
1

QUANTIFICATION AND MODALITY

Fred Landman

Tel Aviv University

revised Oct 2021

2

PART 1: QUANTIFICATION

3

INTRODUCTION

I. SEMANTIC MEANING/PRAGMATIC MEANING

Recommendation letter: I only write

 He has beautiful azure eyes

Pragmatic implication: Don't take the guy.

 Gricean reasoning. speechcontext, etc.

 knowledge about what one is supposed to write in a recommendation letter.

Semantic implications:

 -He has azure eyes

 -He has eyes etc.

Depends only on the speaker/hearer knowledge of the language → semantic competence

So semantic facts are –it seems- much more boring than pragmatic facts.

But even stupid facts like the above are interesting because they are part of patterns that are

interesting.

II ADJECTIVES

Intersectivity: A. An azure eye is an eye

 B. An azure eye is azure

Many adjectives are intersective.

Some adjectives do not quite look intersective, but are what is called subsective. These are

typically degree adjectives:

 A. A small elephant is an elephant

 X B. A small elephant is small

It is not clear that subsective adjectives aren't really intersective.

 Assumption 1:

Degree adjectives have an interpretation aspect which is not lexicalized , a

comparison class.

 Assumption 2: Pragmatics of comparison class

1. Prenominal/attributive adjectives:

Out of the blue the comparison class is the denotation of the noun:

 small [rel. C] elephant C = elephant

 → small [rel elephant] elephant

2. Predicative adjectives:

Out of the blue the comparison class is contextual:

 small [rel C] C = set of contextual objects

Now look at:

4

 A small elephant is small

interpretation:

 A small [rel C1] elephant is small [rel C2]

Intersectivity only says that the following should be true:

 A small [rel C1] elephant is small [rel C1]

And this is uncontroversial: if Jumbo is a small elephant, then Jumbo is small for an elephant.

But the pragmatics of comparison class gives you out of the blue:

 A small [rel elephant] elephant is small [rel set of contextual objects].

This is, of course, not necessarily true, on anybody’s theory.

This means that we can maintain intersectivity, despite the seeming evidence to the contrary.

Intersectivity claims that the inference in (1) is true:

 (1) a. Jumbo is a small elephant.

 b. Jumbo is an elephant and small (in comparison with the other

 elephants).

Intersectivity does not claim that the inference in (2) is true:

 (2) a. Jumbo is a small elephant

 b. Jumbo is an elephant and small (in comparison with the other animals in

 the zoo)

Evidence for comparison class:

Even for attributive adjectives, the comparison class can be contextually determined:

Kamp & Partee

 My three year old

 built a huge snowman

 The college team

Chuge  Snowmen

C1,huge = Snowmen built by 3 year olds

C2,huge = Snowmen built by college teams

5

EXCURSUS

One could speculate –but this is more tentative – that an argument for intersectivity even applies

to adjectives like dead and fake.

1 A A dead poet is a poet

 B A dead poet is dead

2 A A fake Rembrandt is a Rembrandt

 B A fake Rembrandt is fake

also a fake diamond

Here the inference to the adjective is valid, but the inference to the noun is not.

The idea would be that the pragmatics of dead/fake allows for 'temporary widening of the

denotation of the noun.

2A would be ambiguous:

 Awide A fake RembrandtWIDE is a RembrandtWIDE True

 Bnarrow A fake RembrandWIDEt is a RembrandtNARROW False

cf: Most Rembrandts are fake.

However, whether this line is ultimately fruitful is questionable.

The reason is that there is ultimately a big difference between (3a) and (3b):

(3) a. A small elephant is not small.

 b. A fake Rembrandt is not a Rembrandt.

While the truth of (3a) (with stress indicated) is dependent on the context, (3b) seems to be true

absolutely.

END OF EXCURSUS

6

We see that intersectivity applies to a wide class of adjectives.

But not to all: Temporal and modal adjectives.

Temporal:

 A A former friend is a friend FALSE

 B A former friend is former INFELICITOUS

 Similarly future wife, etc…

-Not subsective (A is false)

-Most intensional adjectives (= temporal or modal can not be use predicatively.

Modal:

 A. A potential counterexample is a counterexample FALSE

 B. A potential counterexample is potential INFELICITOUS

So the 'stupid facts' actually form part of a semantic classification of adjectives in terms of

intersective versus intensional.

And this generalizes.

I. We find the same distribution for adverbials:

Intersective adverbials: for example manner adverbials:

 Elegantly, Sasha jumped

 A: Sasha’s jumping was jumping

 i.e. Sasha jumped

 B: Sasha's jumping was elegant

 i.e. Something that happened was elegant

Intensional adverbials:

 Potentially, Sasha will jump

 A: Sasha will dance FALSE

 B: Something that will happen is potential INFELICITOUS

7

III GENERALIZATIONS

There is a different kind of generalization that we are particularly interested in.

 THREE KINDS OF SEMANTIC MEANING

 1. WORD MEANING [Lexicography]

 2. SENTENCE MEANING [Logic]

 3. CONSTITUENT MEANING [Semantics]

Sentence meaning: We use judgements of native speakers about inference and felicity as data.

These judgements involve sentence meanings.

Constituent meaning: Semantic generalizations are most often best stated neither at the level

of word meaning, nor at the level of sentence meaning, but at an intermediate level of

constituent meaning.

Example.

 He has beautiful azure eyes which shine in the dark with black eye lashes

Adjectives, relative clause, prepositional phrase.

Facts:

 A Azure eyes are eyes

 B Azure eyes are azure

 A Eyes with black eye lashes are eyes

 B Eyes with black eye lashes have black eye lashes

 A Eyes which shine in the dark are eyes

 B Eyes which shine in the dark shine in the dark

Observation: Intersectivity is a principle that concerns not just adjectives, but

also prepositional phrases and relative clauses.

This means that intersectivity is not a lexical property of the meanings of certain words (like

adjectives), but of the meanings of classes of PHRASES.

More precisiely, it is a meaning constraint on how the meanings of ADJUNCTS like APs, PPs,

CPs combine with the meanings nouns, verbs.

But this means that we need a theory of constituent meanings and a theory of the meaning of

adjunction in order to even state the generalization.

This is what semantics is about.

8

Generalization:

Syntactic adjuncts come in two kinds:

 A Those derived from predicates

 B Those not derived from predicates (intensional)

The semantic interpretation of adjunction for class A is predicate intersection.

9

IV ABOUTNESS AND SEMANTIC COMPETENCE.

A core part of what we call meaning concerns the relation between linguistic expressions and

non-linguistic entities, or 'the world' as our semantic system assumes it to be, the world as

structured by our semantic system.

Some think about semantics in a realist way: semantics concerns the relation between language

and the world.

