δ1¡ δ2) 
 

Proof: 
1. If δ2 ∈ max(λi.β(δ1¡i)) then  β(δ1¡ δ2). 
Assume  δ2 ∈ max(λi.β(δ1¡i)). 
Then δ2 ⊆  max(λi.β(δ1¡i)).  (δ2 taken as a singleton interval) 
The first clause of the definition of max(λi.β(δ1¡ i) says that for all (non-empty) 
subintervals m of max(λi.β(δ1¡ i):   β(δ1¡ m) holds.  
By the assumption, one of these is δ2, hence indeed: β(δ1 ¡ δ2). 

 
2. If β(δ1 ¡ δ2) then δ2 ∈ max(λi.β(δ1¡i)). 
Assume β(δ1 ¡ δ2), and assume δ2 ∉ max(λi.β(δ1¡i)). 
Look at max(λi. β(δ1¡ i)) ∪ δ2.  
max(λi. β(δ1¡ i)) ∪ δ2 à max(λi.β(δ1¡i)). 



(Note that at this point we use the fact that intervals are not necessarily convex, 
because this set counts as an interval, but is not necessarily convex.)  
Let m ≠ Ø and m ⊆ max(λi.β(δ1¡i)) ∪ δ2. 
-Either m ⊆  max(λi.β(δ1¡i)), and then β(δ1¡m),  by the first condition of the def-
inition of max. 
-Or m = δ2 and,  by the assumption,  β(δ1¡m). 
-Or,  for some non-empty k ⊆ max(λi.β(δ1¡i)): m = k ∪ δ2. 
In the latter case, we know that both β(δ1 ¡ k) and β(δ1 ¡ δ2).   

 
Now we look at k ∪ δ2.  The upperbound of this set is either the same as the up-
perbound of k or it is δ2.  This means that: 

δ1 ¡ (k ∪ δ2)  =  δ1 ¡ k  or δ1 ¡ (k ∪ δ2)  =  δ1 ¡ δ2 
In either case it follows that β(δ1 ¡ (k ∪ δ2)), hence also in this case β(δ1¡m). 

 
We see then that max(λi.β(δ1¡i)) ∪ δ2 à max(λi.β(δ1¡i)). 
But we have just shown that max(λi.β(δ1¡i)) ∪ δ2 doesn't have a non-zero subinterval 
m where ¬β(δ1¡m).  This contradicts the second clause of the definition of  
max(λi.β(δ1¡i)).  We have derived a contradiction from the assumption that δ2 ∉ 
max(λi.β(δ1¡i)).  Hence  δ2 ∈ max(λi.β(δ1¡i)). � 

 
We are now concerned with comparative expression:  β-taller (than).   
 
δ1 β-taller than δ2: IT:    (βIT + more)+tall(δ1,δ2)  = βIT ° ¡H(δ1,δ2) 

SW:  β(δ1,δ2)  where β  is an interval predicate. 
 

[5] suggests the following semantics for differential interval predicates: 
 
     Ø(i) is true            iff the size of i is bigger than 0 cm 
     at least two cm(i) is true  iff the size of i is at least 2 cm. 
     at most two cm(i) is true iff the size of i is at most 2 cm. 
     exactly two cm(i) is true  iff the size of i is exactly 2 cm. 
 

In [5] the notion size of an interval is a primitive notion.  But obviously we want to 
assume at this point an adequacy constraint for points δ1, δ2 where δ1 > δ2:  

  
     Adequacy constraint:  β(δ1 ¡ δ2)) iff  βIT ° ¡H (δ1,δ2) 

 
The adequacy constraint makes a trivial connection between what SW does and what I 
do.  For example, at least two cm(δ1,δ2) expresses for δ1 > δ2 that the size of the 
interval (δ1,δ2) is at least 2 cm.  The adequacy constraint tells us that this is the case 
exactly if and only if  δ1 and δ2 are height-in-cm degrees such that δ1 > δ2 + 2. 
     As it happens, for the differentials that [5] uses, it is not a problem that SW's notion 
of interval subtraction is not classical subtraction.  However, if SW were extended to 
other comparatives, like β less tall than, SW's non-standard notion  would be pro-
blematic (as is briefly indicated in the appendix). 

