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PART 3. CONTEXT FREE GRAMMARS AND PUSHDOWN AUTOMATA. 

     FEATURES AND INDICES. 

  

As we have seen, in a context free grammar, all rules are of the form Aα, 

with A  VN and α  V
+
 (and allowing Se if the grammar is in reduced form), 

 

 A context free grammar is in Chomsky Normal Form (CNF) iff all rules are  

of the form AB C or Aa, with A,B,C  VN, a  VT  (again, allowing Se  

if the grammar is in reduced form). 

 

Theorem:  Every context free grammar is equivalent to a context free grammar in  

       Chomsky Normal Form. 

Proof: 

1.  Suppose we have a rule with more than one terminal symbol occurring on the right 

side.  We choose for each terminal symbol a occurring in the rule a new non-terminal 

Aa, and replace in the rule a by Aa and add a new rule Aaa. 

For a rule AaBcdACa this would give: 

 AAaBCcDdACAa, Aaa, Ccc, Ddd. 

 

Now we have only rules that rewrite a non-terminal into a string of non-terminals, and 

rules which are already in CNF. 

2.  Next, any rule with more than two non-terminals on the right side is replaced by a 

set of rules, each of which has exactly two non-terminals on the right side, a binary 

rule.  Here we just do what we did for restricted right linear grammars: 

Replace A AaBCcDdACAa by AAaX1, X1BX2, etc... 

3.  After this, the only rules left that are not in CNF are rules of the form AB. 

For any such rule, we delete AB and add for any rule Bα a rule Aα. 

 

The resulting grammar is in Chomsky Normal Form, and equivalent to the original 

one. 

 

A context free grammar is in non-redundant form  (NR) iff every non- 

terminal (and every terminal) occurs at some node in an I-tree for the grammar  

(a tree in the set of generated trees). 

  

Theorem: Every context free grammar is equivalent to a context free grammar in  

                  non-redundant form. 

 

We will prove this theorem by proving a series of lemmas. 

 

First we make a convention. 

A path in a parse tree of G is a maximal set of nodes, linearly ordered by dominance, 

so, a linear path from the topnode to one of the leaves.   

 

We define: 

 Let p be a path in parse tree T of G 

 the length of path p, |p| is the cardinality of the set of occurrences of non- 

terminal labels on the nodes in p. 
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This means that if the leaf in p is labeled by a terminal symbol we don't count it for 

the length of the path (but if the leaf is labeled by a non-terminal symbol we do count 

it).  This convention makes some of our calculations a bit simpler. 

 

 

Lemma 1. If a context free grammar with n non-terminals generates any string at all,  

       it also generates some string of terminals with an I- tree where the length  

       of each path is at most n. 

 

Proof: 

Suppose that grammar G generates string α.  Then there is an I- tree in G with 

topnode S and yield α.  In this tree, there may be a path where a nonterminal A occurs 

twice, say, A
1
 and A

2
: 

              S 

 

 

      

              A
1
  

 

 

              A
2
  

 

 

            α1          α2       α3       α4     α5 

  α = α1α2α3α4α5  

 

Let us write T(X) for the subtree with topnode X. 

We see: 

yield(T(S)) = α1α2α3α4α5 

yield(T(A
1
)) = α2α3α4 

yield(T(A
2
)) = α3 

S dominates A
1
, A

1
 dominates A

2
 

 

Since A
1
 and A

2
 have the same label, we can cut out the bit inbetween A

1
 and A

2
.   

The result is also a constituent structure tree generated by G: 

              S 

 

 

      

              A
2
  

 

 

                

 

 

            α1                   α3                 α5 

  α' = α1α3α5  

yield(T(S)) = α1α3α5 

yield(T(A
2
)) = α3 
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If we do this for every non-terminal symbol that occurs twice at some path in the 

original T(S), we end up with a constituent structure tree of G for some β  L(G), in 

which the length of each path is at most n (n non-terminals plus one terminal on the 

leaf). This proves lemma 1. 

 

Lemma 2: In a context free grammar there is an algorithm for determining whether  

       the generated language is empty or not.     

 

Proof:  
This follows from lemma 1. 

For any context free grammar with n non-terminals, there is a finite number k of 

constituent structure trees with paths not exceeding n.  This means that we only need 

to check k trees, in order to find out whether the generated language is empty or not.  

This may be not very efficient, but it is an algorithm, so we have proved lemma 2. 

 

Lemma 3:  In a context free grammar there is an algorithm to determine for every  

                   non-terminal whether there is a parse tree with a terminal string as yield. 

 

Proof:  

This follows from lemma 2. You want to determine whether non-terminal A 

dominates any terminal string.  Make A the new initial symbol of the grammar.   

Then the problem is equivalent to determining whether the language generated by that 

grammar is empty or not, and we have just shown that we have an algorithm for 

determining that..   
 

Lemma 4:  For every context free grammar, there is an algorithm to determine for  

       any non-terminal symbol, whether there is a parse tree with S as topnode  

       and that symbol in the yield. 

 

Proof: 

The proof is similar to that of lemma 1.  If G has n non-terminals and there is a parse 

tree in G with S as topnode and non-terminal A in the yield, you can prune the tree 

to a parse tree for G  that still has A in the yield, but doesn't have any non-terminals 

repeating on any path.  This tree, thus has no paths longer than n.  Again, there are 

only finitely many parse trees in G with paths no longer than n, hence, by going 

through those, you can just check whether S dominates A. If you find A in the yield of 

any one of these trees, then S dominates A, if you don't, then S doesn't dominate A in 

any longer tree either. 

 

Now we can prove out theorem, which I repeat here: 
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Theorem: Every context free grammar is equivalent to a context free grammar in  

                  non-redundant form. 

 

Proof: 

-Check for any non-terminal whether it dominates any terminal string.  If it doesn't, 

delete it and any rule that mentions it.  That rule is useless. 

-Check for any remaining non-terminal whether S dominates it.  If it doesn't, delete it 

and any rule that mentions it.  That rule is useless. 

The resulting grammar is in non-redundant form and generates the same language as 

G (since you have only eliminated rules that weren't used in the generation of terminal 

strings in the first place). 

 

Corrollary:  Every context free grammar is equivalent to a context free grammar in  

         Non-redundant Chomsky Normal Form. 

 

Proof: 

First bring the grammar in Chomsky Normal Form, then bring it in Non-redundant 

form. 

 

 

THE STRING/PATH LEMMA. 
Let G be a context free grammar in non-redundant Chomsky Normal Form. 

Let α  L(G) and let T(α)  T(G). 

  

 If T(α) has no path of length greater than i, then |α| ≤ 2
i1

. 

 

             T(α)  

              S 

 

                maximal path of length smaller or 

                equal than i 

 

 

 

 

 

     α 

 

      maximal length smaller or equal than 2
i1

 

 

Proof:  With induction. 

 

1. i=1 

If the maximal path in T(α) has length 1, then, since G is in non-redundant Chomsky 

Normal Form, α is a terminal symbol or α=e.  Then |α|=1 or |α|=0.  

Since 2
11 

 = 2
0
 = 1, |α|≤2

i1
. 
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2. i>1.  Since G is in non-redundant Chomsky Normal Form, the top of T(α) is binary, 

and looks like: 

 

  S 

      T1        T2 

 

where for some α1,α2, α=α1α2 and T1 is a parse tree with yield α1 and T2 is a parse tree 

with yield α2 

 

We assume:  the maximal path in T(α) is at most i. 

  

We assume as induction hypothesis that the lemma holds for trees with maximal 

paths smaller than i: 

So we assume:  For any parse tree with yield a terminal string and maximal path  

                          smaller or equal to i1, the length of the yield is smaller or equal to  

                           2
i2

. 

We will prove:  |α|≤2
i1

.. 

 

The maximal path in T has length at most i.  Since S is on the maximal path in T, and 

counts for its length, the maximal path in T1 has length at most i1, and the maximal 

path in T2 has length at most i1.   

By the induction assumption, this means that: |α1|≤2
i2

 and |α2|≤2
i2

. 

Since α = α1α2, |α|=|α1|+|α2|, 

hence, |α|≤2
i2

+2
i2

. 

2
i2

+2
i2

 ≤ 2
i1

. 

Hence, |α| ≤ 2
i1

. 

This proves the string/path lemma. 

 

The string/path lemma tells you that in the I- trees of a context free grammars in 

Chomsky normal form there is a correlation between the height of the tree and the 

width of the tree.  More generally, it tells you that in context free grammars there is a 

correlation between the length of the derivation and the length of the generated 

string. 

 

This is a fundamental property which helps, among others, with efficient parsing (the 

length of the string puts a boundary on the length of the worst case parse).    

 

It also forms the basis for a pumping lemma for context free languages. 

 

 

THE PUMPING LEMMA FOR CONTEXT FREE LANGUAGES. 
 

Let G be a context free grammar in non-redundant Chomsky Normal Form with k 

non-terminals.  Let n=2
k
. 

Let α  L(G) and let |α|≥n.  This means |α|>2
k1

 

 

Using the string/path lemma, it follows that any constituent structure tree for α has at 

least one path of length bigger than k (i.e. at least one path with more than k non-

terminals and a terminal on the leaf).   
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Since there are only k non-terminals in G, it follows that in any constituent structure 

tree for α, some non-terminal A repeats itself on the branch with length bigger than k. 

 

Let T(α) be any such constituent structure tree, p a path of length bigger than k.   

Let A be the first label that repeats on p if you walk up p from the leaf.  Let A
1
 be 

the first occurrence of A on p if you walk up p from the leaf node, and A
2
 the second 

occuurrence of label A on p if you walk up p from the leaf node. 

 

We have the following situation:   

 

              S 

 

 

      

              A
2
  

 

 

              A
1
  

 

 

            y3          β       y2        γ          y
4
 

            y1 

 

 

The tree dominated by A
2
 is T(A2).  The length of the maximal path in T(A

2
) is at 

most k+1 (A was the first repeating label on p, so the bit of p that lies in T(A
2
) has 

two occurrences of A, and further only distinct non-terminals.)  Call the yield of 

T(A
2
) y1.  Then, by the string/path lemma it follows that |y1|≤2

k
.  Hence, |y1|≤n. 

 

Let us call the yield of T(A1) y2.   

By the context free format we know that y2  e. 

 Then we can write y1 as: 

 

 y1
 
= β y2 γ 

 

Now the grammar is in non-redundant Chomsky Normal Form, this means that the top 

of T(A
2
) has the form: 

 

  A
2
 

        B         C 

     

By the context free format, yield(T(B))  e and yield(T(C)  e. 

Now A
1
 is either dominated by B or by C.   

-If A
1
 is dominated by B, then, by the fact that yield(T(C))e it follows that γ  e. 

-If A
1
 is dominated by C, then, by the fact that yield(T(B))e it follows that β  e. 

Hence it cannot be the case that both β and γ are empty. 
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Thus, α has βy2γ as a substring.  