Others think about semantics in a more conceptual, or if you want idealistic way: semantics

concerns the relation between language and an intersubjective level of shared information, a

conceptualization of the world, the world as we jointly structure it. Emmon Bach: Natural

Language Metaphysics.

Both agree that semantics is a theory of interpretation of linguistic expressions: semantics

concerns the relation between linguistic expressions and what those expressions are about. Both

agree that important semantic generalizations are to be captured by paying attention to what

expressions are about, and important semantic generalizations are missed when we don't pay

attention to that.

But semantics concerns semantic competence. Semantic competence does not concern what

expressions happen to be about, but how they happen to be about them.

Native speakers obviously do not have to know what, say, a name happens to stand for in a

certain situation, or what the truth value of a sentence happens to be in a certain situation. That

is not necessarily part of their semantic competence. What is part of their semantic competence

is reference conditions, truth conditions:

Take the Dutch sentence:

 Er is geen pen onder de tafel. Er is geen pen onder mijn hand

A Dutch speaker can use that sentence to distinguish situation one [pen under the table] from

situation two [pen above the table].

In which do you think is the sentence true?

Well, what Dutch speakers know is that g- is a negative morpheme in Dutch, so it is situation

two. So: the Dutch speaker can use this sentence to distinguish these two types of situation,

while you can't. This is not because the dutch are more intelligent than you are, but only because

the Dutch speakers have something that you don't have: semantic compentence in Dutch.

Note that it is not part of the Dutch speakers competence to know whether the sentence is true of

false (that is the business of detectives and scientists). What is part of your semantic competence

is that, in principle, you're able to distinguish situations where that sentence is true, from

situations where it is false, i.e. that you know what it takes for a possible situation to be the kind

of situation in which that string of words, that sentence, is true, and what it takes for a situation

to be the kind of situation where that sentence is false.

10

Note too that we are talking about linguisic competence: my cat too can classify situations in

terms of situations where there is a cockroach in the house, and where there isn't. But he cannot

use language to do that classification, and we can.

The first thing to stress is: semantics is not interested in truth; semantics is interested in truth

conditions.

From this it follows too that we're not interested in truth conditions per se, but in

truthconditions relative to contextual parameters.

Take the sentence: I was behind the table one minute ago. The truth of this sentence depends on

who the speaker is, when it is said, what the facts in the particular situation are like. But we're

not interested in the truth of this sentence, hence we're not interested in who is the speaker, when

it was said, and what the facts are like.

What we're interested in is the following: given a certain situation (any situation) at a certain

time where a certain speaker (any speaker) utters the above sentence, and certain facts obtain in

that situation (any combination of facts): do we judge the sentence true or false under those

circumstantial conditions?

A semantic theory assumes that when we have set such contextual parameters, native speakers

have the capacity to judge the truth or falsity of a sentence in virtue of the meanings of the

expressions involved, i.e. in virtue of their semantic competence. And that is what we're

interested in.

Semantic competence involves recognizing how truth values of sentences of your native

language change, when you vary aspects of evaluation situations.

 -vary the facts: make my green t-shirt yellow.

 -vary the time: go to a point where I am 23.

 -vary the speaker: go to a speaker who now is 23.

 -vary the person pointed at: she has azure eyes.

Some of these aspects are linguistically creative, they get linguistically encoded in many

languages, and classes of expressions, often cross-linguistically, are sensitive to this aspect,

others are not.

i.e. Facts are less linguistically creative than time is:

Changing the color of my shirt is not going affect the truth value of sentence that are not about

me, but varying the time is. Languages evaluate relative to time and have time-operations, but

they do no evaluate relative to fred-shirt-color, and they do not have fred-shirt-color operations.

To summarize: a semantic theory contains a theory of aboutness and this will include a theory of

truth conditions.

Given the above, when I say truth, I really mean, truth relative to settings of contextual

parameters.

11

Furthermore, given what I said before about realistic vs. idealistic interpretations of the domain

of non-linguistic entities that the expressions are about, you should not necessarily think of truth

in an absolute or realistic way: that depends on your ontological assumptions. If you think that

semantics is directly about the real world as it is in itself, then truth means truth in a real

situation. If you think that what we're actually talking about is a level of shared information

about the 'real' world, then situations are shared conceptualizations, structurings of the real

world, and truth means truth in a situation which is a structuring of reality. This difference

has very few practical consequences for most actual semantic work: it concerns the interpretation

of the truth definition rather than its formulation.

This is a gross overstatement, but for all the phenomena that we will be concerned with in this

course, this is true enough.

Specifying a precise theory of truth conditions, makes our semantic theory testable. We have a

general procedure for defining a notion of entailment in terms of truth conditions. Once we

have formulated a theory of the truth conditions of sentences containing the linguistic

expressions whose semantics we are studying, our semantic theory gives a theory of what

entailments we should expect for such sentences. Those predictions we can compare with our

judgments, the intuitions concerning the entailments that such sentences actually have.

This may sound trivial, but it isn’t really. We will mention later Aristotle’s theory of the

Syllogism, a theory which dominated logical thought for 2000 years, but which patently fails to

makes any predictions at all about large classes of data that it is concerned with. [i.e. it is easy

for interesting theories to be nevertheless inadequate]

Even for good ideas, it is easy for interesting theories to go wrong [even if at heart they are good,

fruitful theories], and we will need to think about how to make them go right.

12

Example: Event Theory

Event theory proposes that verbs have an event argument. The theory allows for insightful

analyses of the semantics of adverbials, tense and aspect.

A simple minded version of the theory is based on the following paraphrases:

 Sasha chased Fido

Analysis: There is a chasing event in the past with Sasha as chaser and Fido as chasee.

 Sasha chased Fido quickly

Analysis: There is a chasing event in the past with Sasha as chaser and Fido as chasee

 and that event was done in a quick manner.

 Some cat chased Fido

Analysis: There is a chasing event in the past with some cat as chaser and Fido as

 chasee.

 Some cat chased some dog

Analysis: There is a chasing event in the past with some cat as chaser and some dog

 as chasee.

Based on this, we would expect the following analysis:

 Some cat chased no dog

Analysis: There is a chasing event in the past with some cat as chaser and no dog

 as chasee.

But this analysis derives the wrong meaning: it says that some cat chased a non-dog, which is, of

course not what the sentence means.

It is easy to see what the most natural reading that the sentence does have should be:

 Some cat chased no dog

Analysis: There is a cat for which there isn’t a chasing event in the past with that cat

 as chaser and a dog as chasee.

There are bona fide versions of grammars using event theory that block the wrong readings and

get the right readings. But in order to get this and maintain the advantages that were the

rationale for introducing event theory in the first place requires a subtle balance and requires

subtle thinking about the syntax-semantics relation.

