A cat, a rat and a bat Fred Landman For Anna Khrizman

Now Pim is type e, and she is a cat

Be a cat is <e,t>, giving one to each cat.

If we feed Pim to that, we get one (she’s a cat),
Feeding Remy the rat, we get null (he’s a rat).

If Pim is a cat and chases a rat,

and be a cat is <e,t>, then so is chasing a rat.
Chase a rat is <e,t>, giving one to some cat,
because Pim, Anna’s cat, is chasing a rat.

Now, Remy the rat is a rat of type e,

chasing Remy the rat is again of <e,t>.
Chase Remy the rat assigns one to our cat,
since Pim is our cat and chases Remy the rat.

Chase Remy the rat we assign type <e,t>,

And Remy the rat is a rat of type e.

Now what is the type that the verb chase should be,
so that chase Remy rat can be of type <e,t>?

Well, the trick is quite simple, chase should take Remy rat,
who is of type e, as is Pim, Anna’s cat,

and map Remy rat on the property that

you have when you chase ol” Remy the rat.

So chase takes Remy rat, who is of type e
and maps him on chase Remy rat of <e,t>.
A function that brings us from e to <e,t>
is itself a function of type <e,<et>>.

It takes Remy the rat to: chase Remy the rat,
which itself then applies to Pim, Anna’s cat.
We get one, because Pim, Anna’s cat is a cat
who indeed in our model chases Remy the rat.

Now Bartok the bat is a friend of the rat,

and chase Remy the rat assigns null to the bat,
because in our model, this Bartok the bat

is certainly not chasing Remy the rat.

Now chase <e,<e,t>> takes the bat of type e
and maps it on chase Bartok bat of <e,t>,
which takes good old Pim, again of type e
and spits out the null of our basic type t.

Why null? ‘Cause Pim chases Remy the rat,
but Pim happens not to chase Bartok the bat.
In sum: <e,<e,t> plus an e gives <e,t>,

and <e,t> plus an e gives our basic type t.



