
52

PART 3. CONTEXT FREE GRAMMARS AND PUSHDOWN AUTOMATA.

 FEATURES AND INDICES.

As we have seen, in a context free grammar, all rules are of the form Aα,

with A  VN and α  V
+
 (and allowing Se if the grammar is in reduced form),

 A context free grammar is in Chomsky Normal Form (CNF) iff all rules are

of the form AB C or Aa, with A,B,C  VN, a  VT (again, allowing Se

if the grammar is in reduced form).

Theorem: Every context free grammar is equivalent to a context free grammar in

 Chomsky Normal Form.

Proof:

1. Suppose we have a rule with more than one terminal symbol occurring on the right

side. We choose for each terminal symbol a occurring in the rule a new non-terminal

Aa, and replace in the rule a by Aa and add a new rule Aaa.

For a rule AaBcdACa this would give:

 AAaBCcDdACAa, Aaa, Ccc, Ddd.

Now we have only rules that rewrite a non-terminal into a string of non-terminals, and

rules which are already in CNF.

2. Next, any rule with more than two non-terminals on the right side is replaced by a

set of rules, each of which has exactly two non-terminals on the right side, a binary

rule. Here we just do what we did for restricted right linear grammars:

Replace A AaBCcDdACAa by AAaX1, X1BX2, etc...

3. After this, the only rules left that are not in CNF are rules of the form AB.

For any such rule, we delete AB and add for any rule Bα a rule Aα.

The resulting grammar is in Chomsky Normal Form, and equivalent to the original

one.

A context free grammar is in non-redundant form (NR) iff every non-

terminal (and every terminal) occurs at some node in an I-tree for the grammar

(a tree in the set of generated trees).

Theorem: Every context free grammar is equivalent to a context free grammar in

 non-redundant form.

We will prove this theorem by proving a series of lemmas.

First we make a convention.

A path in a parse tree of G is a maximal set of nodes, linearly ordered by dominance,

so, a linear path from the topnode to one of the leaves.

We define:

 Let p be a path in parse tree T of G

 the length of path p, |p| is the cardinality of the set of occurrences of non-

terminal labels on the nodes in p.

53

This means that if the leaf in p is labeled by a terminal symbol we don't count it for

the length of the path (but if the leaf is labeled by a non-terminal symbol we do count

it). This convention makes some of our calculations a bit simpler.

Lemma 1. If a context free grammar with n non-terminals generates any string at all,

 it also generates some string of terminals with an I- tree where the length

 of each path is at most n.

Proof:

Suppose that grammar G generates string α. Then there is an I- tree in G with

topnode S and yield α. In this tree, there may be a path where a nonterminal A occurs

twice, say, A
1
 and A

2
:

 S

 A
1

 A
2

 α1 α2 α3 α4 α5

 α = α1α2α3α4α5

Let us write T(X) for the subtree with topnode X.

We see:

yield(T(S)) = α1α2α3α4α5

yield(T(A
1
)) = α2α3α4

yield(T(A
2
)) = α3

S dominates A
1
, A

1
 dominates A

2

Since A
1
 and A

2
 have the same label, we can cut out the bit inbetween A

1
 and A

2
.

The result is also a constituent structure tree generated by G:

 S

 A
2

 α1 α3 α5

 α' = α1α3α5

yield(T(S)) = α1α3α5

yield(T(A
2
)) = α3

54

If we do this for every non-terminal symbol that occurs twice at some path in the

original T(S), we end up with a constituent structure tree of G for some β  L(G), in

which the length of each path is at most n (n non-terminals plus one terminal on the

leaf). This proves lemma 1.

Lemma 2: In a context free grammar there is an algorithm for determining whether

 the generated language is empty or not.

Proof:
This follows from lemma 1.

For any context free grammar with n non-terminals, there is a finite number k of

constituent structure trees with paths not exceeding n. This means that we only need

to check k trees, in order to find out whether the generated language is empty or not.

This may be not very efficient, but it is an algorithm, so we have proved lemma 2.

Lemma 3: In a context free grammar there is an algorithm to determine for every

 non-terminal whether there is a parse tree with a terminal string as yield.

Proof:

This follows from lemma 2. You want to determine whether non-terminal A

dominates any terminal string. Make A the new initial symbol of the grammar.

Then the problem is equivalent to determining whether the language generated by that

grammar is empty or not, and we have just shown that we have an algorithm for

determining that..

Lemma 4: For every context free grammar, there is an algorithm to determine for

 any non-terminal symbol, whether there is a parse tree with S as topnode

 and that symbol in the yield.

Proof:

The proof is similar to that of lemma 1. If G has n non-terminals and there is a parse

tree in G with S as topnode and non-terminal A in the yield, you can prune the tree

to a parse tree for G that still has A in the yield, but doesn't have any non-terminals

repeating on any path. This tree, thus has no paths longer than n. Again, there are

only finitely many parse trees in G with paths no longer than n, hence, by going

through those, you can just check whether S dominates A. If you find A in the yield of

any one of these trees, then S dominates A, if you don't, then S doesn't dominate A in

any longer tree either.

Now we can prove out theorem, which I repeat here:

55

Theorem: Every context free grammar is equivalent to a context free grammar in

 non-redundant form.

Proof:

-Check for any non-terminal whether it dominates any terminal string. If it doesn't,

delete it and any rule that mentions it. That rule is useless.

-Check for any remaining non-terminal whether S dominates it. If it doesn't, delete it

and any rule that mentions it. That rule is useless.

The resulting grammar is in non-redundant form and generates the same language as

G (since you have only eliminated rules that weren't used in the generation of terminal

strings in the first place).

Corrollary: Every context free grammar is equivalent to a context free grammar in

 Non-redundant Chomsky Normal Form.

Proof:

First bring the grammar in Chomsky Normal Form, then bring it in Non-redundant

form.

THE STRING/PATH LEMMA.
Let G be a context free grammar in non-redundant Chomsky Normal Form.

Let α  L(G) and let T(α)  T(G).

 If T(α) has no path of length greater than i, then |α| ≤ 2
i1

.

 T(α)

 S

 maximal path of length smaller or

 equal than i

 α

 maximal length smaller or equal than 2
i1

Proof: With induction.

1. i=1

If the maximal path in T(α) has length 1, then, since G is in non-redundant Chomsky

Normal Form, α is a terminal symbol or α=e. Then |α|=1 or |α|=0.

Since 2
11

 = 2
0
 = 1, |α|≤2

i1
.

56

2. i>1. Since G is in non-redundant Chomsky Normal Form, the top of T(α) is binary,

and looks like:

 S

 T1 T2

where for some α1,α2, α=α1α2 and T1 is a parse tree with yield α1 and T2 is a parse tree

with yield α2

We assume: the maximal path in T(α) is at most i.

We assume as induction hypothesis that the lemma holds for trees with maximal

paths smaller than i:

So we assume: For any parse tree with yield a terminal string and maximal path

 smaller or equal to i1, the length of the yield is smaller or equal to

 2
i2

.

We will prove: |α|≤2
i1

..

The maximal path in T has length at most i. Since S is on the maximal path in T, and

counts for its length, the maximal path in T1 has length at most i1, and the maximal

path in T2 has length at most i1.

By the induction assumption, this means that: |α1|≤2
i2

 and |α2|≤2
i2

.

Since α = α1α2, |α|=|α1|+|α2|,

hence, |α|≤2
i2

+2
i2

.

2
i2

+2
i2

 ≤ 2
i1

.

Hence, |α| ≤ 2
i1

.

This proves the string/path lemma.

The string/path lemma tells you that in the I- trees of a context free grammars in

Chomsky normal form there is a correlation between the height of the tree and the

width of the tree. More generally, it tells you that in context free grammars there is a

correlation between the length of the derivation and the length of the generated

string.

This is a fundamental property which helps, among others, with efficient parsing (the

length of the string puts a boundary on the length of the worst case parse).

It also forms the basis for a pumping lemma for context free languages.

THE PUMPING LEMMA FOR CONTEXT FREE LANGUAGES.

Let G be a context free grammar in non-redundant Chomsky Normal Form with k

non-terminals. Let n=2
k
.

Let α  L(G) and let |α|≥n. This means |α|>2
k1

Using the string/path lemma, it follows that any constituent structure tree for α has at

least one path of length bigger than k (i.e. at least one path with more than k non-

terminals and a terminal on the leaf).

57

Since there are only k non-terminals in G, it follows that in any constituent structure

tree for α, some non-terminal A repeats itself on the branch with length bigger than k.

Let T(α) be any such constituent structure tree, p a path of length bigger than k.

Let A be the first label that repeats on p if you walk up p from the leaf. Let A
1
 be

the first occurrence of A on p if you walk up p from the leaf node, and A
2
 the second

occuurrence of label A on p if you walk up p from the leaf node.

We have the following situation:

 S

 A
2

 A
1

 y3 β y2 γ y
4

 y1

The tree dominated by A
2
 is T(A2). The length of the maximal path in T(A

2
) is at

most k+1 (A was the first repeating label on p, so the bit of p that lies in T(A
2
) has

two occurrences of A, and further only distinct non-terminals.) Call the yield of

T(A
2
) y1. Then, by the string/path lemma it follows that |y1|≤2

k
. Hence, |y1|≤n.

Let us call the yield of T(A1) y2.

By the context free format we know that y2  e.

 Then we can write y1 as:

 y1

= β y2 γ

Now the grammar is in non-redundant Chomsky Normal Form, this means that the top

of T(A
2
) has the form:

 A
2

 B C

By the context free format, yield(T(B))  e and yield(T(C)  e.

Now A
1
 is either dominated by B or by C.

-If A
1
 is dominated by B, then, by the fact that yield(T(C))e it follows that γ  e.