The task of formulating elegant semantic theories that get the facts right is highly non-trivial,

challenging (and fun!).

End of Example.

13

David Lewis' Practical Guide:

 Do not ask what a meaning is, but what a meaning does, and find something

 that does that.

→ Intension of : function from situations to truthvalues

 Intension of  does (by and large) what we want a meaning to do.

This is not yet a theory: we need to specify what we put in situations (which distinctions are

linguistically relevant

 Facts, time, speaker, events,…

3When we fix that we have a precise theory of objects that do what we want meanings to do, a

theory that makes predictions about entailments which can be checked with the facts.

If you tell me: 'but that's not what meanings are", I will ask you: ' Well, what more do you want

meanings to do?

 -If you want meanings to do the dishes, intensions won't

 -Possibly you find the particular notion of intention used not finegrained enough. In that

case, I will try to make my situations more finegrained.

But the fact it that practically speaking the theories that have been developed are succesful in

dealing with a large number of phenomena, and in stating important generalizations.

14

V. COMPOSITIONALITY.

The interpretation of a complex expression is a function of the interpretations of its parts and the

way these parts are put together.

Semantic theories differ of course in what semantic entities are assumed to be the interpretations

of syntactic expressions. They share the general format of a compositional interpretation theory.

Let us assume that we have certain syntactic structures, say, the following trees:

 DP DP

 D NP D NP

 │ │

 a(n) ADJ N a N CP

 │ │ │

 American girl girl who is American

In a compositional theory of interpretation, we choose semantic entities as the interpretations,

meanings of the parts. This means that we start with meanings for the lexical items:

1. m(a(n)) m(American) m(girl)

What these are will depend, of course, on your semantics theory.

We assume that corresponding to the build up rules in the syntax, there are corresponding

semanic interpretation rules.

Fbirst we make the standard assumption that the little trees projected from the lexicon have as

their meaning the meanings of the lexical items:

m(D) = m(a) m(ADJ) = m(American) m(N) = m(girl)

 │ │ │

 a American girl

Next, we assume that, corresponding to the syntactic operation of adjunction forming a noun

phrase out of an adjective and a noun(phrase), there is a semantic operation forming the meaning

of the complex noun phrase as a function of the meaning of the adjective and the meaning of the

noun. And the same for the operation forming a determiner phrase out of a determiner and a

noun phrase.

15

Moreover, we have argued above that the semantic operation that combines an adjective with a

noun and the semantic operation that combines a relative clause with a noun should be the same

intersective semantic operation. This is a generalisation that we want to express in the grammar:

 DET + NP  DP

 m(DP) = OP1[m(D), m(NP)]

 NP1 + ADJUNCT  NP2

 m(NP2) = OP2[m(ADJUNCT), m(NP1)]

Our grammatical assumtion is that the same semantic operation corresponds in adjunction in

both trees.

Let us now make a specific assumption to illustrate compositionality.

We assume that the adjective American and the relative clause Who is American have the same

meaning.

Note, we do not have to make that assumption, but let us assume here that we are dealing with a

notion of meaning for which that is reasonable.

Assumption:

 m([CP who is American] = m(American)

In that case, the principle of compositionality tells that in this grammar the two trees derived

have the same meaning: in both cases we derive for the whole tree:

 OP1[m(a), OP2[m(American), m(girl)]]

It is easy to see that the principle of Compositionality of Meaning entails a principle of

Substitution of Meaning:

Look at (1) and (2)

 (1) Fred dances with an American girl

 (2) Fred dances with a girl who is American

(2) is the result of replacing adjoined constituent american by adjoined constituent who is

american at the same place in the semantic structure. If we assume that the semantic

composition operations in the derivation of (1) and (2) are the same (as we do) and we that

m(American) = m(who is American), then it follows from compositionality that m(1) = m(2)

If you substitue in an expression a sub-expression  by an expression  with the same meaning,

the meaning of the whole stays the same.

16

ARGUMENTS FOR COMPOSITIONALITY

1. A priori arguments.

Compositionality is semantic recursiveness. Frege 1918 Der Gedanke gives in essence the same

argument for semantics as Chomsky for syntax later:

We understand sentences that we have never heared before. Sentence comprehension cannot be

a creative exercise because we do it fast, on-line. It is not clear how this could possible work

without assuming compositionality.

[recursion: simplest form: modifiers like adjective: input is of the same type as the output)

2. Practical arguments.

2a. The meaning of a complex expression is a network of interacting factors: i.e. interesting

phenomena on the intersection of aspect, quantification, mass-noun distinctions, plurality, etc.

etc.

Compositionality is analysis, it separates the semantic contributions of the parts and the

contribution of the semantic glue. So it helps you in telling in a complex of interacting factors

which bits or meaning are contributed by what.

2b. Compositional analyses work better than non-compositional ones.

Argument by Intimidation

3. Theoretical arguments.

The compositional analysis in 2 allows you formulate your semantic generalizations at the

appropriate level of constituent meaning.

For instance, intersectivity is a semantic correlate of the adjunction operation.

Compostionality leads you to correct generalizations, while non-compositional lead away from

those.

17

I. SET THEORY (Cantor, Boole)

Set Theory is based on the element-of relation .

The fundamental properties of sets and the element-of relation are given by the following

principles:

Separation: Given a domain D and a property P, we can form the set of all objects in

 D that have property P: {x  D: P(x)}.

-We write {a,b,c} for the set {x  D: x = a or x = b or x = c}.

Extensionality: sets are only determined by their elements:

 A = B iff for every a  D: a  A iff a  B

-It follows from extensionality that {c,b,a,c} = {a,b,c}

-It follows from Separation that, if there is a domain D, there is an empty set, a set with no

elements (because we can define the set of all elements of D that have the property of being non-

identical to itself).

-It follows from Extensionality that there is only one empty set (because any two empty sets have

the same elements, and hence are identical):

Empty set: The empty set, Ø = {x  D: x  x}

( : 'is not identical to')

From now on we write A,B,C for sets of objects in domain D.

Subset relation: A is a subset of B, A  B, iff for every a  D: if a  A then a  B.