The proposition and the adequacy constraint together give us: 



Let δ1,δ2 ∈ Δcm,w. 
Corrollary: δ2 ∈ max(λi.β(δ1¡i)) iff  βIT ° ¡H (δ1,δ2) 
 

This means that (15) is equivalent to (16):  
 

(16)   β-taller than DP is ¡.  
     λδ.(DP(λy. R(δ, Hcm,w(y)) 
                 where R = βIT ° ¡H  
 
But, of course, as already mentioned, βIT ° ¡H is the special case of external 

comparison relation α:  (16) is a special case of (17), the Internal Theory: 
 

(17) β-taller than DP is ¡.  
        λδ.(DP(λy. α(δ, Hcm,w(y))   

where α is the interpretation of the external comparative. 
 
With this, we have shown, for the differentials discussed,  SW to be equivalent to 

the Internal Theory of CP-comparatives. 

4   Appendix: Compositional Derivation of Comparative relations 

We associate with an appropriate measure-unit pair M,u two scales:  
Basic scale for M,u: sM,u  = <ΔM,u, >M, tM, −M, Mu> where measure domain ΔM,u and 
     measure function Mu are as given in section 1, and  >M, t>M, ¡M are lifted from R.    
Converse scale for M,u: sM,u

c = <ΔM,u, >M
c,tM

c, −M
c, Mu>, where ΔM,u and Mu  are 

     the same and  δ1 >M
c δ2 iff δ2  >M δ1;  t>M

c = u>M; δ1  ¡M
c δ2 = δ2  ¡M δ1 

(Note:  mnemonic superscripts:  δr,δu,s¡  refer to the r,u,¡ place of the relevant tuple.) 
 

Semantic derivation: 
1.  1-place number predicate: (somewhat):  λr.r > 0    

2-place number functions: more: ¡ ;    less:  ¡c   
A 1-place number predicate composes with a 2-place number function to give a 2-  
     place number relation: 

2-place number relations:  (somewhat) more than: λr.r >R 0 ° ¡    =    > 

    (somewhat) less than:    λr.r >R 0 ° ¡c  =    < 
2. A 2-place number relation applies to a number to give a 1-place number predicate: 

1-place number predicates:  more than three:  λr. r > 3;  
less than three:     λr. r < 3 

3. A number predicate combines with unit cm to give a cm-degree predicate: 
1-place degree predicates: more than three cm:   λδ. δr > 3 ∧ δu=cm 
    less than three cm:  λδ.δr  < 3 ∧ δu=cm 

4.  Functions from scales to 2-place degree functions: more:  λs.s¡ 

           less:    λs.(sc)¡ 

 
 



 A 1-place predicate composes with a function from scales to degree relations to give a 
function from scales to degree relations: 

more than three cm more:    λs.λδ2λδ1.     s¡(δ1, δ2)r > 3 ∧ δ2
u=cm 

more than three cm  less:     λs.λδ2λδ1. (sc)¡(δ1, δ2)r > 3 ∧ δ2
u=cm 

5.  Functions from units to scales:  tall:  λu.sH,u  

     short   λu.sH,u
c 

Apply step (4) to step (5), filling in cm for the unit in (5).  This derives 2-place 
relations between height-in-cm-degrees. 
Sample derivation: 
 more than three cm  + less      =  more than three cm less 
λδ.δr > 3 ∧ δu=cm   + λs.(sc)¡    = λsλδ2λδ1.(sc)¡(δ1,δ2)r > 3 ∧ δu=cm 

 
+   tall           =        more than three cm less tall 
+ λu.sH,u            =        λδ2λd1 ∈ ΔH,cm:  (sH,cm

c)¡(δ1,δ2)r > 3 
(sH,cm

c)¡(δ1,δ2)r    =  ¡H
c(δ1,δ2)r  = δ2

r ¡ δ1
r 

So:  more than three cm less  tall λδ2λδ1 ∈ ΔH,cm: (δ2
r ¡ δ1

r) > 3 
  (=  more than three cm shorter) λδ2λδ1 ∈ ΔH,cm: δ1

r < δ2
r ¡ 3 

The computation shows the advantage of the scale being based on the full reals with 
normal subtraction (as opposed to subtraction on positive intervals in SW):  even if the 
measure function doesn't assign negative heights, we want the equivalences that they 
allow, and use these in simplifying the meanings derived.   
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