-If A
1
 is dominated by C, then, by the fact that yield(T(B))e it follows that β  e.

Hence it cannot be the case that both β and γ are empty.

58

Thus, α has βy2γ as a substring.

Now, α may have a string y3 to the left of βy2γ, and α may have a string y4 to the right

of βy2γ, so α itself is of the form:

 α = y3βy2γy4

 where: 1. |βγ|>0

 2. |βy2γ|≤n

Now we observe that: tree T(A
2
) contains a loop.

-Instead of of doing at node A
2
 what we do in this tree, we could have gone on

directly to the daughters of A
1
. The result of doing that is a constituent structure tree

of G with yield y3y2y4. Hence, y3y2y4  L(G).

-Alternatively, we could have gone on to A
1
, and instead of what we do in A

2
, we

could have repeated what we did in A
2
, and then go to T(A

1
). The result of doing

that is a constituent structure tree of G with yield y3ββy2γγy4. Hence, y3ββy2γγy4 

L(G).

-In general, we could have repeated at node A
2

 what we did between A
2
 and A

1
 as

many times as we want, and then go to T(A
1
).

With this we have proved:

 The Pumping Lemma for Context Free Languages:

 Let L be a context free language. There is a number n, the pumping constant

for L, dependent only on L (in terms of the string/path lemma) such that any

string α  L with |α|≥n can be written as:

 α = y3βy2γy4

 where: 1. |βγ|>0

 2. |βy2γ|≤n

 3. For every i≥0: y3 β
i
y2 γ

i
y4  L

Thus, for any context free language, we can find a constant, such that for any string

longer than that constant, we can find a description of that string in which we can

find two substrings, close enough to each other, that we can pump

simultaneously.

59

Example: (not showing the pumping lemma, but the loop)

 S

B C

b A F

 D E f

 d C F

 c A G

 a g

y3 β y2 γ y4

 S

B C

b A F

 D E f

 d C F

 c A G

 g

 D E

 d C F

 c A G

 a g

y3 β β y2 γ γ y4

Applications of the pumping lemma.

Fact: a
n
b

n
c

n
 is not context free.

Proof:

Assume a
n
b

n
c

n
 is context free. Then it has a pumping constant z.

Choose a string α in a
n
b

n
c

n
 longer than z:

 a.......................ab........................bc........................c

say k a's, followed by k b's, followed by k c's.

According to the pumping lemma, we should be able to write α as:

α = y3 β y2 γ y3 where β and γ are not both empty and |βy2γ|≤z and pumping β

and γ simultaneously gives a string in a
n
b

n
c

n
..

We go through all the possible cases.

Case 1. Suppose that β=e.

Then we need to find a non-empty string γ that can be pumped.

But we already saw that we couldn't find such a string for a
n
b

n
, so we certainly can't

find such a string for a
n
b

n
c

n
.

The case where γ=e is similar.

60

So we assume that both β and γ are not empty.

Case 2: β and γ consist solely of a's.

In this case, pumping β and γ will give you more a's than b's and more a's than c's, and

the resulting string is not in a
n
b

n
c

n
..

The cases where β and γ consist solely of b's or consist solely of c's are similar.

Case 3: β consists solely of a's and γ consists solely of b's.

In this case, pumping β and γ simultaneously will give you the same number of a's

and b's, but more a's than c's, and more b's than c's. Hence the result is again not in

a
n
b

n
c

n
.

The cases where β consists solely of a's and γ of c's, and where β consists solely of b's

and γ of c's are similar.

Case 4: One of β and γ does not solely consist of a's or solely of b's or solely of c's.

In that case, in the result of pumping, it is noy the case that all a's precede all b's and

all b's precede all c's. The result is once again not in a
n
b

n
c

n
.

These are all the possible cases.

We see that there is no division of α that satisfies the pumping lemma. Yet, if a
n
b

n
c

n

were context free there must be such a division, since |α|>z.

Consequently, a
n
b

n
c

n
 is not context free.

We can give similar proofs for the following facts:

Fact: a
n
b

m
c

n
d

m
 is not context free.

Proof: similar to that of a
n
b

n
c

n
.

This is a language of crossed dependencies.

Note that this language must be distinguished from a
n
b

n
c

m
d

m
. The latter is perfectly

context free (since it is the product of context free languages a
n
b

n
 and c

m
d

m
).

It should also be distinguished from: a
n
b

m
c

n
, which is also perfectly context free

(Take a homomorphism that maps b onto e.)

Sometimes you cannot use the pumping lemma directly to prove that a language is not

context free. For example: a
m

b
n
c

n
d

n
 (m>2).

Take a string that is big enough, you can chose β and γ to be an a, and pumping will

keep you in the language.

So crucially, the pumping lemma does not tell you that if a language satsifies the

pumping lemma, it is context free, it only tells you that if a language is context free it

satisfies the pumping lemma.

We can show the above language to be not context free, by using a homomorphism

that maps a onto e. Then the homomorphic image is b
n
c

n
d

n
 which is not context free.

Consequently, a
m

b
n
c

n
d

n
 (m>2) is not context free.

61

Closure Properties of Context Free Languages.

Theorem: If A and B are context free languages, then A  B is context free.

Proof: If e  A and e  B: Take GA and GB. Make symbols disjoint,

add SSA, SSB. Adapt this for the cases that include e.

Theorem: If A and B are context free languages, then A  B is context free.

Proof: If e  A and e  B: Take GA and GB. Make symbols disjoint, add S SASB.

Adapt this for the cases that include e.

Theorem: If A is a context free language, then A* is context free.

Proof: If e  A, Change S to S0, Add a new S and: SS0 and SS S0.

Convert to reduced form and add Se. Adapt for the case that includes e.

Theorem: The class of context free languages is not closed under complementation.

Proof: this follows from the next theorem.

Theorem: The class of context free languages is not closed under intersection.

Proof:

It is easy to show that a
n
b

n
c

m
 and a

k
b

p
c

p
 are context free.

Their intersection is a
n
b

n
c

n
 which we will show shortly to be not context free.

Theorem: Contextfree languages are closed under substitution

Proof:

Let L be a context free language in alphabet A with grammar GL.

Let s: A  pow(B*) be a substution function such that for every a  AL: s(a) is a

context free language with grammar Gs(a).

Let all non-terminals of all these grammars be disjoint (so Gs(a) has start symbol Ss(a)).

We form a new grammar G':

1. Replace every rule A  …a… of G with a  A by: A  …Ss(a)…

2. Add the rules of the Gs(a) grammars.

The new grammar G' is obviously contextfree and generates s(L).

Corrollary: Contextfree languages are closed under homomorphisms.

Theorem: Contextfree languages are closed under inverse homomorphisms

Proof: Like the proof of the same theorem for regular languages, the proof goes by

 turning an automaton for L into an automaton for h
1

(L). The construction

 and proof is much more complex than the earlier case, though.

62

Theorem: If A is a context free language and B is a regular language, then

 A  B is a context free language.

Proof: We will prove this later with an automaton.

We see that, though the class of context free languages is not closed under

intersection, it is closed under intersection with a regular language.

Most attempted proofs to show that natural languages are not context free use this

latter fact.

Not context free are exponential languages:

Fact:
n

a 2 is not a context free language.

This is the language:

{a, aa, aaaa, aaaaaaaa, ...}

 1 2 4 8

n= 0 1 2 3

Proof: Take a string α 
n

a 2 with |α| = 2
k
, where 2

k
 > n

We need to find a dividion in which:

|βy2γ|≤n

If you pump β and γ once in α you get a string α' of length 2
k
 + z, where z≤n.

But 2
k

< 2
k
+z < 2

k+1
,hence α' is not in

n

a 2 .

Fact:
2na is not a context free language.

This is the language:

{e, a, aaaa, aaaaaaaaa, ...}

 0 1 4 9

n= 0 1 2 3

Proof: similar.

Not context free is the string copy language:

Fact: Let A be an alphabet.

 αα = {αα: α  A*}

 αα is not context free.

In alphabet {a,b}, αα is the set:

{e, aa, bb, abab, baba, aaaaaa ,bbbbbb, aabaab, abaaba, baabaa, abbabb, babbab,

bbabba, aaaaaaaa, bbbbbbbb,...}

This language should be distinguished from its cousins:

 Let A be an alphabet:

 αα
R
 = {αα

R
: α  A*}

This is the set of even palindromes on alphabet A.

63

In alphabet {a,b}, αα
R
 is the set:

{e, aa, bb, abba, baab, aaaaaa, bbbbbb, aabbba, abaaba, baaaab, abbbba, babbab,

bbaabb, aaaaaaaa, bbbbbbbb,...}

and:

 Let A be an alphabet.

 αβα
R
 = {αβα

R
: α  A* and β  A} is the set of odd palindromes on alphabet

A.

Though they look similar to αα, there is a crucial difference: αα
R
 and αβα

R
 are

perfectly context free.

Example: Let A = {a,b,c}

A context free grammar for {αα
R
: a  {a,b,c}

+
} is:

S aSa, SbSb, ScSc, Saa, Sbb, Scc.

Convert it into reduced form and add Se, and you have a context free grammar for

{αα: a  {a,b,c}*}.

A man, a plan, a canal, Panama.

Dennis and Edna sinned.

Able was I ere I saw Elba.

Madam, I'm Adam.

All the languages given here are context sensitive languages.

Fact: a
n
b

n
c

n
 (n>0) is a context sensitive language.

A grammar generating a
n
b

n
c

n
 (n>0):

Sabc

SabcS

baab

caac

cbbc

This is a context sensitive grammar, since no rule is shortening.