FACTS about :

-For every set A: Ø  A

 -For every set A: A  A (reflexivity)

 -For every sets A,B,C: if A  B and B  C then A  C (transitivity)

 -For every sets A,B: if A  B and B  A then A=B (anti-symmetry)

Union: The union of A and B, A  B = {x  D: x  A or x  B}

FACTS about  and :

-for every A: A  A = A (idempotency)

 -for every A,B: A  B = B  A (commutativity)

 -for every A,B,C: A  (B  C) = (A  B)  C (associativity)

-for every A, B: A  B is the smallest set of elements of D such that

 A  A  B and B  A  B (the join of A and B in D)

Intersection: The intersection of A and B, A  B = {x  D: x  A and x  B}

18

FACTS about  and :

-for every A: A  A = A (idempotency)

 -for every A, B: A  B = B  A (commutativity)

 -for every A,B,C: A  (B  C) = (A  B)  C (associativity)

-for every A,B: A  B is the biggest set of elements of D such that

 A  B  A and A  B  B (the meet of A and B in D)

FACTS about ,  and :

 -for every A,B: A  (B  A) = A (absorption)

 -for every A,B: A  (B  A) = A (absorption)

 -for every A,B,C: A  (B  C) = (A  B)  (A  C) (distributivity)

 -for every A,B,C: A  (B  C) = (A  B)  (A  C) (distributivity)

Complement: The complement of B in A, A − B = {a  D: a  A and a  B}

( : 'is not an element of')

 The complement of B, −B = D − B

FACTS about :

 -−Ø = D (laws of 0 and 1)

 -−D = Ø (")

 -for every A: A  −A = D (")

 -for every A: A  −A = Ø (")

 -for every A: −−A = A (double negation)

 -for every A,B: −(A  B) = (−A  −B) (de Morgan laws)

 -for every A,B: −(A  B) = (−A  −B) (de Morgan laws)

Cardinality: The cardinality of A, |A| is the number of elements of A.

Powerset: The powerset of A, pow(A) = {B: B  A}

FACT about pow:

 -If A has n elements, pow(A) has 2n elements.

 -pow(Ø) = {Ø}

 -pow({a}) = {Ø, {a} }

-pow({a,b}) = { Ø, {a}, {b}, {a,b} }

 -pow(({a,b,c}) = { Ø, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

Ordered pairs:

A set with one element we call a singleton set.

A set with two elements we call an unordered pair.

Unordered means that {a,b} = {b,a}.

The ordered pair of a and b, <a,b> differs from the unordered pair in that the order of the

elements is fixed. Ordered pairs satisfy the following condition:

 <a1,a2> = <b1,b2> iff a1=b1 and a2=b2.

We understand the notion of ordered pair such that while {a,a} = a, <a,a>  a.

19

FACT: -if a  b, then <a,b>  <b,a>

Similarly, we call <a,b,c> an ordered triple. We use quadruple, quintuple, sextuple, etc. The

general case we call an ordered n-tuple:

 <a1,...,an> with n a number is an ordered n-tuple.

Cartesian product: The cartesian product of A and B,

 A  B = {<a,b>: a  A and b  B}

Similarly, the cartesian product of A, B and C is:

A  B  C = {<a,b,c>: a  A and b  B and c  C}

Given this, A  A = {<a,b>: a, b  A}. We also write A2 for A  A

Similarly, A3 = A  A  A = {<a,b,c>: a,b,c  A}

FACT: -if |A| = n and |B|=m then |A  B| = nm

-Hence |A2| = |A|2, |A3| = |A|3, etc.

 -{a,b}{c,d,e} = {<a,c>,<a,d>,<a,e>,<b,c>,<b,d>,<b,e>}

 -{a,b}2 = {a,b}{a,b} = {<a,a>,<a,b>,<b,a>,<b,b>}

Relations: R is a (two-place) relation between A and B iff R  A  B

 Hence: the set of all (two-place) relations between A and B is pow(A  B).

 R is a (two place) relation on A iff R  A  A.

 Hence pow(A2) is the set of all (two-place) relations on A.

Similarly, the set of all three-place relations on A, B and C is pow(A  B  C),

the set of all three-place relations on A is pow(A3), and the set of all n-place relations

on A is the set: pow(An).

Note: We sometimes make the notational convention: <a> = a. If we do that, we can

write A1 for A. On this notation pow(A) = pow(A1), the set of all one-place relations

on A. Thus the set of all one-place relations on A , also called properties, is the set of all subsets

of A.

Domain and range:

Let R be a two-place relation between A and B, R  A  B.

 The domain of R, dom(R) = {a  A: for some b  B:<a,b>  R}

 The range of R, ran(R) = {b  B: for some a  A: <a,b>  R}

Let A = {a,b,c}, B = {a, c,d,e}, R = {<a,a>, <a,c>, <b,d>}.

Then dom(R) = {a,b}, ran(R) = {a,c,d}.

Converse relation, total relation, empty relation:

Let R  A  B be a relation between A and B.

The converse relation of R, Rc
 = {<b,a>: <a,b>  R}

A  B is itself a relation between A and B, we call it the total relation (everything relates to everything else).

20

Ø is also a relation between A and B, we call it the empty relation (nothing relates to anything).

Functions: f is a (one-place, total) function from A into B, f: A → B iff:

 1. f is a relation between A and B: f  A  B.

 2. dom(f) = A and ran(f)  B

 i.e. for every a  A there is a b  B such that <a,b>  f.

 3. for every a  A, b1,b2  B: if <a,b1>  f and <a,b2>  f then b1 = b2.

If dom(f)  A and the other conditions hold we call f a partial (one-place) function from A into B.

When I say function, I mean total function unless I tell you differently explicitly.

The intuition is: a function from A into B takes each element of A and maps it onto an element

of B.

Arguments and values:

We call the elements of the domain of f the arguments of f, and the elements of the range of f

the values of f.

A function maps each argument in its domain on one and only one value in its range.

So: each argument has a value, and no argument has more than one value.

(But note, different arguments may have the same value.)

We write: f(a)=b for <a,b>  f.

Example: Let A = {a,b,c} and B = {0,1}.

 f = {<a,1>,<b,1>,<c,0>} is a function from A into B.

We also use the following notation for f:

 f: a → 1

 b → 1

 c → 0

n place operations:

If f: A → A we call f a (one-place) operation on A.

We call a function f: A  B → C a two-place function from A and B into C.

If f: A  A → A, we call f a two-place operation on A.

Similarly, f: An → A is an n-place operation on A.

Function space: The function space of A and B: (A→B) = {f: f:A → B}

The function space of A and B is the set of all functions from A into B.

This is also notated as BA.