Now, α may have a string y3 to the left of βy2γ, and α may have a string y4 to the right 

of βy2γ, so α itself is of the form: 

 

 α = y3βy2γy4 

 

 where: 1. |βγ|>0 

  2. |βy2γ|≤n 

 

Now we observe that: tree T(A
2
) contains a loop. 

-Instead of of doing at node A
2
 what we do in this tree, we could have gone on 

directly to the daughters of A
1
.  The result of doing that is a constituent structure tree 

of G with yield y3y2y4.  Hence, y3y2y4  L(G). 

-Alternatively, we could have gone on to A
1
, and instead of what we do in A

2
, we 

could have repeated what we did in A
2
, and then go to T(A

1
).  The result of doing 

that is a constituent structure tree of G with yield y3ββy2γγy4.  Hence, y3ββy2γγy4  

L(G).  

-In general, we could have repeated at node A
2

 what we did between A
2
 and A

1
 as 

many times as we want, and then go to T(A
1
). 

With this we have proved: 

 

 The Pumping Lemma for Context Free Languages:  

 Let L be a context free language.  There is a number n, the pumping constant  

for L, dependent only on L (in terms of the string/path lemma) such that any  

string α  L with |α|≥n can be written as: 

 

 α = y3βy2γy4  

 

 where: 1. |βγ|>0 

  2. |βy2γ|≤n 

  3.  For every i≥0:  y3 β
i 
y2 γ

i 
y4  L 

 

Thus, for any context free language, we can find a constant, such that for any string 

longer than that constant, we can find a description of that string in which we can 

find two substrings, close enough to each other, that we can pump 

simultaneously. 
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Example: (not showing the pumping lemma, but the loop) 

 

              S 

B                     C 

b          A                   F   

     D            E            f 

     d        C       F 

               c   A        G 

                    a         g     

             

y3        β       y2       γ        y4 

  

              S 

B                     C 

b          A                   F   

     D            E            f  

     d        C       F 

               c   A        G 

                            g     

                             

 

                D      E 

                d   C      F 

                     c   A    G 

                          a      g 

y3         β       β      y2     γ      γ    y4 

 

 

Applications of the pumping lemma. 
 

Fact:  a
n
b

n
c

n
 is not context free. 

 

Proof:   

Assume a
n
b

n
c

n
  is context free.  Then it has a pumping constant z. 

Choose a string α in a
n
b

n
c

n
 longer than z: 

 

 a.......................ab........................bc........................c 

 

say k a's, followed by k b's, followed by k c's. 

 

According to the pumping lemma, we should be able to write α as: 

α = y3 β y2 γ y3 where β and γ are not both empty and |βy2γ|≤z and pumping β 

and γ simultaneously gives a string in a
n
b

n
c

n
.. 

 

We go through all the possible cases. 

Case 1. Suppose that β=e. 

Then we need to find a non-empty string γ that can be pumped.   

But we already saw that we couldn't find such a string for a
n
b

n
, so we certainly can't 

find such a string for a
n
b

n
c

n
. 

The case where γ=e is similar. 
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So we assume that both β and γ are not empty. 

 

Case 2:  β and γ consist solely of a's. 

In this case, pumping β and γ will give you more a's than b's and more a's than c's, and 

the resulting string is not in a
n
b

n
c

n
.. 

The cases where β and γ consist solely of b's or consist solely of c's are similar. 

 

Case 3:  β consists solely of a's and γ consists solely of b's.   

In this case, pumping β and γ simultaneously will give you the same number of a's 

and b's, but more a's than c's, and more b's than c's.  Hence the result is again not in 

a
n
b

n
c

n
. 

The cases where β consists solely of a's and γ of c's, and where β consists solely of b's 

and γ of c's are similar. 

 

Case 4:  One of β and γ does not solely consist of a's or solely of b's or solely of c's. 

In that case, in the result of pumping, it is noy the case that all a's precede all b's and 

all b's precede all c's.  The result is once again not in a
n
b

n
c

n
. 

 

These are all the possible cases.  

We see that there is no division of α that satisfies the pumping lemma.  Yet, if a
n
b

n
c

n
 

were context free there must be such a division, since |α|>z. 

Consequently, a
n
b

n
c

n
 is not context free. 

 

 

We can give similar proofs for the following facts: 

 

Fact:  a
n
b

m
c

n
d

m
 is not context free. 

 

Proof: similar to that of a
n
b

n
c

n
. 

 

This is a language of crossed dependencies. 

 

Note that this language must be distinguished from a
n
b

n
c

m
d

m
.  The latter is perfectly 

context free (since it is the product of context free languages a
n
b

n
 and c

m
d

m
). 

It should also be distinguished from: a
n
b

m
c

n
, which is also perfectly context free  

(Take a homomorphism that maps b onto e.) 

 

Sometimes you cannot use the pumping lemma directly to prove that a language is not 

context free.  For example:  a
m

b
n
c

n
d

n
 (m>2).   

Take a string that is big enough, you can chose β and γ to be an a, and pumping will 

keep you in the language.   

So crucially, the pumping lemma does not tell you that if a language satsifies the 

pumping lemma, it is context free, it only tells you that if a language is context free it 

satisfies the pumping lemma. 

We can show the above language to be not context free, by using a homomorphism 

that maps a onto e.  Then the homomorphic image is b
n
c

n
d

n
 which is not context free.  

Consequently,  a
m

b
n
c

n
d

n
 (m>2) is not context free. 
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Closure Properties of Context Free Languages. 
 

Theorem:  If  A and B are context free languages, then A  B is context free. 

 

Proof:  If e  A and e  B:  Take GA and GB. Make symbols disjoint,  

add SSA, SSB. Adapt this for the cases that include e. 

 

Theorem: If A and B are context free languages, then A  B is context free. 

 

Proof: If e  A and e  B: Take GA and GB.  Make symbols disjoint, add S SASB. 

Adapt this for the cases that include e. 

 

Theorem: If A is a context free language, then A* is context free. 

 

Proof: If e  A, Change S to S0,  Add a new S and: SS0 and SS S0. 

Convert to reduced form and add Se.  Adapt for the case that includes e. 

 

Theorem:  The class of context free languages is not closed under complementation. 

 

Proof: this follows from the next theorem. 

 

Theorem:  The class of context free languages is not closed under intersection. 

 

Proof:   

It is easy to show that a
n
b

n
c

m
 and a

k
b

p
c

p
 are context free. 

Their intersection is a
n
b

n
c

n
 which we will show shortly to be not context free. 

 

Theorem:  Contextfree languages are closed under substitution 

 

Proof: 

Let L be a context free language in alphabet A with grammar GL. 

Let s: A  pow(B*) be a substution function such that for every a  AL: s(a) is a 

context free language with grammar Gs(a). 

Let all non-terminals of all these grammars be disjoint (so Gs(a) has start symbol Ss(a)). 

 

We form a new grammar G': 

1. Replace every rule A  …a… of G with a  A by: A  …Ss(a)… 

2. Add the rules of the Gs(a) grammars. 

 

The new grammar G' is obviously contextfree and generates s(L). 

 

Corrollary: Contextfree languages are closed under homomorphisms. 

 

Theorem: Contextfree languages are closed under inverse homomorphisms 

 

Proof:  Like the proof of the same theorem for regular languages, the proof goes by 

             turning an automaton for L into an automaton for h
1

(L).  The construction 

             and proof is much more complex than the earlier case, though.  
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Theorem:  If A is a context free language and B is a regular language, then 

                   A  B is a context free language. 

 

Proof:  We will prove this later with an automaton. 

  

We see that, though the class of context free languages is not closed under 

intersection, it is closed under intersection with a regular language. 

 

Most attempted proofs to show that natural languages are not context free use this 

latter fact. 

 

Not context free are exponential languages: 

 

Fact:  
n

a 2 is not a context free language. 

 

This is the language: 

{a, aa, aaaa, aaaaaaaa, ...} 

     1  2    4       8  

n=          0  1    2       3 

Proof: Take a string α  
n

a 2 with |α| = 2
k
, where 2

k
 > n 

We need to find a dividion in which: 

|βy2γ|≤n 

If you pump β and γ once in α you get a string α' of length 2
k
 + z, where z≤n. 

But 2
k 

< 2
k
+z < 2

k+1
,hence α' is not in 

n

a 2 . 

  

Fact: 
2na is not a context free language. 

 

This is the language: 

{e, a, aaaa, aaaaaaaaa, ...} 

     0  1  4      9 

n=          0  1  2      3 

Proof: similar. 

 

Not context free is the string copy language: 

 

Fact:  Let A be an alphabet. 

 αα = {αα: α  A*} 

 αα is not context free.  

 

In alphabet {a,b}, αα is the set: 

{e, aa, bb, abab, baba, aaaaaa ,bbbbbb, aabaab, abaaba, baabaa, abbabb, babbab, 

bbabba, aaaaaaaa, bbbbbbbb,...} 

 

This language should be distinguished from its cousins: 

 

 Let A be an alphabet: 

 αα
R
 = {αα

R
: α  A*} 

 

This is the set of even palindromes on alphabet A. 
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In alphabet {a,b}, αα
R
 is the set: 

{e, aa, bb, abba, baab, aaaaaa, bbbbbb, aabbba, abaaba, baaaab, abbbba, babbab, 

bbaabb, aaaaaaaa, bbbbbbbb,...} 

 

and: 

 Let A be an alphabet. 

 αβα
R
 = {αβα

R
: α  A* and β  A} is the set of odd palindromes on alphabet  

A. 

 

Though they look similar to αα, there is a crucial difference: αα
R
 and αβα

R
 are 

perfectly context free. 

Example:  Let A = {a,b,c} 

A context free grammar for {αα
R
: a  {a,b,c}

+
} is: 

S aSa, SbSb, ScSc, Saa, Sbb, Scc. 

Convert it into reduced form and add Se, and you have a context free grammar for  

{αα: a  {a,b,c}*}. 

 

A man, a plan, a canal, Panama. 

Dennis and Edna sinned. 

Able was I ere I saw Elba. 

Madam, I'm Adam. 

 

All the languages given here are context sensitive languages.   

 

Fact: a
n
b

n
c

n
 (n>0)  is a context sensitive language. 

A grammar generating a
n
b

n
c

n
 (n>0): 

Sabc 

SabcS 

baab 

caac 

cbbc 

 

This is a context sensitive grammar, since no rule is shortening. 

A sample derivation shows that it generates a
n
b

n
c

n
 (n>0): 

S 

abcS 

abcabcS 

abcabcabc 

abcabacbc 

abcaabcbc 

abacabcbc 

aabcabcbc 

aabacbcbc 

aaabcbcbc 

aaabbccbc 

aaabbcbcc 

aaabbbccc = aaabbbccc No more rule applicable. 

 

Writing a similar context sensitive grammar for a
n
b

m
c

n
d

m
 is simple. 
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Fact:  {αα: α  {a,b}*} is context sensitive. 