A sample derivation shows that it generates a
n
b

n
c

n
 (n>0):

S

abcS

abcabcS

abcabcabc

abcabacbc

abcaabcbc

abacabcbc

aabcabcbc

aabacbcbc

aaabcbcbc

aaabbccbc

aaabbcbcc

aaabbbccc = aaabbbccc No more rule applicable.

Writing a similar context sensitive grammar for a
n
b

m
c

n
d

m
 is simple.

64

Fact: {αα: α  {a,b}*} is context sensitive.

A context sensitive grammar for {αα: α  {a,b}*}.

VT

= {a,b}

VN = {S, X, A, B, A0, B0, Ae, Be, Am, Bm, Ace, Bce}

1. Se, Saa, Sbb

2. SA0 X SB0 X

 XA X XB X

 XAe

XBe

This generates strings of the form A0ABBBAe

Here A0

 indicates the beginning of the string, and Ae

indicates the end of the string.

Ignoring the 0,e, this bit gives you the strings in {α  {A,B}
+
: |α|≥2}

3. Introduce moving-A/B: Am/Bm

 A0a Am

B0b Bm

4. Move Am/Bm over A/B/a/b

 Am A  A Am Bm A  A Bm

 Am B  B Am Bm B  B Bm

 Am a  a Am Bm a  a Bm

 Am b  b Am Bm b  b Bm

5. Introduce copy-end:

 Am Ae  A Ace Bm Ae  A Bce

 Am Be  B Ace Bm Be  B Bce

The moving-A/B moves over Ae/Be, turning the latter into A/B and itself becomes a

copy-end Ace/Bce.

6. Introduce copies:

 Am Ace  a Ace Bm Ace  a Bce

 Am Bce  b Ace Bm Bce  b Bce

The moving-A/B moves over copy-end Ace/Bce, turning the latter into a/b and itself

becomes the new copy-end Ace/Bce.

7. Introduce A0/B0:

a A  a A0 a B  a B0

b A  b A0 b B  b B0

8. End:

 Ace  a Bce  b

Note that the grammar is in reduced form, and no rule is shortining except for Se.

So the grammar is indeed a context sensitive grammar.

65

Example 1:

We first generate: A0ABBBAe

We introduce Am: aAmABBBAe

We move Am right: aABBBAmAe (this is, of course, 4 steps)

We introduce copy-end: aABBBAAce

We introduce A0: aA0BBBAAce

We introduce Am: aaAmBBBAAce

We move Am right: aaBBBAAmAce

We introduce a copy: aaBBBAaAce

We introduce B0: aaB0BBAaAce

We introduce Bm: aabBmBBAaAce

We move Bm right: aabBBAaBmAce

We introduce a copy: aabBBAaaBce

We introduce B0: aabB0BAaaBce

We introduce Bm: aabbBmBAaaBce

We move Bm right: aabbBAaaBmBce

We introduce a copy: aabbBAaabBce

We introduce B0: aabbB0AaabBce

We introduce Bm: aabbbBmAaabBce

We move Bm right: aabbbAaabBmBce

We introduce a copy: aabbbAaabbBce

We introduce A0: aabbbA0aabbBce

We introduce Am: aabbbaAmaabbBce

We move Am right: aabbbaaabbAmBce

We introduce a copy: aabbbaaabbbAce

We end: aabbbaaabbba

We check that it is in αα by splitting it in the middle: aabbba aabbba.

66

Example 2.
The smallest strings that the algorithm in (2) derive have two non-terminals, like

A0Be.

 S

 A0X

 A0Be

 aAmBe

 aBAce

 aB0Ace

 abBmAce

 abaBce

 abab

So, the algorithm in (2) doesn't derive e, aa, bb. Instead of changing the algorithm,

we just put these in by stipulation: Se, Saa, Sbb.

Example 3:
If you use introduce more than one A0/B0, Am/Bm simultaneously in the derivation,

that makes no difference. The crucial point is that you cannot move Am/Bm over

another Am/Bm, and that means that these elements will be processed correctly:

 A0ABe

 aAmABe

 aAAmBe

 aA0AmBe

 aaAmAmBe

 aaAmBAce

 aaBAmAce

 aaB0AmAce

 aabBmAmAce You cannot move Bm over Am.

 aabBmaAce

 aabaBmAce

 aabaaBce

 aabaab

Example 4:
If you use 'end' to early, you will just get stuck:

 A0Be

 aAmBe

 aBAce

 aBa

 aB0a

 abBma

 abaBm

So, indeed, we generate {αα: α  {a,b}*}.

Once we have seen this moving and copying, it is not very difficult to show the

following facts:

67

Fact:
n

a 2 and
2na are context sensitive languages.

Proof: This will also follow from later proofs.

68

DECIDABILITY THEOREM:

Let G be a context free grammar. There is an algorithm for determining of

every string α  VT
*
 whether or not α  L(G).

In fact, there are efficient decidability algorthims, we describe the most famous, the

Cocke-Younger-Kashimi algorithm:

THE CYK ALGORITHM

Example from Hopcroft and Ullmann. The algorithm operates on context free

grammars in non-redundant Chomsky Normal Form.

Like our example grammar:

S  AB S  BC

A  BA A  a

B  CC B  b

C  AB C  a

We want to decide whether string baaba is generated.

We start with reasoning (this is part of the motivation for the algorithm, not of the

algorithm itself):

Since the grammar is in Chomsky Normal Form any string of more than one symbol

is generates with a binary toprule of the form S  V Z (In this case S  AB or S 

BC.)

This means that the string baaba is generated as the product of two substrings, α1 and

α2 where α1 is generated by V and α2 is generated by Z. The algorithm looks at all

ways of binary splitting such strings.

We indicate which right sides are produced by which left sides:

AB  S, C BC  S BA  A CC  B a  A, C b  B

69

Step 1: divide the string in all possible ways into two substrings, and divide the

substrings you get again in all possible ways into two substrings , until you get to

substrings of length 1:

length 5 baaba

splits b|aaba ba|aba baa|ba baab|a

right

left

length 4 aaba baab

splits a|aba aa|ba aab|a b|aab ba|ab baa|b

right

left

length 3 aba baa aab

splits a|ba ab|a b|aa ba|a a|ab aa|b

right

left

length 2 ba aa ab

splits b|a a|a a|b

right

left

length 1 a b

splits a b

right

left

AB  S, C BC  S BA  A CC  B a  A, C b  B

70

Step 2.1: length 1

Determine for each string | what right side of any of the rules fits |, and which

left side corresponds to that. We start with the bottom row:

length 5 baaba

splits b|aaba ba|aba baa|ba baab|a

right

left

length 4 aaba baab

splits a|aba aa|ba aab|a b|aab ba|ab baa|b

right

left

length 3 aba baa aab

splits a|ba ab|a b|aa ba|a a|ab aa|b

right

left

length 2 ba aa ab

splits b|a a|a a|b

right

left

length 1 a b

splits a b

right a b

left A, C B

AB  S, C BC  S BA  A CC  B a  A, C b  B

71

Step 2.2: length 2

length 5 baaba

splits b|aaba ba|aba baa|ba baab|a

right

left

length 4 aaba baab

splits a|aba aa|ba aab|a b|aab ba|ab baa|b

right

left

length 3 aba baa aab

splits a|ba ab|a b|aa ba|a a|ab aa|b

right

left

length 2 ba aa ab

splits b|a a|a a|b

right BA, BC AA, AC, CA, CC AB, CB

left S, A B S,C

length 1 a b

splits a b

right a b

left A, C B

AB  S, C BC  S BA  A CC  B a  A, C b  B

72

Step 2.3: length 3

length 5 baaba

splits b|aaba ba|aba baa|ba baab|a

right

left

length 4 aaba baab

splits a|aba aa|ba aab|a b|aab ba|ab baa|b

right

left

length 3 aba baa aab

splits a|ba ab|a b|aa ba|a a|ab aa|b

right AS, AA,

CS, CA

SA, SC

CA, CC

BB SA, SC

AA, AC

AS, AC

CS, CC

BB

left Ø B Ø Ø B Ø

length 2 ba aa ab

splits b|a a|a a|b

right BA, BC AA, AC, CA, CC AB, CB

left S, A B S, C

length 1 a b

splits a b

right a b

left A, C B

AB  S, C BC  S BA  A CC  B a  A, C b  B

73

Step 2.4 length 4

length 5 baaba

splits b|aaba ba|aba baa|ba baab|a

right

left

length 4 aaba baab

splits a|aba aa|ba aab|a b|aab ba|ab baa|b

right AB, CB BS, BA BA, BC BB SS, SC

AS, AC

Ø

left S, C A S, A Ø Ø Ø

length 3 aba baa aab

splits a|ba ab|a b|aa ba|a a|ab aa|b

right AS, AA,

CS, CA

SA, SC

CA, CC

BB SA, SC

AA, AC

AS, AC

CS, CC

BB

left Ø B Ø Ø B Ø

length 2 ba aa ab

splits b|a a|a a|b

right BA, BC AA, AC, CA, CC AB, CB

left S, A B S, C

length 1 a b

splits a b

right a b

left A, C B

AB  S, C BC  S BA  A CC  B a  A, C b  B

74

Step 2.5 length 5

length 5 baaba

splits b|aaba ba|aba baa|ba baab|a

right BS, BC SB, AB Ø Ø

left S S, C Ø Ø

length 4 aaba baab

splits a|aba aa|ba aab|a b|aab ba|ab baa|b

right AB, CB BS, BA BA, BC BB SS, SC

AS, AC

Ø

left S, C A S, A Ø Ø Ø

length 3 aba baa aab

splits a|ba ab|a b|aa ba|a a|ab aa|b

right AS, AA,

CS, CA

SA, SC

CA, CC

BB SA, SC

AA, AC

AS, AC

CS, CC

BB

left Ø B Ø Ø B Ø

length 2 ba aa ab

splits b|a a|a a|b

right BA, BC AA, AC, CA, CC AB, CB

left S, A B S, C

length 1 a b

splits a b

right a b

left A, C B

AB  S, C BC  S BA  A CC  B a  A, C b  B

Step 3: baaba is generated by the grammar if any left-box on row length 5 contains S.