21

FACTS: - |(A → B)| = |B||A|

 - ({a,b,c} → {0,1}) = {f1,f2,f3,f4,f5,f6,f7,f8} where:

f1 a → 1

 b → 1

 c → 1

f2: a → 1 f3: a → 1 f4: a → 0

 b → 1 b → 0 b → 1

 c → 0 c → 1 c → 1

f5: a → 1 f6: a → 0 f7: a → 0

 b → 0 b → 1 b → 0

 c → 0 c → 0 c → 1

f8: a → 0

 b → 0

 c → 0

Note that indeed |{0,1}||{a,b,c}| = 23 = 8

Injections, surjections, bijections:

Let f: A → B be a function from A into B.

 f is a injection from A into B, a one-one function from A into B iff

 for every a1,a2
  A: if f(a1) = f(a2) then a1=a2.

 i.e. no two arguments have the same value.

 f is a surjection from A into B, a function from A onto B iff

 for every b  B there is an a  A such that f(a)=b.

 i.e. every element of b is the value of some argument in A.

 f is a bijection from A into B iff f is an injection and a surjection

from A into B.

Inverse function:

If f: A → B is an injection from A into B, f is a bijection from A into ran(f).

In this case, fc, the converse relation of f, is itself a function from ran(f) into A (and in fact, also a bijection). We

call this the inverse function and write f−1 for fc.

Identity function on A:

 The identity function on A, idA is the function idA: A → A such that

for every a  A: idA(a)=a.

 (the function that maps every element onto itself).

Constant functions:

 A function f:A → B is constant iff for every a1,a2  A: f(a1)=f(a2).

If f is a constant function and the value is b, we call f the constant function on b (and write cb).

22

Composition of functions:

Let f: A → B and g: B → C be functions.

Then the composition of f and g, g o f, (g over f, or g after f), is the following function from A into C:

 g o f: A → C is the function such that:

 for every a  A: g o f(a) = g(f(a))

Intuitively, the composition takes you in one step where the functions f and g take you in two steps.

Let MOTHER: IND → IND be the function which maps every individual on its mother, and FATHER: IND → IND

the function which maps every individual on its father.

Then MOTHER o FATHER is the paternal grandmother function, mapping every individual onto the mother of its

father.

Similarly, MOTHER o MOTHER is the maternal grandmother function, mapping every individual onto the mother

of its mother.

Similarly, if we take a function INT: LIVING-IND → TIME INTERVALS

which mapes every individual alive now onto the maximal time interval that it has been alive in up to now, and we

take a function

TIME: TIME INTERVALS → NUMBERS which assigns to every time interval a length measured in terms of

years (so, intervals smaller than a year are assigned 0, etc.), then the function

AGE: LIVING-IND → NUMBERS defined by:

AGE = TIME o INT

assigns to every living individual its current age measured in years.

Characteristic functions:

 Let B  A

 The characteristic function of B in A is the function:

 chB: A → {0,1} defined by:

 for every a  A: chB(a) = 1 if a  B

 chB(a) = 0 if a  B

Let f:A → {0,1} be a function from A into {0,1}

The subset of A characterized by f, chf = {a  A: f(a)=1}.

FACT: The elements of pow(A) (the subsets of A) and the elements of (A → {0,1})

 (the functions from A into {0,1}) are in one-one correspondence:

 -each function in (A → {0,1}) uniquely characterizes a subset of A.

 -each subset of A has a unique characteristic function in (A → {0,1}).

Characteristic functions and sets are two sides of the same coin: if you know the domain and the

set, you know the characteristic function and if you know the characteristic function, you know

the set characterized.

This means that if we assume that walk is interpreted as a set, the set of walkers, this is for all

purposes the same as saying that walk is interpreted as the function mapping each individual

onto 1 if that individual is a walker, and onto 0 if that individual isn't.

23

It also means that if we identify the intension of a sentence as the function which maps each

situation onto 1 if the sentence is true in it, and onto 0 otherwise, this is for all purposes the same

as saying that the intension of that sentence is identical to the set of all situations where it is true.

D

 . Fido

 {0, 1}

 . Rover

 0

 . Sasha

. Emma

 1

. Shunra

 . Pim

CAT ⊆ D

CAT = {Sasha, Emma, Shunra, Pim}

chCAT: D → {0,1}

chCAT = {<Fido,0> , <Rover,0>, <Sasha,1>, <Emma,1>, <Shunra,1>, <Pim,1>}

24

II. L1, A LANGUAGE WITHOUT VARIABLES (Frege, Boole)

SYNTAX OF L1

1. Lexicon of L1

NAME = {SASHA,SHUNRA, FIDO,...} The set of names.

PRED1 = {PURR, MEOUW, CAT, DOG,...} The set of one-place predicates.

PRED2 = {CHASE, HUG,...} The set of two-place predicates.

NEG = {} "not"

CONN = {,,→} "and", "or", "if...then..."

LEX = NAME  PRED1  PRED2  NEG  CONN

2. Sentences of L1

FORM, the set of all formulas of L1 is the smallest set such that:

 1. If P  PRED1 and α  NAME, then P(α)  FORM.

 2. If R  PRED2 and α,β  NAME, then R(α,β)  FORM.

 3. If φ  FORM, then φ  FORM.

 4. If φ,ψ  FORM, then (φ  ψ)  FORM.

 5. If φ,ψ  FORM, then (φ  ψ)  FORM.

 6. If φ,ψ  FORM, then (φ → ψ)  FORM.

SEMANTICS FOR L1

1. Models for L1 (evaluation situations)

A Model for L1 is a pair M = <DM, FM>, where:

 1. DM is a (non-empty) set, the domain of M.

 2. FM, the interpretation function for the lexical items, is a function such

 that:

 a. FM is a function from names to individuals in DM.

 FM: NAME → DM

 i.e. for every α  NAME: FM(α)  DM.

 b. FM is a function from one-place predicates to sets of individuals:

 FM: PRED1 → pow(DM)

 i.e. for every P  PRED1: FM(P)  DM.

 c. FM is a function from two-place predicates to sets of pairs of

 individuals (two-place relations):

 FM: PRED2 → pow(DM
  DM)

 i.e. for every R  PRED2: FM(R)  DM  DM.

 d. FM(): {0,1} → {0,1}

 FM() = 0 → 1

 1 → 0

 FM() is a one-place truth function: a function from truth values to truth

 values.

25

 e. FM(): {0,1}  {0,1} → {0,1}

 FM() = <1,1> → 1

 <1,0> → 0

 <0,1> → 0

 <0,0> → 0

 f. FM(): {0,1}  {0,1} → {0,1}

 FM() = <1,1> → 1

 <1,0> → 1

 <0,1> → 1

 <0,0> → 0

 g. FM(→): {0,1}  {0,1} → {0,1}

 FM(→) = <1,1> → 1

 <1,0> → 0

 <0,1> → 1

 <0,0> → 1

FM(), FM() and FM(→) are two-place truth function.

2. Recursive semantics for L1.

We define for every expression α of L1, ⟦α⟧M, the interpretation of α in model M:

 1. If α  LEX, then ⟦α⟧M = FM(α)

2. If P  PRED1 and α  NAME then:

 ⟦P(α)⟧M = 1 iff ⟦α⟧M  ⟦P⟧M; 0 otherwise.