 

A context sensitive grammar for {αα: α  {a,b}*}. 

 

VT
 
= {a,b} 

VN = {S, X, A, B, A0, B0, Ae, Be, Am, Bm, Ace, Bce} 

 

1. Se, Saa,  Sbb 

 

2. SA0 X SB0 X 

    XA X XB X 

    XAe
 

XBe 

 

This generates strings of the form A0ABBBAe
 

Here A0
 
 indicates the beginning of the string, and Ae

 
indicates the end of the string. 

Ignoring the 0,e, this bit gives you the strings in {α  {A,B}
+
: |α|≥2} 

 

3. Introduce moving-A/B: Am/Bm 

 A0a Am
 

B0b Bm 

 

4. Move Am/Bm over A/B/a/b 

 Am A  A Am  Bm A  A Bm 

 Am B  B Am  Bm B  B Bm 

 Am a  a Am  Bm a  a Bm 

 Am b  b Am  Bm b  b Bm 

 

5. Introduce copy-end: 

 Am Ae  A Ace Bm Ae  A Bce 

 Am Be  B Ace Bm Be  B Bce 

 

The moving-A/B moves over Ae/Be, turning the latter into A/B and itself becomes a 

copy-end Ace/Bce. 

 

6. Introduce copies: 

 Am Ace  a Ace Bm Ace  a Bce 

 Am Bce  b Ace Bm Bce  b Bce 

 

The moving-A/B moves over copy-end Ace/Bce, turning the latter into a/b and itself 

becomes the new copy-end Ace/Bce. 

 

7. Introduce A0/B0: 

a A  a A0  a B  a B0 

b A  b A0  b B  b B0 

 

8. End: 

 Ace  a  Bce  b 

 

Note that the grammar is in reduced form, and no rule is shortining except for Se. 

So the grammar is indeed a context sensitive grammar. 
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Example 1: 

We first generate:  A0ABBBAe 

We introduce Am:  aAmABBBAe 

We move Am right:  aABBBAmAe  (this is, of course, 4 steps) 

We introduce copy-end: aABBBAAce 

We introduce A0:  aA0BBBAAce 

We introduce Am:  aaAmBBBAAce 

We move Am right:  aaBBBAAmAce 

We introduce a copy:  aaBBBAaAce 

We introduce B0:  aaB0BBAaAce 

We introduce Bm:  aabBmBBAaAce 

We move Bm right:  aabBBAaBmAce 

We introduce a copy:  aabBBAaaBce 

We introduce B0:  aabB0BAaaBce 

We introduce Bm:  aabbBmBAaaBce 

We move Bm right:  aabbBAaaBmBce 

We introduce a copy:  aabbBAaabBce 

We introduce B0:  aabbB0AaabBce 

We introduce Bm:  aabbbBmAaabBce 

We move Bm right:  aabbbAaabBmBce 

We introduce a copy:  aabbbAaabbBce 

We introduce A0:  aabbbA0aabbBce 

We introduce Am:  aabbbaAmaabbBce 

We move Am right:  aabbbaaabbAmBce 

We introduce a copy:  aabbbaaabbbAce 

We end:   aabbbaaabbba 

 

We check that it is in αα by splitting it in the middle: aabbba aabbba. 
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Example 2. 
The smallest strings that the algorithm in (2) derive have two non-terminals, like 

A0Be. 

  S 

  A0X 

  A0Be 

  aAmBe 

  aBAce 

  aB0Ace 

  abBmAce 

  abaBce 

  abab 

 

So, the algorithm in (2) doesn't derive e, aa, bb.  Instead of changing the algorithm, 

we just put these in by stipulation: Se, Saa, Sbb. 

 

Example 3: 
If you use introduce more than one A0/B0, Am/Bm simultaneously in the derivation, 

that makes no difference.  The crucial point is that you cannot move Am/Bm over 

another Am/Bm, and that means that these elements will be processed correctly: 

 

  A0ABe 

  aAmABe 

  aAAmBe 

  aA0AmBe 

  aaAmAmBe 

  aaAmBAce 

  aaBAmAce 

  aaB0AmAce 

  aabBmAmAce You cannot move Bm over Am. 

  aabBmaAce 

  aabaBmAce 

  aabaaBce 

  aabaab 

 

Example 4: 
If you use 'end' to early, you will just get stuck: 

 

  A0Be 

  aAmBe 

  aBAce 

  aBa 

  aB0a 

  abBma 

  abaBm 

 

So, indeed, we generate {αα: α  {a,b}*}. 

 

Once we have seen this moving and copying, it is not very difficult to show the 

following facts:  
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Fact:  
n

a 2 and 
2na are context sensitive languages. 

Proof:  This will also follow from later proofs. 
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DECIDABILITY THEOREM:   

Let G be a context free grammar.  There is an algorithm for determining of                        

every string α  VT
*
  whether or not α  L(G). 

 

In fact, there are efficient decidability algorthims, we describe the most famous, the 

Cocke-Younger-Kashimi algorithm: 

 

THE CYK ALGORITHM   

Example from Hopcroft and Ullmann.   The algorithm operates on context free 

grammars in non-redundant Chomsky Normal Form. 

 

Like our example grammar: 

 

S  AB S  BC 

A  BA A  a 

B  CC B  b 

C  AB C  a 

 

We want to decide whether string baaba is generated.  

 

We start with reasoning (this is part of the motivation for the algorithm, not of the 

algorithm itself): 

Since the grammar is in Chomsky Normal Form any string of more than one symbol 

is generates with a binary toprule of the form S  V Z (In this case S  AB or S  

BC.) 

This means that the string baaba is generated as the product of two substrings, α1 and 

α2 where α1 is generated by V and α2 is generated by Z.  The algorithm looks at all 

ways of binary splitting such strings. 

 

We indicate which right sides are produced by which left sides: 

AB  S, C  BC  S BA  A CC  B a  A, C b  B 
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Step 1: divide the string in all possible ways into two substrings, and divide the 

substrings you get again in all possible ways into two substrings , until you get to 

substrings of length 1: 

 

length 5 baaba 

splits b|aaba ba|aba baa|ba baab|a   

right      

left      

 

length 4 aaba baab 

splits a|aba aa|ba aab|a b|aab ba|ab baa|b 

right       

left       

 

length 3 aba baa aab 

splits a|ba ab|a b|aa ba|a a|ab aa|b 

right       

left       

 

length 2 ba aa ab 

splits b|a a|a a|b 

right    

left    

 

length 1 a b 

splits a b 

right   

left   

AB  S, C  BC  S BA  A CC  B a  A, C b  B 
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Step 2.1: length 1 

 

Determine for each string | what right side of any of the rules fits |, and which 

left side corresponds to that.  We start with the bottom row:  

 

length 5 baaba 

splits b|aaba ba|aba baa|ba baab|a   

right      

left      

 

length 4 aaba baab 

splits a|aba aa|ba aab|a b|aab ba|ab baa|b 

right       

left       

 

length 3 aba baa aab 

splits a|ba ab|a b|aa ba|a a|ab aa|b 

right       

left       

 

length 2 ba aa ab 

splits b|a a|a a|b 

right    

left    

 

length 1 a b 

splits a b 

right a b 

left A, C B 

AB  S, C  BC  S BA  A CC  B a  A, C b  B 
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Step 2.2: length 2 

 

length 5 baaba 

splits b|aaba ba|aba baa|ba baab|a   

right      

left      

 

length 4 aaba baab 

splits a|aba aa|ba aab|a b|aab ba|ab baa|b 

right       

left       

 

length 3 aba baa aab 

splits a|ba ab|a b|aa ba|a a|ab aa|b 

right       

left       

 

length 2 ba aa ab 

splits b|a a|a a|b 

right BA, BC  AA, AC, CA, CC AB, CB 

left S, A B S,C 

 

length 1 a b 

splits a b 

right a b 

left A, C B 

AB  S, C  BC  S BA  A CC  B a  A, C b  B 
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Step 2.3: length 3 

 

length 5 baaba 

splits b|aaba ba|aba baa|ba baab|a   

right      

left      

 

length 4 aaba baab 

splits a|aba aa|ba aab|a b|aab ba|ab baa|b 

right       

left       

 

length 3 aba baa aab 

splits a|ba ab|a b|aa ba|a a|ab aa|b 

right AS, AA, 

CS, CA 

SA, SC 

CA, CC 

BB SA, SC 

AA, AC 

AS, AC 

CS, CC 

BB 

left Ø B Ø Ø B Ø 

 

length 2 ba aa ab 

splits b|a a|a a|b 

right BA, BC  AA, AC, CA, CC AB, CB 

left S, A B S, C 

 

length 1 a b 

splits a b 

right a b 

left A, C B 

AB  S, C  BC  S BA  A CC  B a  A, C b  B 
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Step 2.4 length 4 

 

length 5 baaba 

splits b|aaba ba|aba baa|ba baab|a   

right      

left      

 

length 4 aaba baab 

splits a|aba aa|ba aab|a b|aab ba|ab baa|b 

right AB, CB BS, BA BA, BC BB SS, SC 

AS, AC 

Ø 

left S, C A S, A Ø Ø Ø 

 

length 3 aba baa aab 

splits a|ba ab|a b|aa ba|a a|ab aa|b 

right AS, AA, 

CS, CA 

SA, SC 

CA, CC 

BB SA, SC 

AA, AC 

AS, AC 

CS, CC 

BB 

left Ø B Ø Ø B Ø 

 

length 2 ba aa ab 

splits b|a a|a a|b 

right BA, BC  AA, AC, CA, CC AB, CB 

left S, A B S, C 

 

length 1 a b 

splits a b 

right a b 

left A, C B 

AB  S, C  BC  S BA  A CC  B a  A, C b  B 
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Step 2.5 length 5 

 

length 5 baaba 

splits b|aaba ba|aba baa|ba baab|a   

right BS, BC SB, AB Ø Ø  

left S S, C Ø Ø  

 

length 4 aaba baab 

splits a|aba aa|ba aab|a b|aab ba|ab baa|b 

right AB, CB BS, BA BA, BC BB SS, SC 

AS, AC 

Ø 

left S, C A S, A Ø Ø Ø 

 

length 3 aba baa aab 

splits a|ba ab|a b|aa ba|a a|ab aa|b 

right AS, AA, 

CS, CA 

SA, SC 

CA, CC 

BB SA, SC 

AA, AC 

AS, AC 

CS, CC 

BB 

left Ø B Ø Ø B Ø 

 

length 2 ba aa ab 

splits b|a a|a a|b 

right BA, BC  AA, AC, CA, CC AB, CB 

left S, A B S, C 

 

length 1 a b 

splits a b 

right a b 

left A, C B 

AB  S, C  BC  S BA  A CC  B a  A, C b  B 

 

 

Step 3: baaba is generated by the grammar if any left-box on row length 5 contains S.  

 

We see that baaba is generated by the grammar. 