We see that baaba is generated by the grammar.

Let us count the number of things we need to do in order to go through the three steps

of the algorithm completely.

Step 1: Make binary divisions: 21 steps

Step 2: Determine right sides and left sides: 58 steps

Arguably, determining the left and right sides for b|a counts as three steps:

namely, determine the three boldface nodes in the folllowing tree:

 b,B

 a,A a, C

  
 A S

75

That is, we don’t need to think of the computation of the left side as a different step,

because we can let the algorithm write that down as part of writing down the paths

BA and BC.

Step 3: Check that S is in left at stage 5: 1 step (because we look left to right)

Total: 80 steps

We may quibble about the exact definition of a steps, and the number may vary a bit

depending on whether you look left to right or right to left (in step 3), but clearly, the

number of steps k is: 5
2
 < k < 5

3
.

This is a general property of the CYK algoritm, it runs (at worst) in cubic time.

Faster algorithm can be given which run in a bit more than quadratic time. Faster

than that would only be possible if you were able to speed up the general algorithm

for forming partitions, which – if you were to do it, would make you rich and famous.

PUSHDOWN STORAGE AUTOMATA

A pushdown storage automaton consists of a finite state automaton extended with

a limited memory wich takes the form of a pushdown storage tape.

Symbols can be written on the storage tape at a stage of the derivation, and retrieved

at another stage of the derivation. We think of the store vertically. The automaton

has a reading head for the storage tape which always reads the topmost symbol of the

store. It has a bottom, so the automaton starts out reading the bottom of the store.

When a symbol is stored, it is put on top of the store, and, since the automaton always

reads the top of the store, the store is pushed down with each symbol stored.

Again, since the automaton can only ever read the top of the store, symbols are

removed from the store from the top. This means that the store works on the

principle:

 First in, last out.

Apart from the fact that the store has a bottom, it has unlimited storage capacity: you

can store as much on it as you want.

There are several different, but equivalent formulations of pushdown storage

automata in the literature. The formulation we give is meant to be easy to use.

It differs from our earlier formulation of finite state automata in that we allow the

empty string to occur in transitions. We will give such occurrences a special

interpretation, and use them to write one rule instead of many. But pay attention to

the instructions on using e!

A pushdown storage automaton is a tuple M = <VI,S,S0,F,δ,VO,Z0,σ>

where:

 1. VI, the input alphabet, is a finite alphabet.

 The alphabet that strings on the input tape are written in.

2. S is a finite set of states.

3. S0  S, the initial state.

4. F  S, the set of final states.

76

5. δ is a finite set of transitions, specified below.

6. VO, the storage alphabet, is a finite alphabet.

 The alphabet that strings on the storage tape are written in.

7. Z0  VO, Z0 is a symbol indicating the bottom of the store.

8. σ  VI  VO, σ is the erase symbol.

We specify δ:

 δ  (VI  {e})  S  (VO  {e})  S  (VO  {e,σ})

 This means that δ is a finite set of transitions of the form:

 (α,Si,β)(Sk,γ)

 where: 1. Si,Sk  S.

 2. α  VI  {e}.

 3. β  VO  {e}.

 4. γ  VO  {e,σ}.

As before, we specify the invariable parts of the automaton:

1. Every automaton has an input tape, on which a string in the input alphabet is

written.

2. Every automaton has a storage tape, on which initially only Z0 is written.

3. Every automaton has a reading head for the input tape which reads one symbol at a

time.

4. Every automaton has a reading head for the storage tape which always reads the

topmost symbol on the storage tape.

5. Every computation starts while the automaton is in the initial state S0, reading

the first symbol of the input string on the input tape and reading Z0 on the storage

tape.

6. We assume that after having read the last symbol of the input string, the automaton

reads e.

7. At each computation step the automaton follows a transition.

 (α,Si,β)(Sk,γ)

With this transition, the automaton can perform the following computation step:

 Computation step:

If the automaton is in state Si and reads α on the input tape,

and reads β on the storage tape, it swiches to state Sk and performs the

following instruction:

1. If α  VI and β  VO and γ  VO, then:

 -the reading head on the input tape moves to the next symbol of the

 input.

 -γ is put on the top of the store.

 -the reading head on the store reads γ.

77

2. If α  VI and β  VO and γ = σ, then:

 -the reading head on the input tape moves to the next symbol of the

 input.

 -β is removed from the top of the store.

 -The reading head on the store reads the symbol that was below β on

 the store.

 We take this to mean that if β was Z0, the reading head on the store

 reads nothing (not even e) and any further transition (α,F,β) is

 undefined.

3. If α=e we carry out the instruction exactly as under (1) and (2),

 REGARDLESS OF WHAT THE READING HEAD FOR THE INPUT

 TAPE READS ON THE INPUT TAPE, WITH THE EXCEPTION

 THAT THE READING HEAD FOR THE INPUT TAPE DOES NOT

 MOVE TO THE NEXT SYMBOL ON THE INPUT TAPE.

 4. If β=e we carry out the instruction exactly as under (1) and (2),

 REGARDLESS OF WHAT THE READING HEAD FOR THE

 STORAGE TAPE READS ON THE TOP OF THE STORAGE TAPE.

 Thus, if γ  VO, we add γ to the top of the store, regardless of what

 there was before, and if γ=σ, we erase from the store whatever symbol

 was on top of the store.

 5. If γ=e we carry out the instruction exactly as under (1) and (2), except

 that we do not change the top of the store.

6. We interpret the constraints in (4), (5) and (6) cumulatively.

 This means, for example, that for a transition (e,Si,e)(Sk,σ), in a state

 Si, reading a on the input tape and Z0ab on the storage tape, we switch

 to Sk, leave the input reading head on a, and erase b from the storage

 tape. So the new storage tape is Z0a, and the reading head on the

 storage tape reads a.

The important thing to note is that the reading head on the input tape only doesn't

move to the next symbol if α=e.

As before,

 The automaton halts iff there is no transition rule to continue.

 Let α  VI*.

 A computation path for α in M is a sequence of computation steps beginning

in S0 reading the first symbol of α on the input tape and reading Z0 on the

storage tape, following instructions in δ until M halts.

 A computating path processing α in M is a computation path for α in M

which halts with the reading head on the input tape reading e after it has read

all symbols in α.

 α  VI
*
 is accepted by M iff there is a computation path processing α in M

where at the end of the path:

1. M is in a final state.

 2. The store is empty. This means, Z0 has been removed from the

 store.

78

In sum:

1. (, Si, )  (Sk, )

 VI VO VO

  2

 Si

Sk

  

 

 Z0

 Z0

2. (, Si, )  (Sk, )

 VI VO

  2

 Si

Sk

  

 

 Z0

 Z0

79

3. (e, Si, )  (Sk, )

  2

 Si

Sk

  

 

 Z0

 Z0

4. (e, Si, )  (Sk, )

  2

 Si

Sk

  

 

 Z0

 Z0

5. (, Si, e)  (Sk, )

The same as under 1-4, but do  independent of what is on top of the store.

6. (, Si, e)  (Sk, e)

The same as unde r1-5 but don’t change the store.

Important: in (, Si, )  (Sk, ) you don’t move on the input tape iff  = e.

80

Example: a
n
b

n
 (n>0)

VI = {a,b}

VO = {Z0,1}

S = {S0,S1,S2}

F = {S2}

δ = {δ1,δ2,δ3,δ4}

 δ1: (a,S0,e)(S0,1)

 δ2: (b,S0,1)(S1,σ)

 δ3: (b,S1,1)(S1,σ)

 δ4: (e,S1,Z0)(S2,σ)

We compute: aaabbb

Step 1. a a a b b b e

 
 S0

 
 Z0

Step 2. a a a b b b e

 
 S0

 
 1

 Z0

Step 3. a a a b b b e

 
 S0

 
 1

 1

 Z0

Step 4. a a a b b b e

 
 S0

 
 1

 1

 1

 Z0

81

Step 5. a a a b b b e

 
 S1

 
 1

 1

 Z0

Step 6. a a a b b b e

 
 S1

 
 1

 Z0

Step 7. a a a b b b e

 
 S1

 
 Z0

Step 8. a a a b b b e

 
 S2

 

M halts in a final state while reading e on the input and on the store, S2 is a final state,

hence M accepps aaabbb.

We compute: aaabbbb

We get, as before, to:

Step 6: a a a b b b b e

 
 S1

 
 1

 Z0

Step 7: a a a b b b b e

 
 S1

 
 Z0

82

Step 8: a a a b b b b e

 
 S2

 

We applied δ4. Note that the reading head on the input did not move on.

M halts in a final state with an empty store, but it doesn't accept the string, because

the path is not a computation path processing the string (M is not reading e, after all

the symbols have been read, since it got stuck while reading the last symbol.)

So aaabbbb is not accepted.

We compute: aaabb

As before, we get to:

Step 5. a a a b b e

 
 S1

 
 1

 1

 Z0

Step 6. a a a b b e

 
 S1

 
 1

 Z0

This time M halts after having read the whole input, but it is not in a final state and

the store is not empty. So M rejects aaabb.

Example: αcα
R
 with α  {a,b}

*
.