 3. if R  PRED2 and α,β  NAME then:

 ⟦R(α,β)⟧M = 1 iff <⟦α⟧M, ⟦β⟧M>  ⟦R⟧M; 0 otherwise.

4. If φ  FORM then:

 ⟦φ⟧M = ⟦⟧M (⟦φ⟧M)

 5. If φ,ψ  FORM then:

 ⟦(φ  ψ)⟧M = ⟦⟧M (<⟦φ⟧M, ⟦ψ⟧M>)

 6. If φ,ψ  FORM then:

 ⟦(φ  ψ)⟧M = ⟦⟧M (<⟦φ⟧M, ⟦ψ⟧M>)

 7. If φ,ψ  FORM then:

 ⟦(φ → ψ)⟧M = ⟦→⟧M (<⟦φ⟧M, ⟦ψ⟧M>)

26

COMPOSITIONALITY AND SEMANTIC GLUE.

If you're interested in the lexical meanings of predicates and relations, the semantics of L1 is

disappointing. The semantics for L1 has nothing interesting to say about that.

Let us assume that you already know how naming works and what the meanings of the

predicates and relations in L1.

So, you're a grown-up person, so you know what kissing is: you know how to distinguish

situations where it is kissing from situations where it is not.

And you know that KISS means when it is.

What else do you need to know in order to know the semantics of L1?

Two things:

1. The meaning of the semantic glue.

2. The meanings of the connectives , , , →.

The meaning of the semantic glue is the most universal bit.

Remember, compositionality says:

 ⟦P(α)⟧M = OPERATION1 [⟦P⟧M, ⟦α⟧M]

 ⟦R(α,β)⟧M = OPERATION2 [⟦R⟧M, ⟦α⟧M, ⟦β⟧M]

 ⟦φ⟧M = OPERATION3 [⟦⟧M, ⟦φ⟧M]

 ⟦(φ  ψ)⟧M = OPERATION4 [⟦⟧M, ⟦φ⟧M, ⟦ψ⟧M]

In order to master the semantics of L1, you need to know what the operations

OPERATION1... OPERATION4 are.

The idea of the semantics given is that there really is only one operation which is the

interpretation of the semantic glue:

 OPERATION[F, A1,...,An] = F(A1,...,An)

 the result of applying function entity F to argument entities A1...An

So:

 In the semantics for L1, the semantic glue is interpreted as function-

argument application.

27

This idea applies directly to OPERATION3 and OPERATION4:

-we interpret  as a truth function ⟦⟧M: {0,1} → {0,1}

and any φ as a truth value ⟦φ⟧M  {0,1}.

⟦φ⟧M = OPERATION[⟦⟧M, ⟦φ⟧M] =

 ⟦⟧M (⟦φ⟧M)

 ⟦⟧M (⟦φ⟧M)  {0,1}

-we interpret  as a truth function ⟦⟧M: {0,1}{0,1} → {0,1}

and any φ and ψ as a truth values ⟦φ⟧M, ⟦φ⟧M  {0,1}.

⟦(φ  ψ⟧M = OPERATION[⟦⟧M, ⟦φ⟧M, ⟦ψ⟧M] =

 ⟦⟧M (⟦φ⟧M, ⟦ψ⟧M)

 ⟦⟧M (⟦φ⟧M, ⟦ψ⟧M)  {0,1}.

The idea applies indirectly to OPERATION1 and OPERATION2.

The first argument of the operation is not a function, but a set

(a set of individuals for OPERATION1, a set of ordered pairs of individuals for OPERATION2).

But we have learned that we can switch between sets and characteristic functions.

Instead of letting OPERATION operate on X, we can let OPERATION operate on chX:

 -If X  DM, then chX: DM → {0,1}

 for every d  DM: chX(d) = 1 iff d  X

 So: ch⟦P⟧M: DM → {0,1}

 for every d  DM: ch⟦P⟧(d) = 1 iff d  ⟦P⟧M

 -If Y  DMDM, then chY: DMDM → {0,1}

 for every <d1,d2>  DMDM: chY(<d1,d2<) = 1 iff <d1,d2>  Y

 So: ch⟦R⟧M: DMDM → {0,1}

 for every <d1,d2>  DMDM: ch⟦R⟧(<d1,d2>) = 1 iff <d1,d2>  ⟦R⟧M

Now we can assume that OPERATION1 and OPERATION2 are the very same operation

OPERATION of functional application:

 ⟦P(α)⟧M = OPERATION [ch⟦P⟧M, ⟦α⟧M] =

 ch⟦P⟧M (⟦α⟧M)

 ch⟦P⟧M (⟦α⟧M)  {0,1}

This specifies exactly what we specified in the semantics for L1:

⟦P(α)⟧M = 1 iff ⟦α⟧M  ⟦P⟧M; 0 otherwise.

28

 ⟦R(α,β)⟧M = OPERATION [ch⟦R⟧M, ⟦α⟧M, ⟦β⟧M] =

 ch⟦R⟧M (⟦α⟧M, ⟦β⟧M)

 ch⟦R⟧M (⟦α⟧M, ⟦β⟧M)  {0,1}

This specifies exactly what we specified in the semantics for L1:

⟦R(α,β)⟧M = 1 iff <⟦α⟧M, ⟦β⟧M>  ⟦R⟧M; 0 otherwise.

 Thus, the first thing we need to know to master the semantics of L1 is the interpretation of the

semantic glue:

 The semantic glue in L1 is function-argument application.

Function-argument application is one of the basic operations for building meanings.

Later in this class, we will see (one instance of) a second basic operation for building meanings:

functional abstraction. General functional abstraction, and also other operations, like

function composition and type shifting operations we will not discuss in this class: they are

discussed in Advanced Semantics.

So, if you have learned the meanings of the lexical items of L1 (including those of the

connectives), and, say, function-argument application is a universal cognitive capacity, then the

only thing you need to learn to master the semantics of L1 is

the syntax-semantics map:

 How to properly divide a complex expression into an expression denoting a

funcion, and expressions denoting its arguments.

Arguably, this is eminently learnable: natural languages provide ample clues for this, in L1 it is

by and large written into the notation of the language.

This means that, we can prove for L1 that if the meanings of the lexical items are learnable (and

why shouldn't they), the semantics of the whole language is learnable.

The second thing we need to know is what the semantics of L1 is really a theory about: the

meanings of the connectives , , , →.

Really the only interesting predictions of the semantics given for L1 concern the interrelations

between those meanings:

29

3. Entailment for L1

Let φ, ψ  FORM, Δ  FORM

We write φ ⇒ ψ for φ entails ψ:

 φ ⇒ ψ iff for every M: if ⟦φ⟧M = 1 then ⟦ψ⟧M = 1

 on every model where φ is true, ψ is true as well.