 

Let us count the number of things we need to do in order to go through the three steps 

of the algorithm completely. 

 

Step 1: Make binary divisions:       21 steps 

Step 2:  Determine right sides and left sides:     58 steps 

 

Arguably, determining the left and right sides for b|a counts as three steps: 

namely, determine the three boldface nodes in the folllowing tree: 

 

  b,B 

 

              a,A           a, C 

          
      A   S 
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That is, we don’t need to think of the computation of the left side as a different step, 

because we can let the algorithm write that down as part of writing down the paths 

BA and BC. 

 

 

Step 3: Check that S is in left at stage 5:     1  step (because we look left to right) 

Total:           80 steps 

 

We may quibble about the exact definition of a steps, and the number may vary a bit 

depending on whether you look left to right or right to left (in step 3), but clearly, the 

number of steps k is: 5
2
 < k < 5

3
.  

 

This is a general property of the  CYK algoritm, it runs (at worst) in cubic time.  

Faster algorithm can be given which run in a bit more than quadratic time.  Faster 

than that would only be possible if you were able to speed up the general algorithm 

for forming partitions, which – if you were to do it, would make you rich and famous.  

 

 

 

PUSHDOWN STORAGE AUTOMATA 
 

A pushdown storage automaton consists of a finite state automaton extended with 

a limited memory wich takes the form of a pushdown storage tape. 

Symbols can be written on the storage tape at a stage of the derivation, and retrieved 

at another stage of the derivation.  We think of the store vertically.  The automaton 

has a reading head for the storage tape which always reads the topmost symbol of the 

store.  It has a bottom, so the automaton starts out reading the bottom of the store. 

When a symbol is stored, it is put on top of the store, and, since the automaton always 

reads the top of the store, the store is pushed down with each symbol stored. 

Again, since the automaton can only ever read the top of the store, symbols are 

removed from the store from the top.  This means that the store works on the 

principle: 

 First in, last out. 

Apart from the fact that the store has a bottom, it has unlimited storage capacity: you 

can store as much on it as you want.   

 

There are several different, but equivalent formulations of pushdown storage 

automata in the literature.  The formulation we give is meant to be easy to use. 

It differs from our earlier formulation of finite state automata in that we allow the 

empty string to occur in transitions.  We will give such occurrences a special 

interpretation, and use them to write one rule instead of many.  But pay attention to 

the instructions on using e! 

 

A pushdown storage automaton is a tuple M = <VI,S,S0,F,δ,VO,Z0,σ>  

where: 

 1. VI, the input alphabet, is a finite alphabet.   

    The alphabet that strings on the input tape are written in. 

2. S is a finite set of states. 

3. S0  S, the initial state. 

4. F  S, the set of final states. 
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5. δ is a finite set of transitions, specified below. 

6. VO, the storage alphabet, is a finite alphabet. 

    The alphabet that strings on the storage tape are written in. 

7. Z0  VO, Z0 is a symbol indicating the bottom of the store. 

8. σ  VI  VO, σ is the erase symbol. 

 

 

We specify δ: 

 

 δ   (VI  {e})  S  (VO  {e})  S  (VO  {e,σ})  
 

 This means that δ is a finite set of transitions of the form: 

 (α,Si,β)(Sk,γ) 

 where: 1. Si,Sk  S. 

                        2. α  VI  {e}. 

                        3. β  VO  {e}. 

  4. γ  VO  {e,σ}. 

 

 

As before, we specify the invariable parts of the automaton: 

 

1. Every automaton has an input tape, on which a string in the input alphabet is 

written. 

2. Every automaton has a storage tape, on which initially only Z0 is written. 

3. Every automaton has a reading head for the input tape which reads one symbol at a 

time. 

4. Every automaton has a reading head for the storage tape which always reads the 

topmost symbol on the storage tape. 

5. Every computation starts while the automaton is in the initial state S0, reading 

the first symbol of the input string on the input tape and reading Z0 on the storage 

tape. 

6. We assume that after having read the last symbol of the input string, the automaton 

reads e. 

7. At each computation step the automaton follows a transition.   

  (α,Si,β)(Sk,γ) 

With this transition, the automaton can perform the following computation step: 

 

 Computation step:   

If the automaton is in state Si and reads α on the input tape,  

and reads β on the storage tape, it swiches to state Sk and performs the  

following instruction: 

 

1. If α  VI and β  VO and γ  VO, then: 

    -the reading head on the input tape moves to the next symbol of the 

     input. 

    -γ is put on the top of the store. 

    -the reading head on the store reads γ. 
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2. If α  VI and β  VO and γ = σ, then: 

     -the reading head on the input tape moves to the next symbol of the  

      input. 

     -β is removed from the top of the store. 

                -The reading head on the store reads the symbol that was below β on  

                  the store. 

       We take this to mean that if β was Z0, the reading head on the store  

      reads nothing (not even e) and any further transition (α,F,β) is 

      undefined. 

3. If α=e we carry out the instruction exactly as under (1) and (2), 

    REGARDLESS OF WHAT THE READING HEAD FOR THE INPUT  

    TAPE READS ON THE INPUT TAPE, WITH THE EXCEPTION  

    THAT THE READING HEAD FOR THE INPUT TAPE DOES NOT  

    MOVE TO THE NEXT SYMBOL ON THE INPUT TAPE.       

 4. If β=e we carry out the instruction exactly as under (1) and (2), 

     REGARDLESS OF WHAT THE READING HEAD FOR THE 

    STORAGE TAPE READS ON THE TOP OF THE STORAGE TAPE. 

     Thus, if γ  VO, we add γ to the top of the store, regardless of what  

    there was before, and if γ=σ, we erase from the store whatever symbol  

    was on top of the store. 

 5. If γ=e we carry out the instruction exactly as under (1) and (2), except  

   that we do not change the top of the store. 

6. We interpret the constraints in (4), (5) and (6) cumulatively. 

   This means, for example, that for a transition (e,Si,e)(Sk,σ), in a state  

   Si, reading a on the input tape and Z0ab on the storage tape, we switch  

   to Sk, leave the input reading head on a, and erase b from the storage  

   tape.  So the new storage tape is Z0a, and the reading head on the  

   storage tape reads a. 

 

The important thing to note is that the reading head on the input tape only doesn't 

move to the next symbol if α=e. 
 

As before,  

 

 The automaton halts iff there is no transition rule to continue. 

 

 Let α  VI*. 

 A computation path for α in M is a sequence of computation steps beginning  

in S0 reading the first symbol of α on the input tape and reading Z0 on the  

storage tape, following instructions in δ until M halts. 

 

 A computating path processing α in M is a computation path for α in M  

which halts with the reading head on the input tape reading e after it has read  

all symbols in α. 

 

 α  VI
*
 is accepted by M iff there is a computation path processing α in M  

where at the end of the path:  

1. M is in a final state.  

  2. The store is empty.  This means, Z0 has been removed from the  

                            store. 
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In sum: 

 

1.    (  ,    Si,    )  (  Sk,    ) 

           VI           VO               VO
 

 

 

   2 

 

 

 

                      Si
               

Sk 

  

 

 

 

 

                

                                        

 

 

 

                      Z0     

                                     Z0   

 

2.    (  ,    Si,    )  (  Sk,   ) 

           VI           VO               
 

 

 

   2 

 

 

 

                      Si
               

Sk 

  

 

 

 

 

                

                                        

 

 

      Z0 

                      Z0     
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3.    (  e,    Si,    )  (  Sk,    ) 

 

           
 

   2 

 

 

 

                      Si
               

Sk 

  

 

 

 

 

                

                                        

 

 

 

                      Z0     

                                     Z0   

 

4.    ( e,    Si,    )  (  Sk,   ) 

 

  
 

   2 

 

 

 

                      Si
               

Sk 

  

 

 

 

 

                

                                        

 

 

      Z0 

                      Z0     

                                        

 

5.    ( ,    Si,    e)  (  Sk,   ) 

The same as under 1-4, but do  independent of what is on top of the store. 

 

6.    ( ,    Si,    e)  (  Sk,  e ) 

The same as unde r1-5 but don’t change the store. 

 

Important:  in ( ,    Si,    )  (  Sk,   )  you don’t move on the input tape iff  = e. 
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Example: a
n
b

n
 (n>0) 

VI = {a,b} 

VO = {Z0,1} 

S = {S0,S1,S2} 

F = {S2} 

δ = {δ1,δ2,δ3,δ4} 

 

 δ1: (a,S0,e)(S0,1) 

 δ2: (b,S0,1)(S1,σ) 

 δ3: (b,S1,1)(S1,σ) 

 δ4: (e,S1,Z0)(S2,σ) 

 

 

 

 

 

 

 

We compute: aaabbb 

 

Step 1. a a a b b b e 

             
            S0 

             
            Z0 

 

Step 2. a a a b b b e 

               
              S0 

               
              1 

              Z0 

 

Step 3. a a a b b b e 

                  
                 S0 

                  
                 1 

                 1 

                 Z0 

 

Step 4. a a a b b b e 

                     
                    S0 

                     
                    1 

        1 

                    1 

                    Z0 
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Step 5. a a a b b b e 

                        
                       S1 

                        
                       1 

           1 

                       Z0 

 

Step 6. a a a b b b e 

                           
                          S1 

                           
              1 

                          Z0 

 

Step 7. a a a b b b e 

                              
                             S1 

                              
                             Z0 

 

Step 8. a a a b b b e 

                              
                             S2 

                              
                              

M halts in a final state while reading e on the input and on the store, S2 is a final state, 

hence M accepps aaabbb. 

 

We compute: aaabbbb 

 

We get, as before,  to: 

 

Step 6: a a a b b b b e 

     
                          S1 

                           
                          1 

                          Z0 

 

Step 7: a a a b b b b e 

        
                             S1 

                              
                             Z0 
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Step 8: a a a b b b b e 

        
                             S2 

                              
                              

We applied δ4. Note that the reading head on the input did not move on. 

M halts in a final state with an empty store, but it doesn't accept the string, because 

the path is not a computation path processing the string (M is not reading e, after all 

the symbols have been read, since it got stuck while reading the last symbol.) 

So aaabbbb is not accepted. 

 

We compute: aaabb 

 

As before, we get to: 

 

Step 5. a a a b b e 

                        
                       S1 

                        
                       1 

           1 

                       Z0 

 

Step 6. a a a b b e 

                           
                          S1 

                           
              1 

                          Z0 

This time M halts after having read the whole input, but it is not in a final state and 

the store is not empty.  So M rejects aaabb. 

 

Example: αcα
R
 with α  {a,b}

*
. 