VI = {a,b,c}

VO

= {Z0, a,b,c}

S = {S0, S1, S2}

F = {S2}

δ = {δ1,δ2,δ3,δ4,δ5,δ6}

 δ1: (a,S0,e)(S0,a)

 δ2: (b,S0,e)(S0,b)

 δ3: (c,S0,e)(S1,e)

 δ4: (a,S1,a)(S1,σ)

 δ5: (b,S1,b)(S1,σ)

 δ6: (e,S1,Z0)(S2,σ)

We compute: babaabacabaabab

For ease we write the store horizontally.

83

Step 1: b a b a a b a c a b a a b a b e

 
 S0

 
 Z0

Step 2: b a b a a b a c a b a a b a b e

 
 S0

 
 Z0b

Step 3: b a b a a b a c a b a a b a b e

 
 S0

 
 Z0ba

Step 4: b a b a a b a c a b a a b a b e

 
 S0

 
 Z0bab

Step 8: b a b a a b a c a b a a b a b e

 
 S0

 
 Z0babaaba

Step 9: b a b a a b a c a b a a b a b e

 
 S1

 
 Z0babaaba

Step 10: b a b a a b a c a b a a b a b e

 
 S1

 
 Z0babaab

Step 16: b a b a a b a c a b a a b a b e

 
 S1

 
 Z0

84

Step 17: b a b a a b a c a b a a b a b e

 
 S2

 

M accepts.

So, the intuition is: M stores the first part of the string while reading. This will put an

inverse copy of the first part in the store. At c, M switches from reading and storing

to matching, symbol by symbol the inverse copy in the input with the inverse copy in

the store.

Since the automaton always reads the top symbol of the store, this algorithm wouldn't

work for αcα: when c switches to matching, the end of the read α is on top of the

store, not the beginning. Since you don't have access to what is deeper down in the

store, you cannot match.

(You could, if you change the automaton to an automaton that always reads the

bottom of the store. But such automata wouldn't accept αcα
R
.)

 Let M be a pushdown storage automaton with transition relation δ.

 δ
CL

 is the closure of δ under entailed transitions.

 Obviously you generate the same language with δ as with δ
CL

, since δ
CL

 only

 makes the conventions explicit.

This means that if δ contains, say, a transition (e,Si,a)(Sj,σ) and the input alphabet

is {a,b}, then the transitions (a,Si,a)(Sj,σ) and (b,Si,a)(Sj,σ) are in δ
CL

.

A deterministic pushdown storage automaton is a pushdown storage

automaton M where δ
CL

 is a partial function.

As before, we identify non-deterministic pushdown storage automata with pushdown

storage automata.

We call the languages accepted by pushdown storage automata pushdown storage

languages. And we use the terms (non-deterministic) pushdown storage languages

and pushdown storage languages.

Fact: There are pushdown storage languages that are not deterministic pushdown

 storage languages.

Example: αα
R
 is a pushdown storage language, but not a deterministic pushdown

 storage language.

There is no deterministic pushdown storage automaton that accepts αα
R
, because there

is no center, and hence you do not know where to switch from storing to matching.

But there is a non-deterministic pushdown storage automaton accepting αα
R
:

VI = {a,b}

VO = {Z0,a,b}

S = {S0,S1}

F = {S1}

δ = {δ1,…,δ7}

85

 δ1: (a,S0,e)(S0,a)

 δ2: (b,S0,e)(S0,b)

 δ3: (a,S0,a)(S1,σ)

 δ4: (b,S0,b)(S1,σ)

 δ5: (a,S1,a)(S1,σ)

 δ6: (b,S1,b)(S1,σ)

 δ7: (e,S1,Z0)(S1,σ)

This automaton is non-deterministic since:

 (a,S0,a)(S0,a) and (b,S0,b)(S0,b) are in δ
CL

, and so are δ3 and δ4.

Compute: abba

Apply: δ1, δ2, δ4, δ5, δ7, and you accept.

Compute: abab

a b a b e


S0


Z0

If we apply δ3 we get:

a b a b e

 
 S1

 

We are stuck here.

So we can only apply δ1:

 a b a b e

 
 S0

 
Z0a

Apply δ4:

a b a b e

 
 S1

 
 Z0

Now we can only apply δ7 and get:

86

a b a b e

 
 S1

 

Once again, we are stuck.

Instead of applying δ4 we could have applied δ2:

 a b a b e

 
 S0

 
Z0ab

Here only δ1 is possible, so we get:

a b a b e

 
 S0

 
 Z0aba

And here only δ2 is possible, so we get:

a b a b e

 
 S0

 
 Z0abab

Now we are, once again, stuck.

We have gone though all the possibilities, hence abab is rejected.

A context free grammar is in Greibach Normal Form iff all rules are of the form:

 A  aα, with a  VT and α  VN
*

Theorem: For every context free grammar there is an equivalent context free

 grammar in Greibach Normal Form.

Proof: Omitted

The fundamental theorem about pushdown storage languages is:

Theorem: The class of non-deterministic pushdown storage languages is exactly the

 class of context free languages.

Proof: Omitted

Both proofs are complex. The second theorem is standardly proved for context free

grammars in Greibach Normal Form.

87

Without proof that it works, I will give here an algorithm for converting a context free

grammar into an equivalent pushdown storage automaton.

Let G = <VN,VT,S,R>

MG is given as follows:

VI = VT

VO = V  {Z0}

S0 is the initial state, F is the final state.

S = {S0,F}  {SA: A  VN}  X

where X is as follows:

For each rule of the form Aα in G, were α = α1…αn, αi  V

we have in X states: X
α

2,…,X
α

n.

δ is given as follows:

 Start: (e,S0,Z0)(F,S)

 Push: For every rule Aα in G with α = α1…αn, αi  V:

 (e,F,A)(SA,σ)

 (e,SA,e)(X
α

n,αn)

 (e,X
α

n,e)(X
α

n-1,αn-1)

 …

 (e,X
α

2,e)(F,α1)

 Pop: For every a  VT:

 (a,F,a)(F,σ)

 End: (e,F,Z0)(F,σ)

The intuition is:

You read symbol a.

You look for a rule of the form A ! a α.

You store α (it starts with a terminal or a non-terminal)

-if α starts with a1 try to match input and store.

-if α starts with a non-terminal B look for a rule B ! b β and push β onto the store.

At some point you get to a terminal c matching the right side of the store. You pop,

go one level up, and try to match again.

Example: a
n
b

n
 (n>0)

G has rules: Sab, SaSb

VI = {a,b}

VO = {Z0,a,b,S}

S = {S0,F,SS, X
ab

2, X
aSb

3, X
aSb

2}

Transitions:

88

 Start: (e,S0,Z0)(F,S)

 Push: (e,F,S)(SS,σ)

 (e,SS,e)(X
ab

2,b)

 (e,X
ab

2,e)(F,a)

 (e,SS,e)(F
aSb

3,b)

 (e,X
aSb

3,e)(X
aSb

2,S)

 (e,X
aSb

2,e)(X,a)

 Pop: (a,F,a)(F,σ)

 (b,F,b)(F,σ)

 End: (e,F,Z0)(F,σ)

Compute: aabb

a a b b e a a b b e a a b b e a a b b e a a b b e a a b b e

     
S0 F SS X

aSb
3 X

aSb
2 F

     
Z0 Z0S Z0 Z0b Z0bS Z0bSa

 a a b b e a a b b e a a b b e a a b b e

    
 F SS X

ab
2 F

    
Z0bS Z0b Z0bb Z0bba

a a b b e a a b b e a a b b e a a b b e

    
 F F F F
    
 Z0bb Z0b Z0

We accept aabb.

89

S Z0

 Z0bS

Z0

a Z0bSa S Z0b b

 Z0bbS

a Z0bbSa S Z0bb b

 Z0bbbS

a Z0bbbSa S Z0bbb b

 Z0bbbbS

a Z0bbbbSa S Z0bbbb b

 Z0bbbbb

a b

90

Cartesian Product Automata

We come back to finite state automata.

Let M and N be two finite state automata.

 The Cartesian Product Automaton M  N is defined by:

 1. VI = VM  VN

 2. SMN = SM  SN (= {<A,B>: A  SM and B  SN}

 3. S0,MN = <S0,M,S0,N>

 4. FMN = {<A,B>: A  FM and B  FN}

 5. δ(a,<A,B>) = <A',B'> iff

 δ(a,A)=A' and δ(a,B)=B'

Fact: M  N is a finite state automaton and L(M  N)= L(M)  L(N)

Proof: This is obvious from the construction.

This proves directly:

Corrollary: If A and B are regular, then A  B is regular.

Example:

b b a a

 a b

 A
e
 A

o
 B

e
 B

o

 a b

 a

 A
e
B

e
 A

o
B

e

 a

 a a b b

 b

A
o
B

e
 A

o
B

o

 b

91

Now let M be a pushdown storage automaton and N a finite state automaton.

Since M is itself a finite state automaton, we can define M  N just as above.

It is the Cartesian product finite state automaton, with the store inherited from M.

But M  N is, of course, itself a pushdown storage automaton. And it is easy to see

which language it accepts: while a string is running through M, it runs

simultaneously through N (where simultaneously means that the steps where the

automata change state while progressing to reading the next symbol of the input are

simultaneous). This means that of the strings accepted in a final state in M, the ones

that are accepted by M  N are the ones that end up simultaneously accepted by N.

Thus, M  N accepts L(M)  L(N). This means that, as promised, we have proved:

Theorem: If A is context free and B is regular, then A  B is context free.

Product automata, then, give us a simple way of writing a finite state automaton for

the intersection of two regular languages that we have automata for, and a pushdown

storage automaton for the intersection of a context free language and a regular

language that we have automata for. As we have seen, the theorem does not extend to

the intersection of two context free languages, and it's simple to see why the

construction doesn't generalize: you can unproblematically take the products of the

finite state parts of two pushdown storage automata, but you cannot necessarily

imitate the effects of two pushdown stores by one store.