 Δ ⇒ ψ iff for every M: if for every φ  Δ: ⟦φ⟧M = 1 then ⟦ψ⟧M = 1

 on every model where all the premises in Δ are true, ψ is true as

 well.

 φ and ψ are equivalent, φ ⇔ ψ iff φ ⇒ ψ and ψ ⇒ φ.

So:

 φ ⇔ ψ iff for every M: ⟦φ⟧M = 1 iff ⟦ψ⟧M = 1

 φ and ψ are true on exactly the same models.

FACT:

For any φ  FORM:

 φ ⇔ φ

Namely:

For every M:

(1) ⟦φ⟧M = 1 iff

(2) ⟦⟧M (⟦φ⟧M) = 1 iff

(3) FM()(⟦φ⟧M) = 1 iff

(4) 1 → 0 (⟦φ⟧M) = 1 iff

 0 → 1

(5) ⟦φ⟧M = 0 iff

(6) ⟦⟧M (⟦φ⟧M) = 0 iff

(7) FM()(⟦φ⟧M) = 0 iff

(8) 1 → 0 (⟦φ⟧M) = 0 iff

 0 → 1

(9) ⟦φ⟧M = 1

30

FACT:

Let φ, ψ  FORM:

 { (φ  ψ), φ } ⇒ ψ

Namely:(1) Assume ⟦(φ  ψ)⟧M = 1 and ⟦φ⟧M = 1.

(2) Then ⟦⟧M (< ⟦φ⟧M, ⟦ψ⟧M >) = 1 and ⟦⟧ (⟦φ⟧M) = 1.

(3) Then FM() (< ⟦φ⟧M, ⟦ψ⟧M >) = 1 and FM() (⟦φ⟧M) = 1.

(4) Then <1,1> → 1 (< ⟦φ⟧M, ⟦ψ⟧M >) = 1 and 1 → 0 (⟦φ⟧M) = 1.

 <1,0> → 1 0 → 1

 <0,1> → 1

 <0,0> → 0

(5) Then ⟦φ⟧M = 0 and one of the following three holds:

a. ⟦φ⟧M = 1 and ⟦ψ⟧M = 1

b. ⟦φ⟧M = 1 and ⟦ψ⟧M = 0

bc. ⟦φ⟧M = 0 and ⟦ψ⟧M = 1

(6) Then, since, the (a) and the (b) cases are impossible, the (c) case holds, so:

 ⟦φ⟧M = 0 and ⟦ψ⟧M = 1.

(7) Then ⟦ψ⟧M = 1.

Other facts:

 (φ  ψ) ⇔ (φ  ψ) De Morgan Laws

 (φ  ψ) ⇔ (φ  ψ)

¬(φ → ψ) ⇔ (φ ∧ ¬ψ) Problematic. We discuss this later.

(φ → ψ) ⇔ (¬φ ∨ ψ)

31

Notice discourse anaphora:

(1) a. If this house has a study, it is in a strange place. φ → ψ

 b. Either this house has no study, or it is in a strange place. ¬φ ∨ ψ

cf.

(2) a. ??The house has a bathroom, or it is in a strange place. φ ∨ ψ

 b. ?? If the house doesn’t have a bathroom, it is in a strange place. ¬φ → ψ

This fits with the equivalence.

Notice a difficult case for theories of discourse anaphora:

(3) If he doesn’t have a car, he can’t give me a ride in it. ¬φ → ¬ψ

32

III. QUANTIFIERS AND VARIABLES (Frege)

(1) a. Sasha purrs.

 b. PURR(s)

⟦ PURR(s)⟧M = 1 iff FM(s)  FM(PURR)

 (2) a. Everybody purrs.

 b. PURR(everybody)

 (3) a. Somebody purrs.

 b. PURR(somebody)

 (4) a. Nobody purrs.

 b. PURR(nobody).

⟦ PURR(α)⟧M = 1 iff FM(α)  FM(PURR)

So: FM(everybody), FM(somebody), FM(nobody)  DM

Problem 1: FM(nobody)  DM?

 Alice: I saw nobody on the road.

 The white king: I wish I had your eyes.

Problem 2: No predictions about entailment patterns:

I. Every cat purrs. PURR(every cat)

 Sasha is a cat. CAT(s)

entails Sasha purrs. PURR(s)

II. No cat purrs. PURR(no cat)

 Sasha is a cat. CAT(s)

entails Sasha doesn't purr.  PURR(s)

III. Some dog chases every cat. CHASE(some dog,every cat)

 Sasha is a cat. CAT(s)

entails Some dog chases Sasha. CHASE(some dog,s)

Problem 3: Wrong predictions about entailment patterns.

Let us use for clarity a non-vague predicate like be completely red, CR ∈ PRED1.

FM(CR)  (DM − FM(CR)) = DM

FM(CR)  (DM − FM(CR) = Ø

33

Hence:

for every model M and every α  NAME: ⟦CR(α)  CR(α)⟧M = 1

CR(α)  CR(α) is a tautology.

for every model M and every α  NAME: ⟦CR(α)  CR(α)⟧M = 0

CR(α)  CR(α) is a contradiction.

Ok for names:

 (5) a. Sasha is completely red or Sasha isn’t completey red. Tautology

 b. Sasha is completely red and Sasha isn’t completely red. Contradiction

But not for the others:

 (6) Every cat is completely red or every girl isn’t completely red. No tautology

 (7) Some cat is completely red and some cat isn’t completely red. No contradiction

Problem: (6) is predicted to be a tautology, (7) is predicted to be a contradiction.

Aristotle: partial account of the entailment problem:

Stipulation of a set of entailment rules (syllogisms).

 Every man is mortal

 Socrates is a man

 hence, Socrates is mortal

Problems:

-Rules are stipulated, not explained by the meanings of the expressions involved.

-Only for noun phrases in subject position: 2000 years of logic failed to come up with a

satisfactory set of rules for entailments like those in (III) or the following:

(8) a. Some boy gave every girl her favorite flower

 b. Mary is a girl and her favorite flower is a Lily.

 c. Some boy gaves Mary a Lily.

All these problems were solved once and for all in 1879 in Gottlob Frege's Begriffschrift.

Frege's solution: quantifiers and variables.

Frege: Do not analyse Everybody purrs as PURR(everybody), but analyse Everybody purrs in

two stages:

 STAGE 1: Replace everybody in Everybody purrs by a pronoun: (s)he:

 (s)he purrs PURR(x)

This is a sentence whose truth value depends on what you are pointing at.