VI = {a,b,c} 

VO
 
= {Z0, a,b,c} 

S = {S0, S1, S2} 

F = {S2} 

δ = {δ1,δ2,δ3,δ4,δ5,δ6} 

 

 δ1: (a,S0,e)(S0,a) 

 δ2: (b,S0,e)(S0,b) 

 δ3: (c,S0,e)(S1,e) 

 δ4: (a,S1,a)(S1,σ) 

 δ5: (b,S1,b)(S1,σ) 

 δ6: (e,S1,Z0)(S2,σ) 

 

We compute: babaabacabaabab 

 

For ease we write the store horizontally. 
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Step 1:  b a b a a b a c a b a a b a b e 

              
             S0 

              
             Z0 

 

Step 2:  b a b a a b a c a b a a b a b e 

                 
                S0 

                 
             Z0b 

 

Step 3:  b a b a a b a c a b a a b a b e 

                    
                   S0 

                    
              Z0ba 

  

Step 4:  b a b a a b a c a b a a b a b e 

                       
                      S0 

                       
               Z0bab 

 

Step 8:  b a b a a b a c a b a a b a b e 

                                  
                                S0 

                                  
                  Z0babaaba 

 

 

Step 9:  b a b a a b a c a b a a b a b e 

                                     
                                    S1 

                                     
                     Z0babaaba 

 

Step 10:  b a b a a b a c a b a a b a b e 

                                         
                                        S1 

                                         
                            Z0babaab 

 

Step 16:  b a b a a b a c a b a a b a b e 

                                                           
                                                          S1 

                                                           
                                                          Z0 
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Step 17:  b a b a a b a c a b a a b a b e 

                                                           
                                                          S2 

                                                           
                                                           

M accepts. 

So, the intuition is:  M stores the first part of the string while reading.  This will put an 

inverse copy of the first part in the store.  At c, M switches from reading and storing 

to matching, symbol by symbol the inverse copy in the input with the inverse copy in 

the store. 

Since the automaton always reads the top symbol of the store, this algorithm wouldn't 

work for αcα: when c switches to matching, the end of the read α is on top of the 

store, not the beginning.  Since you don't have access to what is deeper down in the 

store, you cannot match.   

(You could, if you change the automaton to an automaton that always reads the 

bottom of the store.  But such automata wouldn't accept αcα
R
.)  

 

 Let M be a pushdown storage automaton with transition relation δ. 

 δ
CL

 is the closure of δ under entailed transitions. 

 Obviously you generate the same language with δ as with δ
CL

, since δ
CL

 only  

            makes the conventions explicit. 

 

This means that if δ contains, say,  a transition (e,Si,a)(Sj,σ) and the input alphabet 

is {a,b}, then the transitions (a,Si,a)(Sj,σ) and (b,Si,a)(Sj,σ) are in δ
CL

. 

 

A deterministic pushdown storage automaton is a pushdown storage  

automaton M where δ
CL

 is a partial function. 

 

As before, we identify non-deterministic pushdown storage automata with pushdown 

storage automata. 

We call the languages accepted by pushdown storage automata pushdown storage 

languages.  And we use the terms (non-deterministic) pushdown storage languages 

and pushdown storage languages. 

 

Fact:  There are pushdown storage languages that are not deterministic pushdown  

          storage languages. 

 

Example:  αα
R
 is a pushdown storage language, but not a deterministic pushdown  

                  storage language.  

 

There is no deterministic pushdown storage automaton that accepts αα
R
, because there 

is no center, and hence you do not know where to switch from storing to matching. 

But there is a non-deterministic pushdown storage automaton accepting αα
R
: 

 

VI = {a,b} 

VO = {Z0,a,b} 

S = {S0,S1} 

F = {S1} 

δ = {δ1,…,δ7} 
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 δ1: (a,S0,e)(S0,a) 

 δ2: (b,S0,e)(S0,b) 

 δ3: (a,S0,a)(S1,σ) 

 δ4: (b,S0,b)(S1,σ) 

 δ5: (a,S1,a)(S1,σ) 

 δ6: (b,S1,b)(S1,σ) 

 δ7: (e,S1,Z0)(S1,σ) 

 

This automaton is non-deterministic since: 

 (a,S0,a)(S0,a) and (b,S0,b)(S0,b) are in δ
CL

, and so are δ3 and δ4. 

 

Compute: abba 

Apply: δ1, δ2, δ4, δ5, δ7, and you accept. 

 

Compute: abab 

 

a b a b e 

 
S0 

 
Z0 

 

If we apply δ3 we get: 

a b a b e 

   
  S1 

   
   

We are stuck here. 

So we can only apply δ1: 

 a b a b e 

    
   S0 

    
Z0a 

 

Apply δ4: 

 

a b a b e 

      
     S1 

      
    Z0 

 

Now we can only apply δ7 and get: 
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a b a b e 

      
     S1 

      
      

Once again, we are stuck. 

Instead of applying δ4 we could have applied δ2: 

 

 a b a b e 

       
      S0 

       
Z0ab 

 

Here only δ1 is possible, so we get: 

 

a b a b e 

         
        S0 

         
 Z0aba 

 

And here only δ2 is possible, so we get: 

 

a b a b e 

            
           S0 

            
  Z0abab 

 

Now we are, once again, stuck. 

We have gone though all the possibilities, hence abab is rejected. 

 

A context free grammar is in Greibach Normal Form iff all rules are of the form: 

 A  aα, with a  VT and α  VN
*
  

 

Theorem:  For every context free grammar there is an equivalent context free 

                   grammar in Greibach Normal Form. 

Proof:  Omitted 

 

The fundamental theorem about pushdown storage languages is: 

 

Theorem:  The class of non-deterministic pushdown storage languages is exactly the  

                   class of context free languages. 

Proof: Omitted 

 

Both proofs are complex.  The second theorem is standardly proved for context free 

grammars in Greibach Normal Form. 
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Without proof that it works, I will give here an algorithm for converting a context free 

grammar into an equivalent pushdown storage automaton. 

 

Let G = <VN,VT,S,R> 

MG is given as follows: 

VI = VT 

VO = V  {Z0} 

S0 is the initial state, F is the final state. 

S = {S0,F}  {SA: A  VN}  X 

where X is as follows: 

For each rule of the form Aα in G, were α = α1…αn,  αi  V 

we have in X states: X
α

2,…,X
α

n. 

δ is given as follows: 

 

 Start:    (e,S0,Z0)(F,S) 

 Push: For every rule Aα in G with α = α1…αn,  αi  V: 

   (e,F,A)(SA,σ) 

 

   (e,SA,e)(X
α

n,αn) 

   (e,X
α

n,e)(X
α

n-1,αn-1) 

   … 

   (e,X
α

2,e)(F,α1) 

 

 Pop:  For every a  VT: 

   (a,F,a)(F,σ) 

 

 End: (e,F,Z0)(F,σ) 

 

The intuition is:   

You read symbol a.   

You look for a rule of the form A ! a α.   

You store α (it starts with a terminal or a non-terminal) 

-if α starts with a1 try to match input and store. 

-if α starts with a non-terminal B look for a rule B ! b β and push β onto the store. 

At some point you get to a terminal c matching the right side of the store.  You pop, 

go one level up, and try to match again. 

 

 

Example: a
n
b

n
 (n>0) 

 

G has rules: Sab, SaSb 

 

VI = {a,b} 

VO = {Z0,a,b,S} 

S = {S0,F,SS, X
ab

2, X
aSb

3, X
aSb

2} 

 

Transitions:  
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 Start:    (e,S0,Z0)(F,S) 

 

 Push:   (e,F,S)(SS,σ) 

 

   (e,SS,e)(X
ab

2,b) 

   (e,X
ab

2,e)(F,a) 

 

   (e,SS,e)(F
aSb

3,b) 

   (e,X
aSb

3,e)(X
aSb

2,S) 

   (e,X
aSb

2,e)(X,a) 

 

 Pop:    (a,F,a)(F,σ) 

   (b,F,b)(F,σ) 

 

 End:  (e,F,Z0)(F,σ) 

 

Compute: aabb 

 

a a b b e a a b b e a a b b e a a b b e a a b b e a a b b e 

           
S0  F  SS  X

aSb
3  X

aSb
2  F 

           
Z0          Z0S  Z0          Z0b       Z0bS     Z0bSa  

 

 

  a a b b e      a a b b e          a a b b e         a a b b e 

                                           
     F            SS  X

ab
2            F 

                                          
Z0bS         Z0b       Z0bb     Z0bba 

 

a a b b e       a a b b e         a a b b e         a a b b e       

                                                                       
      F      F                    F         F       
                                                           
 Z0bb              Z0b                    Z0                      

 

We accept aabb. 
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S  Z0  

 

          

      Z0bS 

                         
 

 

Z0 

a   Z0bSa  S Z0b        b 

 

 

          Z0bbS 

 

 

 

 

a   Z0bbSa S  Z0bb      b 

 

 

    Z0bbbS 

 

 

 

 

a            Z0bbbSa S   Z0bbb      b 

 

 

            Z0bbbbS 

 

 

 

 

a          Z0bbbbSa S   Z0bbbb     b  

 

 

      Z0bbbbb  

 

 

 

 

a       b 
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Cartesian Product Automata 
 

We come back to finite state automata. 

Let M and N be two finite state automata. 

 

 The Cartesian Product Automaton M  N is defined by: 

 1. VI = VM  VN 

 2. SMN = SM  SN   (= {<A,B>: A  SM and B  SN} 

 3. S0,MN = <S0,M,S0,N> 

 4. FMN = {<A,B>: A  FM and B  FN} 

 5. δ(a,<A,B>) = <A',B'> iff 

     δ(a,A)=A' and δ(a,B)=B' 

 

Fact:  M  N is a finite state automaton and L(M  N)= L(M)  L(N) 

Proof:  This is obvious from the construction. 

 

This proves directly:   

 

Corrollary:  If A and B are regular, then A  B is regular. 

 

Example: 

b                                 b                    a                                                 a 

                  a                  b 

   A
e
                        A

o
          B

e
           B

o 

                  a        b 

 

 

 

                  a               

   A
e
B

e
                  A

o
B

e
                     

 

                  a        

 

 

 a    a                   b     b 

 

 

 

                 b 

A
o
B

e
       A

o
B

o
 

                 b 
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Now let M be a pushdown storage automaton and N a finite state automaton. 

Since M is itself a finite state automaton, we can define M  N just as above. 

It is the Cartesian product finite state automaton, with the store inherited from M. 

But M  N is, of course, itself a pushdown storage automaton.  And it is easy to see 

which language it accepts:  while a string is running through M, it runs 

simultaneously through N (where simultaneously means that the steps where the 

automata change state while progressing to reading the next symbol of the input are 

simultaneous).  This means that of the strings accepted in a final state in M, the ones 

that are accepted by M  N are the ones that end up simultaneously accepted by N. 

Thus, M   N accepts L(M)  L(N).  This means that, as promised, we have proved: 

 

Theorem: If A is context free and B is regular, then A  B is context free. 