 There is a good reason why you cannot do the latter. Imagine extending the

concept of pushdown storage automata to what we might call two track pushdown

storage automata:

 A two track pushdown storage automaton works exactly like a pushdown

storage automaton, except that it has two pushdown stores A1 and A2, it will

read a symbol on the input and each of the tops of A1 and A2 and it can decide

to push down or pop on A1 or on A2 (or both).

Two track pushdown storage automata are clearly more powerful than pushdown

storage automata. For instance, the language a
n
b

m
c

n
d

m
 is easily recognized: push the

a’s onto store A, and the b’s onto store B, match c’s with store A, and match d’s with

store B.

What are the languages recognized by two track pushdown storage automata?

Read the whole string onto store A. Do the rest with 0-moves.

-You can add as many symbols as you want at the end of the string by pushing

symbols onto A.

-You can add as many symbols as you want at the beginning of the string, by moving

the whole string symbol by symbol to store B and add symbols after them.

-You can go to any position in the string by moving symbols one by one to the other

store until you reach the right one.

-This way, you can replace any symbol by another symbol in the string, by making

the first the top of one store in the way described above, erazing it there and adding

the other, and then move the symbols so as to bring us back to the original position.

These operations characterize Turing machings:

92

A Turing machine is a tuple M = <S, Σ, V0, δ, S0, F> with

S a finite set of states, V0 the tape alphabet, Σ  V0, the input alphabet, S0 the

initial state and F  S the set of final states.

 δ: S × (V0  {e})  S × (V0  {e})× {L,R,N} is a partial function

We have one two-way infinite tape. The input string α is written on the tape.

A computation path for α in M is a sequence of computation steps beginning

in S0 reading the first symbol of α on the tape, following instructions in δ until

M halts.

A computating path processing α in M is a computation path for α in M

which halts with the reading head on the input tape reading e after it has read

all symbols in α.

α  VI
*
 is accepted by M iff there is a computation path processing α in M where at

 the end of the path M is in a final state.

The symbols L(eft), R(ight), N(euter) control the cursor direction:

δ(Si,a)  (Sj,b,L) means: on reading a on the tape in state Si,

go to state Sj, replace a by b, and move the cursor one position left.

Theorem: The languages recognized by Turing machines are exactly the type 0

 languages.

Proof: Omitted.

Corrollary: The languages recognized by two track pushdown storage automata are

 exactly the type 0 languages.

This means, then, that in general you cannot collapse two pushdown storage tapes into

one (otherwise you could reduce every Turing machine to a pushdown storage

automaton, which, of course, you can't).

Fact: Type 0 grammars, Turing machines, Recursively enumerable functions, and

 (several more) all characterize the same set of functions (in our case,

 languages).

-All formalizations of the informal notion of algorithmic function coincide.

-No functions have ever been found that are intuitively algorithmic, but not in this

class of functions.

Church's Thesis: these are all equivalent and adequate formalizations of the notion

 of algorithmic function, computable function.

93

Linear bounded automata

A linear bounded automaton is a turing machine M with a finite tape with

 non-erasable endmarkers bot and top.

This means that all the computation steps must be worked out between bot and top

and the amount of space on the tape is given for M. This turns out to be equivalent to

a Turing machine where the space used is restricted to being a linear function of the

input (hence the name).

Theorem: The class of languages recognized by linear bounded automata is the

 class of context sensitive languages.

Proof: Omitted

Language L in alphabet A is recursively enumerable iff L has a type 0 grammar.

Language L in alphabet A is recursive iff both L and A*L have a type 0 grammar.

Fact 1: There are languages that are not recursively enumerable (intractable)

Fact 2: There are recursive enumerable languages that are not recursive.

Fact 3: There are recurstive languages that are not context sensitive.

Fact 4: All context sensitive languages are recursive.

94

THE EMPTY STRING

Up to now we have been a bit pedantic about the empty string. One reason for this

was to make sure that the grammar classes defined were inclusive (since you must do

something special for context sensitive grammars). (A second reason was that I

wanted you to do the exercises without using Ae). But at this point we can relax

and be more inclusive about what we call regular grammars or context free grammars.

For this we mention two facts:

Fact: Let G be the class of grammars G with rules of the form AαB, Aα, where

 A,B  VN and α  VT*. Let L(G) be the class of languages determined by the

 grammars in G.

 Then L(G) is the class of regular languages.

Hence, we can loosen up the format of right linear grammars to allow rules of the

form Ae and also AB (In the automata these correspond to empty-moves, moves

labeled to e, and you can prove that automata with empty moves are equivalent to

atomata without.)

Fact: Let G be the class of grammars G with rules of the form Aα, where A  VN

 and α  V*. Let L(G) be the class of languages determined by the grammars

in G. Then L(G) is the class of contextfree languages.

This means that also for context free languages we can freely allow rules of the form

Ae. The reason is that if e  L(G), any rule of the form Ae can be eliminated.

Instead of proving this, I indicate the trick:

In syntax we find empty categories, in parse trees that look like (1) and (2):

(1) CP (2) VP

 C C' or V NP

 e e

We can eliminate these by encoding them on the higher CP and VP. We introduce

two new non-terminals:

 CP[e,L,C] and VP[e,R,NP]

(They only look complex, but they are just A27 and B49).

and two new rules:

 CP[e,L,C]C'

 VP[e,R,NP]V'

With this we generate parse trees:

(3) CP[e,L,C] (4) VP[e,R,NP]

 C' V'

95

The effect will be the same, but now we can eliminate the rules Ce and NPe.

Vice versa, if we know that we can eliminate empty categories without affecting the

generative power, we can also just introduce them without affecting the generative

power. From now on we are not going to distinguish between the definition of

context free grammars that allows empty rewriting and the definition that doesn't.

96

FEATURES AND CONTEXT FREE GRAMMARS

Take the following context sensitive grammar:

 SAB

 SCB

 BCD

 C ! DA

 Aa

 Dd

 ACc which we read as: <Cc,<A,e>>

This grammar generates four constituent structure trees, two in a context free way,

and two in a context sensitive way:

 S S S S

A B C B A B C B

a C D D A C D a C D D A C D

 D A d d a D A d c d d a c d

 d a d a

Under what conditions can we rewrite C as c?

Answer: If C is in a configuration with the following properties:

 1. You go up from C two nodes.

 2. You go down there one node to the left.

 3. If that node is A, or A occurs somewhere on the rightmost path down from

 that node, you can rewrite C as c.

This is a very context sensitive description, but does that mean that it is a context

sensitive property? What do we mean by a context sensitive property? Roughly:

A property P of trees is type n iff any grammar of type n can be turned into a

grammar of type n which enforces the property on all its generated trees.

Let's say that if a property of trees P is type n, P can be encoded in type n

grammars.

So, the property 'c occurs in a tree as daughter of C iff C is in the above configuration

in that tree' would be a context sensitive, rather than context free property, if you need

a context sensitive grammar to enforce it, if it cannot be encoded in context free

grammars.

On this analysis, the fact that we formulate the property in a context sensitive way

means nothing: the question is whether we can or cannot enforce that property in

context free grammars as well.

In general, the question what properties of trees can be encoded in what grammars is a

highly non-trivial question. The point of this section is to show that context free

grammars are capable of encoding far more properties than you might think.

Like the above property.

We can encode properties of trees in context free rules by using features.

97

Features are introduced in the context free rules. They can be manipulated in the

grammar, but only locally, i.e. per rule.

That is, a context free rule constrains the relation between a node in a tree and its

direct daughters. Since features are added to context free rules, they too can only

constrain the relation between a node and its direct daughters.

Thus, we couldn't simply add a feature F and stipulate that it means: "in any

constituent structure tree where this node occurs, there is a cut through the tree such

that node A is directly left of this node in the cut."

We couldn't do this, because it isn't guarantees that we have a way in the grammar of

enforcing the interpretation.

However, there are certain operations on features that we can define locally, and with

that, there are properties of trees that we can enforce. Here are some basic

operations: (my interpretation is bottom up, but that is inessential).

Feature generation:

X<A>α Interpretation:

α introduces feature <A> on its mother X.

X<A>Y A Interpretation:

right daughter A introduces feature <A> on its mother X.

Feature passing:

X<A>Y<A> Z Interpretation:

 feature <A> passes up from right daughter Y to mother X.

X<A>Y Z<A> Interpretation:

 feature <A> passes up from left daughter Z to mother X.

Feature checking:

XY<A> Z<A> Interpretation:

 X is allowed if both daughters have feature A.

XA Z<A> Interpretation:

 X is allowed if the left daughter is A, and the right daughter has

feature <A>.

Feature checking and passing:

X<A>Y<A> Z<A> Interpretation:

 X is allowed if both daughters have feature <A>, and <A> is

passed up.

We can use such feature systems to encode certain phenomena that look, at first sight,

context sensitive.

-Let c introduce <A2> on C.

-pass <A2> up from C in rules where C is the left daughter.

-pass <A2> up from the left daughters until it is passed on to X, where X is the right

daughter of S in rule SY X.

-Let A introduce feature <A1> on its mother in a rule where A is the right daughter.

-pass <A1> up from there from right daughters to mothers, until it is passed on to Y,

where Y is the left daughter of S in rule S Y X.

98

-Require <A1> and <A2> to match there (= check that both features are present on the

daughters of S).