 

Product automata, then, give us a simple way of writing a finite state automaton for 

the intersection of two regular languages that we have automata for, and a pushdown 

storage automaton for the intersection of a context free language and a regular 

language that we have automata for.  As we have seen, the theorem does not extend to 

the intersection of two context free languages, and it's simple to see why the 

construction doesn't generalize:  you can unproblematically take the products of the 

finite state parts of two pushdown storage automata, but you cannot necessarily 

imitate the effects of two pushdown stores by one store.   

 There is a good reason why you cannot do the latter.  Imagine extending the 

concept of pushdown storage automata to what we might call two track pushdown 

storage automata: 

 

 A two track pushdown storage automaton works exactly like a pushdown  

storage automaton, except that it has two pushdown stores A1 and A2, it will  

read a symbol on the input and each of the tops of A1 and A2 and it can decide  

to push down or pop on A1 or on A2 (or both). 

 

Two track pushdown storage automata are clearly more powerful than pushdown 

storage automata. For instance, the language a
n
b

m
c

n
d

m
 is easily recognized:  push the 

a’s onto store A, and the b’s onto store  B, match c’s with store A, and match d’s with 

store B.  

 

What are the languages recognized by two track pushdown storage automata? 

 

Read the whole string onto store A.  Do the rest with 0-moves.   

-You can add as many symbols as you want at the end of the string by pushing 

symbols onto A.      

-You can add as many symbols as you want at the beginning of the string, by moving 

the whole string symbol by symbol to store B and add symbols after them. 

-You can go to any position in the string by moving symbols one by one to the other 

store until you reach the right one. 

-This way, you can replace any symbol by another symbol in the string, by making 

the first the top of one store in the way described above, erazing it there and adding 

the other, and then move the symbols so as to bring us back to the original position. 

These operations characterize Turing machings: 
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A Turing machine is a tuple M = <S, Σ, V0, δ, S0, F> with  

S a finite set of states, V0 the tape alphabet, Σ  V0, the input alphabet, S0 the  

initial state and F  S the set of final states.  

 

 δ: S × (V0  {e})  S × (V0  {e})× {L,R,N} is a partial function 

 

We have one two-way infinite tape.  The input string α is written on the tape.   

A computation path for α in M is a sequence of computation steps beginning  

in S0 reading the first symbol of α on the tape, following instructions in δ until 

M halts. 

 

A computating path processing α in M is a computation path for α in M  

which halts with the reading head on the input tape reading e after it has read  

all symbols in α. 

 

α  VI
*
 is accepted by M iff there is a computation path processing α in M where at 

  the end of the path M is in a final state.  

 

The symbols L(eft), R(ight), N(euter) control the cursor direction: 

 

δ(Si,a)  (Sj,b,L) means:  on reading a on the tape in state Si,  

go to state Sj, replace a by b, and move the cursor one position left.   

 

Theorem:  The languages recognized by Turing machines are exactly the type 0 

                   languages. 

 

Proof:  Omitted. 

 

Corrollary: The languages recognized by two track pushdown storage automata are 

                     exactly the type 0 languages. 

 

This means, then, that in general you cannot collapse two pushdown storage tapes into 

one (otherwise you could reduce every Turing machine to a pushdown storage 

automaton, which, of course, you can't).  

 

Fact: Type 0 grammars, Turing machines, Recursively enumerable functions, and 

          (several more) all characterize the same set of functions (in our case, 

           languages). 

           

-All formalizations of the informal notion of algorithmic function coincide. 

-No functions have ever been found that are intuitively algorithmic, but not in this 

class of functions. 

 

Church's Thesis: these are all equivalent and adequate formalizations of the notion 

      of algorithmic function, computable function. 
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Linear bounded automata 
 

A linear bounded automaton is a turing machine M with a finite tape with  

    non-erasable endmarkers bot and top. 

 

This means that all the computation steps must be worked out between bot and top  

and the amount of space on the tape is given for M.  This turns out to be equivalent to 

a Turing machine where the space used is restricted to being a linear function of the 

input (hence the name).  

 

Theorem: The class of languages recognized by linear bounded automata is the 

      class of context sensitive languages.  

Proof: Omitted 

 

 

Language L in alphabet A is recursively enumerable iff L has a type 0 grammar. 

Language L in alphabet A is recursive iff both L and A*L have a type 0 grammar. 

 

Fact 1:  There are languages that are not recursively enumerable (intractable) 

Fact 2:  There are recursive enumerable languages that are not recursive. 

Fact 3:  There are recurstive languages that are not context sensitive. 

Fact 4:  All context sensitive languages are recursive. 
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THE EMPTY STRING 
 

Up to now we have been a bit pedantic about the empty string.  One reason for this 

was to make sure that the grammar classes defined were inclusive (since you must do 

something special for context sensitive grammars).  (A second reason was that I 

wanted you to do the exercises without using Ae).  But at this point we can relax 

and be more inclusive about what we call regular grammars or context free grammars. 

For this we mention two facts: 

 

Fact: Let G be the class of grammars G with rules of the form AαB, Aα, where 

          A,B  VN and α  VT*.  Let L(G) be the class of languages determined by the  

         grammars in G.   

         Then L(G) is the class of regular languages. 

  

Hence, we can loosen up the format of right linear grammars to allow rules of the 

form Ae and also AB  (In the automata these correspond to empty-moves, moves 

labeled to e, and you can prove that automata with empty moves are equivalent to 

atomata without.)  

 

Fact:   Let G be the class of grammars G with rules of the form Aα, where A  VN  

 and α  V*.  Let L(G) be the class of languages determined by the grammars  

in G.  Then L(G) is the class of contextfree languages. 

 

This means that also for context free languages we can freely allow rules of the form 

Ae.  The reason is that if e  L(G), any rule of the form Ae can be eliminated.

   
Instead of proving this, I indicate the trick: 

In syntax we find empty categories, in parse trees that look like (1) and (2):  

 

(1)  CP   (2) VP 

        C         C'  or         V        NP  

        e              e 

 

We can eliminate these by encoding them on the higher CP and VP.  We introduce 

two new non-terminals: 

  CP[e,L,C] and VP[e,R,NP] 

 

(They only look complex, but they are just A27 and B49). 

 

and two new rules: 

 

 CP[e,L,C]C' 

 VP[e,R,NP]V' 

 

With this we generate parse trees: 

 

(3) CP[e,L,C] (4) VP[e,R,NP] 

 

 C'   V' 
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The effect will be the same, but now we can eliminate the rules Ce and NPe. 

 

Vice versa, if we know that we can eliminate empty categories without affecting the 

generative power, we can also just introduce them without affecting the generative 

power.  From now on we are not going to distinguish between the definition of 

context free grammars that allows empty rewriting and the definition that doesn't. 
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FEATURES AND CONTEXT FREE GRAMMARS 

 

Take the following context sensitive grammar: 

 SAB 

 SCB 

 BCD 

 C ! DA 

 Aa 

 Dd 

 ACc  which we read as:  <Cc,<A,e>> 

 

This grammar generates four constituent structure trees, two in a context free way, 

and two in a context sensitive way: 

 

      S               S       S             S 

A         B     C              B  A      B       C           B 

a     C       D D    A      C       D a   C     D D      A  C       D 

   D    A    d d     a   D    A    d      c     d d       a    c       d 

   d     a              d     a 

 

Under what conditions can we rewrite C as c? 

Answer: If C is in a configuration with the following properties: 

 1.  You go up from C two nodes. 

 2.  You go down there one node to the left. 

 3.  If that node is A, or A occurs somewhere on the rightmost path down from  

     that node, you can rewrite C as c. 

This is a very context sensitive description, but does that mean that it is a context 

sensitive property?  What do we mean by a context sensitive property? Roughly: 

 

A property P of trees is type n iff any grammar of type n can be turned into a  

grammar of type n which enforces the property on all its generated trees. 

 

Let's say that if a property of trees P is type n, P can be encoded in type n  

grammars. 

 

So, the property 'c occurs in a tree as daughter of C iff C is in the above configuration 

in that tree' would be a context sensitive, rather than context free property, if you need 

a context sensitive grammar to enforce it, if it cannot be encoded in context free 

grammars. 

 

On this analysis, the fact that we formulate the property in a context sensitive way 

means nothing:  the question is whether we can or cannot enforce that property in 

context free grammars as well.  

 

In general, the question what properties of trees can be encoded in what grammars is a 

highly non-trivial question.  The point of this section is to show that context free 

grammars are capable of encoding far more properties than you might think.  

Like the above property. 

 

We can encode properties of trees in context free rules by using features. 
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Features are introduced in the context free rules.  They can be manipulated in the 

grammar, but only locally, i.e. per rule. 

That is, a context free rule constrains the relation between a node in a tree and its 

direct daughters.  Since features are added to context free rules, they too can only 

constrain the relation between a node and its direct daughters. 

Thus, we couldn't simply add a feature F and stipulate that it means: "in any 

constituent structure tree where this node occurs, there is a cut through the tree such 

that node A is directly left of this node in the cut." 

We couldn't do this, because it isn't guarantees that we have a way in the grammar of 

enforcing the interpretation. 

 

However, there are certain operations on features that we can define locally, and with 

that, there are properties of trees that we can enforce.  Here are some basic 

operations: (my interpretation is bottom up, but that is inessential). 

 

Feature generation: 

X<A>α  Interpretation:  

α introduces feature <A> on its mother X. 

X<A>Y A  Interpretation:  

right daughter A introduces feature <A> on its mother X. 

 

Feature passing: 

X<A>Y<A> Z Interpretation: 

   feature <A> passes up from right daughter Y to mother X. 

X<A>Y Z<A> Interpretation: 

   feature <A> passes up from left daughter Z to mother X. 

 

Feature checking: 

XY<A> Z<A> Interpretation: 

   X is allowed if both daughters have feature A. 

XA Z<A>  Interpretation: 

   X is allowed if the left daughter is A, and the right daughter has  

feature <A>.  

 

Feature checking and passing: 

X<A>Y<A> Z<A> Interpretation: 

   X is allowed if both daughters have feature <A>, and <A> is  

passed up. 

 

 

We can use such feature systems to encode certain phenomena that look, at first sight, 

context sensitive. 

-Let c introduce <A2> on C. 

-pass <A2> up from C in rules where C is the left daughter. 

-pass <A2> up from the left daughters until it is passed on to X, where X is the right 

daughter of S in rule SY X. 

-Let A introduce feature <A1> on its mother in a rule where A is the right daughter. 

-pass <A1> up from there from right daughters to mothers, until it is passed on to Y, 

where Y is the left daughter of S in rule S Y X. 
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-Require <A1> and <A2> to match there (= check that both features are present on the 

daughters of S). 

 

A system of rules like this will enforce trees to look like: 

 

                                                 S 

 

       Y<A1>                                                                      X<A2> 

 

Y1            Y2<A1>                                            X1<A2>                X2 

 

        Y3                Y4<A1>                      X3<A2>             X4 

 

                    Y5               A          X5<A2>              X6 

 

                                             C<A2>       X7 

 

                                              c 

 

This will enforce that if c occurs in the tree as daughter of C, there is a cut in the tree 

with A directly left of C in the cut. 

 

 

In the case of the little grammar we gave, we encode it in the following rules: 

 

 

 

 

 

SAB, SCB, BCD, CDA, Aa, Dd 

SA B<A2> 

SC<A1> B<A2> 

B<A2>C<A2> D 

C<A2>c 

C<A1>D A 

 

This grammar generates the following trees: 

 

      S               S       S             S 

A         B     C              B  A      B<A2>      C<A1>  B<A2> 

a     C       D D    A      C       D a C<A2>  D D      A C<A2>  D 

   D    A    d d     a   D    A    d    c           d d       a    c         d 

   d     a              d     a 

 

But, of course, there is nothing context sensitive about this.   

We have just added five new context free rules to the grammar involving three new 

non-terminal symbols C<A1>, C<A2>, B<A2>.  The resulting grammar is, of course, 

perfectly context free. 
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This means that, as long as we add a finite number of context free rules, mentioning a 

finite number of feature-non-terminals, the grammar stays context free.  And this 

means that we can encode indeed far more properties than we would have thought at 

first sight.  So, far more phenomena that, at first sight, we might think require context 

sensitive rules, turn out to be perfectly context free. 

For instance, if you make sure that feature <A1> is only passed up from right most 

daughters, and feature <A2> is only passed up from left most daughters, and that any 

rule that mentions both <A1> and <A2>, mentions them on adjacent daughters, then it 

doesn't matter how deep A1 and A2 are introduced: the nodes where they are 

introduced will be sitting next to each other on some cut through the tree. 

Hence, we can encode this seeming context sensitive property with a finite number of 

features that are only intruduced locally in context free rules.  Hence the property is 

context free. 

 

Of course, whether the mechanisms described as feature introduction, feature passing, 

and feature checking really mean that, depends on the grammar.  The point is, that 

you can easily set up the grammar in such a way that that interpretation is enforced. 

For checking, this means, say, allowing only rule XY<A> Z<A>, but not 

XY Z<A> and not XY<A> Z.  

But that is only a matter of your proficiency in writing context free grammars. 

 

Example of the use of features: 

Number in Espresso: 

D<plur>dis   

N<plur>manis 

A<plur>altis 

V<plur>lopetis 

V<plur>kusetis 

 etc. 

Rules with features: 

 N<α>A<α> N<α> 

 NP<α>D<α> N<α> 

 VP<α>V<α> 

 VP<α>V<α> NP<β> 

 SNP<α> VP<α> 

  

 where α,β  {sing, plur} 

 

If we deal both with gender and number, we get category labels like 

N<plur><fem>.  The complexity is only a matter of notation, we could just as well 

have chosen new label N27 for this, or, for that matter, Z.  The context freeness is not 

affected. 

But, of course, it is useful to have features in the grammar, because it allows us to 

write one rule schema summarizing lots of instances, and it allows us to separate out 

the categorial restrictions (an NP combines with a VP to give a sentence) from 

agreement restrictions:  an adjective agrees with a noun, a subject agrees with the 

verb. 
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A more common format for feature grammars is to regard a node in a tree a feature 

matrix: a set of function-value pairs like: 

 

 CATEGORY: D 

 NUMBER:      plur 

 GENDER: male 

 

A grammar generating trees with node labels of this form is called an attribute 

grammar. 

In the most general form of attribute grammars, you can allow complex values. 

For instance, you could have a node saying: 

 

 [ GAP-RECONSTRUCTION:  Ti] 

 

where Ti is a tree, interpreted as an instruction to attach at this node a subtree Ti.. 

Unrestricted attribute grammars are equivalent to type 0 grammars.  Attribute 

grammars that are a bit richer than context free grammars are used in HPSG. 

 

To give linguistic bite to all this, I will discuss wh-movement in English. 
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Example: wh-movement. 
 

I am interested here in generating trees that you may be familiar with from the 

syntactic literature.  I will be interested in accounting for the following data in English 

(chosen in such a way so as not to have to deal with everything under the sun). 

 

(1) a. John knew that Mary knew that John kissed Mary. 

            b. John knew that Mary knew e     John kissed Mary. 

 c. John knew e     Mary knew that John kissed Mary. 

 d. John knew e     Mary knew e     John kissed Mary. 

 

Complementizer that is optional with the verb know. 

 

(2) a. *John knew whom that Mary knew that John kissed e.    

            b. *John knew whom that Mary knew e     John kissed e. 

            c.   John knew whom e      Mary knew that John kissed e. 

            d.   John knew whom e      Mary knew e     John kissed e. 

 

The wh-phrase occurs in the higher position instead of as complement of the lower 

verb,  but can show the case it would have if it had been the complement of the lower 

verb. 

The wh-phrase requires the complementizer next to it to be empty, but, in extraction 

from object position, there is no such requirement on lower complementizers. 

 

(3) a. *John knew who that Mary knew that e kissed Mary. 

 b. *John knew who e     Mary knew that e kissed Mary. 

 c. *John knew who that Mary knew e     e kissed Mary. 

 d.   John knew who e     Mary knew e     e kissed Mary. 

 

When the extraction is from subject position, we find a further requirement, the that-

trace effect:  extraction from subject requires the next complementizer up to be empty 

as well (as shown by the contrast between 3b and 3d). 

 

I let the wh-phrase land under knew, because I don't want to deal with inversion. 

 

The informal description here is highly context sensitive:   

-Movement is a restructering operation on trees, relating an empty position as far 

down as you want in the tree to a subtree higher up.   

-We notice long distance case-agreement: whether you can get whom in the higher 

position depends on where, deep down, the trace is. 

 

But is wh-movement context sensitive? 

Answer: not as far as these data are concerned, because these operations can be fully 

encoded with features on context free rules. 

 

I will start by assuming a set of nine feature labels: 

{e,i,wh,NP,nom,obj,bot,mid,top}.   

My set of features will be a finite set of sequences of these feature labels.  
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I will specify the interpretations to be enforced of the sequences I specify, on the 

understanding that this interpretation of a sequence is to be carried over in longer 

sequences. 

 

 Interpretations:  

 <i,wh,NP,nom> on node A indicates: 

A is part of a wh-chain i with bottom an NP node with nominatice case. 

 

<i,wh,NP,obj> on node A indicates: 

A is part of a wh-chain i with bottom an NP node with objective case. 

 

 <i,bot,wh> on node A indicates: 

 A is empty and the bottom of a wh-chain i. (bottom trace) 

 

 <i,mid,wh> on node A indicates: 

 A is empty and an intermediate node of a wh-chain i. (intermediate trace) 

 

 <i,top,wh> on node C' indicates:  

 The top of wh-chain i is going to be a left sister of this node. 

 

 <i,top,wh> on node NP indicates:  

 This node is the top of wh-chain i. 

 

 <e> on node C indicates: 

 A is an empty complementizer. 

 

As usual, these interpretations mean nothing if we cannot enforce them.  The point of 

the example is to show that we can indeed easily enforce these interpretations.  We do 

that by specifying the rules. 

 

 Let α  {α1,α2}, α1=<i,wh,NP,nom>, α2=<i,wh,NP,obj> 

 

 V1kissed V2knew  

Cthat C<e>e  

NPJohn NPMary NP<e>e 

 

 Traces 

 NP<bot,i,wh>e NP<mid,i,wh>e 

 Bottom trace  Intermediate trace 

 

 Wh-expressions 

 NP<top,α1>who NP<top,α2>whom 

 

(While this is written as a pair, we assume, as usual, that sequence formation is 

associative, so this are really quintuples.) 
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 Verb phrases 

 VPV1 NP VPV2 CP 

 VPαV2 CPα   (pass α up) 

 VPα2V1 NP<bot,i,wh>  (a bottom trace in the object position of VP  

                                                             introduces α2 on the VP) 

 

 Sentences 

 SNP VP 

 SαNP VPα     (pass α up) 

 S<bot,α1>NP<bot,i,wh> VP (a bottom trace in the subject positon of S  

   introduces α1 on S, and introduces bot on S to  

   trigger the that-trace effect) 

 

 CPs   

 CPNP<e> C'  (for CPs where nothing lands) 

 CPαNP<mid,i,wh> C'α (pass α up and leave an intermediate trace) 

 CPNP<top,α> C'<top,α> (introduce the top of the wh-chain i) 

 

 C's 

 C'C S 

 C'αC Sα   (pass α up) 

 C'C<e> S 

 C'αC<e> Sα   (pass α up) 

 C'αC<e> S<bot,α>  (pass α up with that-trace effect) 

 C'<top,α>C<e> Sα  (prepare for introducing the top of the chain) 

 C'<top,α>C<e> S<bot,α> (prepare for introducing the top of the chain first  

 time round) 

 

Important in this format: 

Categories with features behave like independent categories.  So if we find on a node 

label Sα, we cannot apply rule SNP VP to this node.  We must look for a node 

with label Sα on the left. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 

 

Sample derivations: 

 

1d. John knew that Mary knew John kissed Mary. 

 

          S 

 NP             VP 

John    V2               CP 

         knew  NP<e>          C' 

                     e            C             S 

                                 that   NP          VP 

                                        Mary  V2            CP 

                                                 knew  NP<e>       C' 

                                                              e      C<e>          S 

                                                                      e       NP            VP 

                                                                             John    V1           NP 

                                                                                      kissed     Mary 

 

 

2c. John knew whom Mary knew that John kissed. 

 

          S 

 NP             VP 

John    V2               CP 

         knew NP<top,α2>  C'<top,α2> 

                  whom       C<e>      Sα2 

                                    e    NP          VPα2 

                                        Mary  V2            CPα2 

                                             knew NP<mid,i,wh>       C'α2 

                                                              e                 C          Sα2 

                                                                              that  NP            VPα2 

                                                                                      John    V1           NP<bot,i,wh> 

                                                                                              kissed          e 

 

3.d John knew who Mary knew kissed Mary. 

 

          S 

 NP             VP 

John    V2               CP 

         knew NP<top,α1>  C'<top,α1> 

                  who         C<e>      Sα1 

                                    e    NP          VPα1 

                                        Mary  V2            CPα1 

                                             knew NP<mid,i,wh>       C'α1 

                                                              e             C<e>        S<bot,α1> 

                                                                             e      NP<bot,i,wh>         VP 

                                                                                      e                      V1           NP 

                                                                                                           kissed      Mary 
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The grammar we have given is perfectly context free, and more than just 

'descriptively adequate'.  We encode in the feature passing mechanism the very same 

notions of chain that 'real' movement theories assume.   This means that the very same 

long distance relations between nodes that the movement theory assumes are de facto 

encoded in the feature passing mechanism.  This means that we do not just describe 

the same set of facts in a context free way, but we have given a context free reduction 

of the linguistics anaysis:  the linguistic analysis of the wh-movement facts 

commonly adopted does not essentially rely on non-contextfree properties and 

relations of trees.  In other words, these wh-movement facts do not only not show that 

the string set of English is not context free, but stronger, the analytic tools commonly   

assumed (movement and chains) are perfectly normal context free tools. 