A system of rules like this will enforce trees to look like:

 S

 Y<A1> X<A2>

Y1 Y2<A1> X1<A2> X2

 Y3 Y4<A1> X3<A2> X4

 Y5 A X5<A2> X6

 C<A2> X7

 c

This will enforce that if c occurs in the tree as daughter of C, there is a cut in the tree

with A directly left of C in the cut.

In the case of the little grammar we gave, we encode it in the following rules:

SAB, SCB, BCD, CDA, Aa, Dd

SA B<A2>

SC<A1> B<A2>

B<A2>C<A2> D

C<A2>c

C<A1>D A

This grammar generates the following trees:

 S S S S

A B C B A B<A2> C<A1> B<A2>

a C D D A C D a C<A2> D D A C<A2> D

 D A d d a D A d c d d a c d

 d a d a

But, of course, there is nothing context sensitive about this.

We have just added five new context free rules to the grammar involving three new

non-terminal symbols C<A1>, C<A2>, B<A2>. The resulting grammar is, of course,

perfectly context free.

99

This means that, as long as we add a finite number of context free rules, mentioning a

finite number of feature-non-terminals, the grammar stays context free. And this

means that we can encode indeed far more properties than we would have thought at

first sight. So, far more phenomena that, at first sight, we might think require context

sensitive rules, turn out to be perfectly context free.

For instance, if you make sure that feature <A1> is only passed up from right most

daughters, and feature <A2> is only passed up from left most daughters, and that any

rule that mentions both <A1> and <A2>, mentions them on adjacent daughters, then it

doesn't matter how deep A1 and A2 are introduced: the nodes where they are

introduced will be sitting next to each other on some cut through the tree.

Hence, we can encode this seeming context sensitive property with a finite number of

features that are only intruduced locally in context free rules. Hence the property is

context free.

Of course, whether the mechanisms described as feature introduction, feature passing,

and feature checking really mean that, depends on the grammar. The point is, that

you can easily set up the grammar in such a way that that interpretation is enforced.

For checking, this means, say, allowing only rule XY<A> Z<A>, but not

XY Z<A> and not XY<A> Z.

But that is only a matter of your proficiency in writing context free grammars.

Example of the use of features:

Number in Espresso:

D<plur>dis

N<plur>manis

A<plur>altis

V<plur>lopetis

V<plur>kusetis

 etc.

Rules with features:

 N<α>A<α> N<α>

 NP<α>D<α> N<α>

 VP<α>V<α>

 VP<α>V<α> NP<β>

 SNP<α> VP<α>

 where α,β  {sing, plur}

If we deal both with gender and number, we get category labels like

N<plur><fem>. The complexity is only a matter of notation, we could just as well

have chosen new label N27 for this, or, for that matter, Z. The context freeness is not

affected.

But, of course, it is useful to have features in the grammar, because it allows us to

write one rule schema summarizing lots of instances, and it allows us to separate out

the categorial restrictions (an NP combines with a VP to give a sentence) from

agreement restrictions: an adjective agrees with a noun, a subject agrees with the

verb.

100

A more common format for feature grammars is to regard a node in a tree a feature

matrix: a set of function-value pairs like:

 CATEGORY: D

 NUMBER: plur

 GENDER: male

A grammar generating trees with node labels of this form is called an attribute

grammar.

In the most general form of attribute grammars, you can allow complex values.

For instance, you could have a node saying:

 [GAP-RECONSTRUCTION: Ti]

where Ti is a tree, interpreted as an instruction to attach at this node a subtree Ti..

Unrestricted attribute grammars are equivalent to type 0 grammars. Attribute

grammars that are a bit richer than context free grammars are used in HPSG.

To give linguistic bite to all this, I will discuss wh-movement in English.

101

Example: wh-movement.

I am interested here in generating trees that you may be familiar with from the

syntactic literature. I will be interested in accounting for the following data in English

(chosen in such a way so as not to have to deal with everything under the sun).

(1) a. John knew that Mary knew that John kissed Mary.

 b. John knew that Mary knew e John kissed Mary.

 c. John knew e Mary knew that John kissed Mary.

 d. John knew e Mary knew e John kissed Mary.

Complementizer that is optional with the verb know.

(2) a. *John knew whom that Mary knew that John kissed e.

 b. *John knew whom that Mary knew e John kissed e.

 c. John knew whom e Mary knew that John kissed e.

 d. John knew whom e Mary knew e John kissed e.

The wh-phrase occurs in the higher position instead of as complement of the lower

verb, but can show the case it would have if it had been the complement of the lower

verb.

The wh-phrase requires the complementizer next to it to be empty, but, in extraction

from object position, there is no such requirement on lower complementizers.

(3) a. *John knew who that Mary knew that e kissed Mary.

 b. *John knew who e Mary knew that e kissed Mary.

 c. *John knew who that Mary knew e e kissed Mary.

 d. John knew who e Mary knew e e kissed Mary.

When the extraction is from subject position, we find a further requirement, the that-

trace effect: extraction from subject requires the next complementizer up to be empty

as well (as shown by the contrast between 3b and 3d).

I let the wh-phrase land under knew, because I don't want to deal with inversion.

The informal description here is highly context sensitive:

-Movement is a restructering operation on trees, relating an empty position as far

down as you want in the tree to a subtree higher up.

-We notice long distance case-agreement: whether you can get whom in the higher

position depends on where, deep down, the trace is.

But is wh-movement context sensitive?

Answer: not as far as these data are concerned, because these operations can be fully

encoded with features on context free rules.

I will start by assuming a set of nine feature labels:

{e,i,wh,NP,nom,obj,bot,mid,top}.

My set of features will be a finite set of sequences of these feature labels.

102

I will specify the interpretations to be enforced of the sequences I specify, on the

understanding that this interpretation of a sequence is to be carried over in longer

sequences.

 Interpretations:

 <i,wh,NP,nom> on node A indicates:

A is part of a wh-chain i with bottom an NP node with nominatice case.

<i,wh,NP,obj> on node A indicates:

A is part of a wh-chain i with bottom an NP node with objective case.

 <i,bot,wh> on node A indicates:

 A is empty and the bottom of a wh-chain i. (bottom trace)

 <i,mid,wh> on node A indicates:

 A is empty and an intermediate node of a wh-chain i. (intermediate trace)

 <i,top,wh> on node C' indicates:

 The top of wh-chain i is going to be a left sister of this node.

 <i,top,wh> on node NP indicates:

 This node is the top of wh-chain i.

 <e> on node C indicates:

 A is an empty complementizer.

As usual, these interpretations mean nothing if we cannot enforce them. The point of

the example is to show that we can indeed easily enforce these interpretations. We do

that by specifying the rules.

 Let α  {α1,α2}, α1=<i,wh,NP,nom>, α2=<i,wh,NP,obj>

 V1kissed V2knew

Cthat C<e>e

NPJohn NPMary NP<e>e

 Traces

 NP<bot,i,wh>e NP<mid,i,wh>e

 Bottom trace Intermediate trace

 Wh-expressions

 NP<top,α1>who NP<top,α2>whom

(While this is written as a pair, we assume, as usual, that sequence formation is

associative, so this are really quintuples.)

103

 Verb phrases

 VPV1 NP VPV2 CP

 VPαV2 CPα (pass α up)

 VPα2V1 NP<bot,i,wh> (a bottom trace in the object position of VP

 introduces α2 on the VP)

 Sentences

 SNP VP

 SαNP VPα (pass α up)

 S<bot,α1>NP<bot,i,wh> VP (a bottom trace in the subject positon of S

 introduces α1 on S, and introduces bot on S to

 trigger the that-trace effect)

 CPs

 CPNP<e> C' (for CPs where nothing lands)

 CPαNP<mid,i,wh> C'α (pass α up and leave an intermediate trace)

 CPNP<top,α> C'<top,α> (introduce the top of the wh-chain i)

 C's

 C'C S

 C'αC Sα (pass α up)

 C'C<e> S

 C'αC<e> Sα (pass α up)

 C'αC<e> S<bot,α> (pass α up with that-trace effect)

 C'<top,α>C<e> Sα (prepare for introducing the top of the chain)

 C'<top,α>C<e> S<bot,α> (prepare for introducing the top of the chain first

 time round)

Important in this format:

Categories with features behave like independent categories. So if we find on a node

label Sα, we cannot apply rule SNP VP to this node. We must look for a node

with label Sα on the left.

104

Sample derivations:

1d. John knew that Mary knew John kissed Mary.

 S

 NP VP

John V2 CP

 knew NP<e> C'

 e C S

 that NP VP

 Mary V2 CP

 knew NP<e> C'

 e C<e> S

 e NP VP

 John V1 NP

 kissed Mary

2c. John knew whom Mary knew that John kissed.

 S

 NP VP

John V2 CP

 knew NP<top,α2> C'<top,α2>

 whom C<e> Sα2

 e NP VPα2

 Mary V2 CPα2

 knew NP<mid,i,wh> C'α2

 e C Sα2

 that NP VPα2

 John V1 NP<bot,i,wh>

 kissed e

3.d John knew who Mary knew kissed Mary.

 S

 NP VP

John V2 CP

 knew NP<top,α1> C'<top,α1>

 who C<e> Sα1

 e NP VPα1

 Mary V2 CPα1

 knew NP<mid,i,wh> C'α1

 e C<e> S<bot,α1>

 e NP<bot,i,wh> VP

 e V1 NP

 kissed Mary

105

The grammar we have given is perfectly context free, and more than just

'descriptively adequate'. We encode in the feature passing mechanism the very same

notions of chain that 'real' movement theories assume. This means that the very same

long distance relations between nodes that the movement theory assumes are de facto

encoded in the feature passing mechanism. This means that we do not just describe

the same set of facts in a context free way, but we have given a context free reduction

of the linguistics anaysis: the linguistic analysis of the wh-movement facts

commonly adopted does not essentially rely on non-contextfree properties and

relations of trees. In other words, these wh-movement facts do not only not show that

the string set of English is not context free, but stronger, the analytic tools commonly

assumed (movement and chains) are perfectly normal context free tools.