 

As far as I am concerned, this doesn't mean that you must use the feature passing 

reconstruction rather than chains and movements.  We use whatever helps us express 

the generalizations we want to cover the best.  But it is useful to know that, when 

needed, we can convert this part of the theory to a context free format (and use, for 

instance, the facts known about context free parsing). 

 

The feature passing mechanism has actually some direct advantages too. 

As the name already suggests, 'across the board' movement has always been some of 

an embarrasment for the classical movement account.  As is well known, wh-chains 

can have more than one tail, if the tails come from each conjunct in a conjunction: 

 

(4) a.    John knows whomi Mary thinks that Bill kissed  ei and Henry likes ei. 

      b. *John knows whomi Mary thinks that Bill kissed  ei and Henry likes Susan. 

      c. * John knows whomi Mary thinks that Bill kissed  Susan and Henry likes ei. 

 

This is a bit of an embarrasment for the classical theory, because the whom is moved 

from a conjunction, which is not supposed to be possible, and how can you move one 

thing from two places simultaneously.  Clearly, the literal movement interpretation is 

under stress in these cases. 

But it is very easy to modify the feature passing analysis to fit across the board 

movement facts:  allow α to be check and passed on from the conjuncts to a 

conjunction, α is passed on to a conjunction, and higher up from there if both 

conjuncts have α. 

 

There is one aspect of the analysis that requires further investigation, and that is index 

i marking wh-chain i. 

Since there can be arbitrarily many wh-chains in a sentence, we need to worry about 

the question of how many indices we must require in the grammar. 

 

The fact is, that there is no problem if there are no nodes that are part of more than 

one wh-chain.  In that case, we can just use one and the same index (or rather, we 

don't need an index) for both chains: a node is part of the wh-chain determined by the 

closest top and closest bot, and this can be unambiguously determined for each node, 

even if there are 5000 non-overlapping wh-chains in the sentence. 

But matters are different, if chains are allowed to overlap. 

 

It so happens that this is not a problem for English, because, as is well known, English 

doesn't allow overlapping wh-chains, i.e, you can't have the following: 
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(5) a.  *John knows whoi Mary knows whomj Bill thinks ei loves ej   

      b. *John knows whomi Mary knows whoj Bill thinks ei loves ej 

 

But other languages seem to allow this (Engdahl 1986 mentions Swedish). 

Let's think about wh-chains that originate from the same sentence.  If we only need to 

take into account the arguments of the verb, then there still isn't a problem:  verbs 

have only a finite number of arguments (at most 3), so 3 wh-indices would be enough, 

if each argument of one verb can be the bottom of a wh-chain.  But if the language 

allows preposition stranding, and simultaneous extraction, then there might be a 

problem.  Because then you could get something like the following: 

 

 who1....who2.....who4...who3...    (e1verb e2 in e3 for e4 ...) 

 

If we can add as many prepositional adjuncts as we want, we could, theoretically, 

have as many simultaneous extractions as we want.   

But that might mean that we might have to be able to distinguish arbitrarily many wh-

chains on the same category label, and that might mean that we would need 

arbitrarily many indices.  Since our features are by necessity finite, we couldn't do 

that with features and our analysis might well go beyond context free  (but the 

argument must be tied to the exact nature of the data.  As we will see, non-context 

freeness arguments are rarely straightforward). 

 

What happens if we allow an infinite set of indices in a context free grammar? 

Well,  that depends, of course, on what you do with them.  This question has been 

studied most extensively in the study of the socalled indexed languages. 
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INDEXED GRAMMARS 

 

Indexed grammars are a generalization of context free grammars. 

 

An indexed grammar is a tuple G = <VT,VN,I,S,R> where: 

 1. VN,VT,S are as usual. 

 2. I is a finite set of indices. 

 3.  R is a finite set of rules of one of the three following forms: 

 a. Aα where A  VN, α  V*.   

 b. A ! Bf where A,BVN, f  I. 

  c. Afα where AVN, α  V*, f  I. 

 

 This looks much like context free grammars.  The difference comes in the derivation. 

-In the parse trees of an indexed grammar, we associate with every node with a non-

terminal label a string of indices.  So node labels are of the form: A i1...in. 

-The rules are interpreted as follows: 

  a. If G contains A  α and T is a parse tree for G with leaf node n with label A δ 

      we can expand node n in the following way: 

       -add the symbols in α left to right as daughternodes to node n (same as for context  

        free grammars) 

       -copy index δ to every daughter of n which has a non-terminal label. 

Example:  rule ABaC and  node A i1...in give tree: 

 

    A i1...in 

 

  B i1...in                  a              C i1...in 

 

  b. If G contains A  B f  and T is a parse tree for G with leaf node n with label A δ 

      we can expand node n in the following way: 

       -add a daughternode with label B to node n (same as for context  

        free grammars) 

       -add f to the top of the string δ on the daughter (i.e. the daughter has label  

        B f 
 

δ. 
 

Example: rule AB f  and node A in...in  give tree: 

 

    A i1...in 

 

    B fi1...in 

  c. If G contains A f  α  and T is a parse tree for G with leaf node n with label A f

δ 

      we can expand node n in the following way: 

      -add the symbols in α as daughter nodes to n in left right order (same as for  

       context free grammars). 

     -copy index δ to every node of n which has a non-terminal label.   
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Example: rule A f  B a C and node A fi1...in give tree: 

 

    A fi1...in 

 

  B i1...in                  a              C i1...in 

 

So each node in a parse tree carries either a terminal label or a non-terminal label and 

a pushdown store, a stack,  of indices.  In the rules of type a, the index stack gets 

copied to all the non-terminal daughters; in the rules of type b, we push an index on 

top of the index stack of the daughter; in rules of type c, we copy the index stack to all 

the non-terminal daughters, while removing an index from the top of each of these 

stacks. 

The remaining notions are the same as for contextfree grammars. 

We call the languages generated by indexed grammars indexed languages. 

 

Fact:  Every context free grammar is an indexed grammar. 

 Hence the class of context free languages is contained in the class of indexed  

languages. 

 

This is obvious from the definition: restrict yourself to rules of type a only, and you 

have a context free grammar. 

 

 

 

 

 

Fact: The class of indexed languages is contained in the class of context sensitive  

languages. 

 

This was proved in Aho 1968, who introduced indexed grammars.  The containment 

is proper: there are context sensitive languages which are  not indexed languages. 

For instance: 

for n>0:  n! = 1  ...  n 

The language: a
n!

 (n>0) is context sensitive, but not an indexed language. 

More natural, the language MIX = {α  {a,b,c}*: |a|α = |b|α = |c|α} is context sensitive, 

and in the 1980ies Bill Marsh conjectured it to be not an indexed language.  At 

present this conjecture has still not been proved (which gives us an Argument by 

Intimidation that it isn’t an indexed language, since really smart people have been 

unable to come up with an indexed grammar for it.) 

 

Fact:  There are indexed languages that are not context free. 

 

We are going to show that ourselves, by showing that the languages that earlier we 

proved to be not context free all are indexed languages.   

 

In the examples to follow we use two indices f,g in which g plays the role of marking 

the bottom of the index stack.  (This is not part of the definition, but encoded in the 

grammar.) 
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Example:  a
n
b

n
c

n
 (n>0) is an indexed language. 

VN = {S,T,A,B,C} 

VT = {a,b,c} 

I = {f,g} 

R:  S  T g A f  a A A ga 

  T  T f B f  b B B gb 

  T  A B C   C f  c C C gc 

 

The trick in this grammar, and in indexed grammars in general,  is that you start with 

a routine of stocking up as many indices f as you want (starting with g) on a single 

node T, then you spread them to the daughers A, B and C, and then you continue, for 

each of these nodes, with a routine of eating the indices up.   

What you can do in this way, which you can't do in context free grammars, is let the 

length of the top stocking up tree segment control the length of the subtrees 

dominated by A and by B and by C. 

 

Sample derivations: 

 

aabbcc: 
     S 

     Tg 

     Tfg 

 

   Afg  Bfg  Cfg 

 

          a       Ag        b          Bg          c        Cg 

 

         a                       b                      c 

 

aaabbbccc: 
 

     S 

     Tg 

     Tfg 

     Tffg 

 

   Affg  Bffg  Cffg 

 

          a       Afg        b          Bfg          c      Cfg 

 

               a         Ag         b           Bg       c         Cg 

 

    a     b    c 
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Example: 
n

a 2
is an indexed language. 

VN = {S,A,B}  

VT = {a} 

I = {f,g} 

R:  S A g 

  A A f 

  A f  B B 

  B f  B B 

  A g  a 

  B g  a 

 

Sample derivations: 

 

a: 
     S 

     A g 

 

     a 

 

 

 

aa: 

     S 

     Ag 

     Afg 

 

    Bg  Bg 

 

    a  a 

 

aaaa: 

     S 

     Ag 

     Afg 

     Affg 

 

    Bfg  Bfg 

 

       Bg             Bg     Bg          Bg 

 

       a                a        a             a 
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aaaaaaaa: 
     S 

     Ag 

     Afg 

     Affg 

     Afffg 

 

    Bffg  Bffg 

 

       Bfg         Bfg         Bfg         Bfg 

 

   Bg     Bg  Bg    Bg Bg   Bg   Bg     Bg 

 

   a        a     a       a     a     a     a        a 

 

 

Example: 
2na (n>0) is an indexed language. 

VN = {S,A,B,C,D} 

VT = {a} 

I = {f,g} 

R:  S A g D fB 

  A A f D ge 

  AB  C faaC 

  BC D C ga 

 

Sample derivations: 

 

a: 

     S 

     Ag 

     Bg 

 

           Cg         Dg  

 

            a           e  = a 

 

aaaa: 
     S 

     Ag 

     Afg 

     Bfg 

 

    Cfg  Dfg 

 

          a   a   Cg  Bg 

 

         a        Cg       Dg 

 

             a         e   = aaaa 
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aaaaaaaaa: 
     S 

     Ag 

     Afg 

     Affg 

     Affg 

     Bffg 

 

   Cffg    Dffg 

 

        a   a   Cfg    Bfg 

 

     a  a  Cg  Cfg  Dfg 

 

             a           a  a  Cg  Bg 

 

           a        Cg          Dg 

 

               a            e  

  = aaaaaaaaa 

 

 

 

 

 

One more fact: 

 

Fact:  The class of languages generated by right linear indexed grammars is  

           exactly the class of context free languages.  

 

Proof: 

This is obvious.  The right linear grammar forms a finite state automaton.  The index 

is a pushdown store.  In a right linear index grammar you have in every parse tree  

only one spine of non-terminals on the right, so you can only push and pop on the 

pushdown store, the stores don't spread. Clearly, this is just an alternative description 

of a pushdown storage automaton. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