As far as I am concerned, this doesn't mean that you must use the feature passing

reconstruction rather than chains and movements. We use whatever helps us express

the generalizations we want to cover the best. But it is useful to know that, when

needed, we can convert this part of the theory to a context free format (and use, for

instance, the facts known about context free parsing).

The feature passing mechanism has actually some direct advantages too.

As the name already suggests, 'across the board' movement has always been some of

an embarrasment for the classical movement account. As is well known, wh-chains

can have more than one tail, if the tails come from each conjunct in a conjunction:

(4) a. John knows whomi Mary thinks that Bill kissed ei and Henry likes ei.

 b. *John knows whomi Mary thinks that Bill kissed ei and Henry likes Susan.

 c. * John knows whomi Mary thinks that Bill kissed Susan and Henry likes ei.

This is a bit of an embarrasment for the classical theory, because the whom is moved

from a conjunction, which is not supposed to be possible, and how can you move one

thing from two places simultaneously. Clearly, the literal movement interpretation is

under stress in these cases.

But it is very easy to modify the feature passing analysis to fit across the board

movement facts: allow α to be check and passed on from the conjuncts to a

conjunction, α is passed on to a conjunction, and higher up from there if both

conjuncts have α.

There is one aspect of the analysis that requires further investigation, and that is index

i marking wh-chain i.

Since there can be arbitrarily many wh-chains in a sentence, we need to worry about

the question of how many indices we must require in the grammar.

The fact is, that there is no problem if there are no nodes that are part of more than

one wh-chain. In that case, we can just use one and the same index (or rather, we

don't need an index) for both chains: a node is part of the wh-chain determined by the

closest top and closest bot, and this can be unambiguously determined for each node,

even if there are 5000 non-overlapping wh-chains in the sentence.

But matters are different, if chains are allowed to overlap.

It so happens that this is not a problem for English, because, as is well known, English

doesn't allow overlapping wh-chains, i.e, you can't have the following:

106

(5) a. *John knows whoi Mary knows whomj Bill thinks ei loves ej

 b. *John knows whomi Mary knows whoj Bill thinks ei loves ej

But other languages seem to allow this (Engdahl 1986 mentions Swedish).

Let's think about wh-chains that originate from the same sentence. If we only need to

take into account the arguments of the verb, then there still isn't a problem: verbs

have only a finite number of arguments (at most 3), so 3 wh-indices would be enough,

if each argument of one verb can be the bottom of a wh-chain. But if the language

allows preposition stranding, and simultaneous extraction, then there might be a

problem. Because then you could get something like the following:

 who1....who2.....who4...who3... (e1verb e2 in e3 for e4 ...)

If we can add as many prepositional adjuncts as we want, we could, theoretically,

have as many simultaneous extractions as we want.

But that might mean that we might have to be able to distinguish arbitrarily many wh-

chains on the same category label, and that might mean that we would need

arbitrarily many indices. Since our features are by necessity finite, we couldn't do

that with features and our analysis might well go beyond context free (but the

argument must be tied to the exact nature of the data. As we will see, non-context

freeness arguments are rarely straightforward).

What happens if we allow an infinite set of indices in a context free grammar?

Well, that depends, of course, on what you do with them. This question has been

studied most extensively in the study of the socalled indexed languages.

107

INDEXED GRAMMARS

Indexed grammars are a generalization of context free grammars.

An indexed grammar is a tuple G = <VT,VN,I,S,R> where:

 1. VN,VT,S are as usual.

 2. I is a finite set of indices.

 3. R is a finite set of rules of one of the three following forms:

 a. Aα where A  VN, α  V*.

 b. A ! Bf where A,BVN, f  I.

 c. Afα where AVN, α  V*, f  I.

 This looks much like context free grammars. The difference comes in the derivation.

-In the parse trees of an indexed grammar, we associate with every node with a non-

terminal label a string of indices. So node labels are of the form: A i1...in.

-The rules are interpreted as follows:

 a. If G contains A  α and T is a parse tree for G with leaf node n with label A δ

 we can expand node n in the following way:

 -add the symbols in α left to right as daughternodes to node n (same as for context

 free grammars)

 -copy index δ to every daughter of n which has a non-terminal label.

Example: rule ABaC and node A i1...in give tree:

 A i1...in

 B i1...in a C i1...in

 b. If G contains A  B f and T is a parse tree for G with leaf node n with label A δ

 we can expand node n in the following way:

 -add a daughternode with label B to node n (same as for context

 free grammars)

 -add f to the top of the string δ on the daughter (i.e. the daughter has label

 B f


δ.

Example: rule AB f and node A in...in give tree:

 A i1...in

 B fi1...in

 c. If G contains A f  α and T is a parse tree for G with leaf node n with label A f

δ

 we can expand node n in the following way:

 -add the symbols in α as daughter nodes to n in left right order (same as for

 context free grammars).

 -copy index δ to every node of n which has a non-terminal label.

108

Example: rule A f  B a C and node A fi1...in give tree:

 A fi1...in

 B i1...in a C i1...in

So each node in a parse tree carries either a terminal label or a non-terminal label and

a pushdown store, a stack, of indices. In the rules of type a, the index stack gets

copied to all the non-terminal daughters; in the rules of type b, we push an index on

top of the index stack of the daughter; in rules of type c, we copy the index stack to all

the non-terminal daughters, while removing an index from the top of each of these

stacks.

The remaining notions are the same as for contextfree grammars.

We call the languages generated by indexed grammars indexed languages.

Fact: Every context free grammar is an indexed grammar.

 Hence the class of context free languages is contained in the class of indexed

languages.

This is obvious from the definition: restrict yourself to rules of type a only, and you

have a context free grammar.

Fact: The class of indexed languages is contained in the class of context sensitive

languages.

This was proved in Aho 1968, who introduced indexed grammars. The containment

is proper: there are context sensitive languages which are not indexed languages.

For instance:

for n>0: n! = 1  ...  n

The language: a
n!

 (n>0) is context sensitive, but not an indexed language.

More natural, the language MIX = {α  {a,b,c}*: |a|α = |b|α = |c|α} is context sensitive,

and in the 1980ies Bill Marsh conjectured it to be not an indexed language. At

present this conjecture has still not been proved (which gives us an Argument by

Intimidation that it isn’t an indexed language, since really smart people have been

unable to come up with an indexed grammar for it.)

Fact: There are indexed languages that are not context free.

We are going to show that ourselves, by showing that the languages that earlier we

proved to be not context free all are indexed languages.

In the examples to follow we use two indices f,g in which g plays the role of marking

the bottom of the index stack. (This is not part of the definition, but encoded in the

grammar.)

109

Example: a
n
b

n
c

n
 (n>0) is an indexed language.

VN = {S,T,A,B,C}

VT = {a,b,c}

I = {f,g}

R: S T g A f  a A A ga

 T  T f B f  b B B gb

 T  A B C C f  c C C gc

The trick in this grammar, and in indexed grammars in general, is that you start with

a routine of stocking up as many indices f as you want (starting with g) on a single

node T, then you spread them to the daughers A, B and C, and then you continue, for

each of these nodes, with a routine of eating the indices up.

What you can do in this way, which you can't do in context free grammars, is let the

length of the top stocking up tree segment control the length of the subtrees

dominated by A and by B and by C.

Sample derivations:

aabbcc:
 S

 Tg

 Tfg

 Afg Bfg Cfg

 a Ag b Bg c Cg

 a b c

aaabbbccc:

 S

 Tg

 Tfg

 Tffg

 Affg Bffg Cffg

 a Afg b Bfg c Cfg

 a Ag b Bg c Cg

 a b c

110

Example:
n

a 2
is an indexed language.

VN = {S,A,B}

VT = {a}

I = {f,g}

R: S A g

 A A f

 A f  B B

 B f  B B

 A g  a

 B g  a

Sample derivations:

a:
 S

 A g

 a

aa:

 S

 Ag

 Afg

 Bg Bg

 a a

aaaa:

 S

 Ag

 Afg

 Affg

 Bfg Bfg

 Bg Bg Bg Bg

 a a a a

111

aaaaaaaa:
 S

 Ag

 Afg

 Affg

 Afffg

 Bffg Bffg

 Bfg Bfg Bfg Bfg

 Bg Bg Bg Bg Bg Bg Bg Bg

 a a a a a a a a

Example:
2na (n>0) is an indexed language.

VN = {S,A,B,C,D}

VT = {a}

I = {f,g}

R: S A g D fB

 A A f D ge

 AB C faaC

 BC D C ga

Sample derivations:

a:

 S

 Ag

 Bg

 Cg Dg

 a e = a

aaaa:
 S

 Ag

 Afg

 Bfg

 Cfg Dfg

 a a Cg Bg

 a Cg Dg

 a e = aaaa

112

aaaaaaaaa:
 S

 Ag

 Afg

 Affg

 Affg

 Bffg

 Cffg Dffg

 a a Cfg Bfg

 a a Cg Cfg Dfg

 a a a Cg Bg

 a Cg Dg

 a e

 = aaaaaaaaa

One more fact:

Fact: The class of languages generated by right linear indexed grammars is

 exactly the class of context free languages.

Proof:

This is obvious. The right linear grammar forms a finite state automaton. The index

is a pushdown store. In a right linear index grammar you have in every parse tree

only one spine of non-terminals on the right, so you can only push and pop on the

pushdown store, the stores don't spread. Clearly, this is just an alternative description

of a pushdown storage automaton.