 STAGE 2: Let everybody express a constraint on what you are pointing at:

 For every pointing with (s)he: (s)he purrs x[PURR(x)]

34

Note: this is not Frege's notation, and while Frege gave the idea of the semantics intuitively, he

didn't give the semantics: he gave a set of inference rules fitting this semantics.

 Everybody purrs.

 For every pointing with (s)he: (s)he purrs

x[PURR(x)]

 Somebody purrs.

 For some pointing with (s)he: (s)he purrs

x[PURR(x)]

 Nobody purrs.

 For no pointing with (s)he: (s)he purrs

x[PURR(x)]

Every cat purrs.

 For every pointing with (s)he: if (s)he is a cat, then (s)he purrs

x[CAT(x) → PURR(x)]

 Some cat purrs.

 For some pointing with (s)he: (s)he is a cat and (s)he purrs.

x[CAT(x)  PURR(x)]

 No cat purrs.

 For no pointing with (s)he: (s)he is a cat and (s)he purrs.

x[CAT(x)  PURR(x)]

-Frege's inference rules for these expressions predict the entailments in I and II.

I x[CAT(x) → PURR(x)]

 CAT(s)

entails PURR(s)

II x[CAT(x)  PURR(x)]

 CAT(s)

entails PURR(s)

35

-Frege's solves the problem of tautologies and contradictions:

 (6) Every cat is completelyt red or every cat is not completely red.

 (s)he is completely red or (s)he is not completely red

 CR(x) or ¬CR(x).

 for every pointing with (s)he to a cat: (s)he is completely red or

 for every pointing with (s)he to a cat: (s)he isn’t complety red

 ∀x[CAT(x) → CR(x) ∨ ∀x[CAT(x) → ¬CRx)].

The trick is to analyse every cat in every cat is not completely red after isn’t

the same for some catl in some cat isn’t completely red:

x[CAT(x) → CR(x)]  x[CAT(x) → CR(x)] No tautology.

(7) Some cat is completely red and some cat isn’t completely red.

x[CAT(x)  CR(x)]  x[CAT(x)  SCR(x)] No contradiction.

-Frege solves the problem of entailments for noun phrases not in subject position.

Frege's solution: apply the same analysis in stages: (I make the cats feminine and the dogs

masculin for readability):

Some dog chases every cat.

 Stage 1a. Replace every cat in this by a pronoun she (her):

 Some dog chases her. Truth value depends on pointings for she

 Some dog chases y

 Stage 1b: every cat constrains pointings for she:

 For every pointing with she: if she is a cat, some dog chases her

 y[CAT(y) → some dog chases y]

 Stage 2a. Now replace some dog by a pronoun he:

 For every pointing with she: if she is a cat, he chases her

 Truth value depends on pointings for he

y[CAT(y) → CHASE(x,y)]

 Stage 2b. some dog constrains pointings for he:

 For some pointing with he: he is a dog and for every pointing with she:

 if she is a cat, he chases her.

x[DOG(x)  y[CAT(y) → CHASE(x,y)]]

-With this analysis, Frege doesn't have to stipulate anything separate for entailments for

sentences with quantifiers not in subject position: the same inference rules predict the entailment

pattern in III:

36

III x[DOG(x)  y[CAT(y) → CHASE(x,y)]]

 CAT(s)

entails x[DOG(x)  CHASE(x,s)]

After 2000 years of failure, this is very impressive!

Afred Tarski developed the semantics for Frege's analysis in The Concept of Truth in Formalized

Languages, first publised in Polish in 1932. He did this by precisely specifying the notions of

'truth relative to a pointing for pronoun (s)he'

and the notion of quantifiers as 'constraints on pointings for pronoun (s)he.'

Frege told us what the meanings of quantifiers and variables do.

Tarski told us, given that, what the meanings of quantifiers and variables are.

Frege's notation:

 ψ (φ → ψ)

 φ

 φ φ

 a P(a) xP(x)

Our linear notation:

xy((P(x) → (Q(y) → zR(x,y,z)))

becomes two-dimensional:

 c R(a, b,c)

 a b Q(b)

 P(a)

And we would need definitions of connectives corresponding to ,  and  to write the

equivalent and more legible:

xy((P(x)  Q(y)) → zR(x,y,z))

Clearly bookprinters preferred the linear notation (which stems by and large from Peano around

the beginning of the 20th century).

37

IV. L2, A LANGUAGE WITH VARIABLES

Syntax of L2

1. Lexicon of L1

NAME = {SASHA,SHUNRA, FIDO,...}

VAR = {x1,x2,...,x,y,z} An infinite set of variables ('pronouns')

PRED1 = {PURR, MEOUW, CAT, DOG,...}

PRED2 = {CHASE, HUG,...}

NEG = {}

CONN = {,,→}

LEX = NAME  PRED1  PRED2  NEG  CONN

TERM = NAME  VAR Terms are names or variables.

2. Sentences of L2

FORM, the set of all formulas of L2 is the smallest set such that:

 1. If P  PRED1 and α  TERM, then P(α)  FORM.

 2. If R  PRED2 and α,β  TERM, then R(α,β)  FORM.

 3. If φ  FORM, then φ  FORM.

 4. If φ,ψ  FORM, then (φ  ψ)  FORM.

 5. If φ,ψ  FORM, then (φ  ψ)  FORM.

 6. If φ,ψ  FORM, then (φ → ψ)  FORM.

Semantics for L2

1. Models for L2

A Model for L2 is a pair M = <DM, FM>, where:

 1. DM, the domain of M, is a (non-empty) set.

 2. FM, the interpretation function for the lexical items of L2, is given by:

 a. FM: NAME → DM

 i.e. for every α  NAME: FM(α)  DM.

 b. FM: PRED1 → pow(DM)

 i.e. for every P  PRED1: FM(P)  DM.

 c. FM: PRED2 → pow(DM
  DM)

 i.e. for every R  PRED2: FM(R)  DM  DM.

pow(A) = {B: B ⊆ A}

{a,b} = { Ø, {a}, {b} {a,b}}

{a,b} × {a,b}= {<a,a>, <b,b>, <a,b>, <b,a>}

 2. Variable assignments.

Variables are not yet interpreted. We introduce pointing devices and call them variable

assignments:

A variable assignment for L2 on M is a function g: VAR → DM, a function

from variables to individuals.

 i.e. for every x  VAR: g(x)  DM.

38

3. Recursive semantics for L2.

We define for every expression α of L2, ⟦α⟧M,g,

the interpretation of α in model M, relative to variable assignment g:

 1a. If α  LEX, then ⟦α⟦M,g = FM(α)

 1b. If α  VAR, then ⟦α⟧M,g = g(α)

 2. If P  PRED1 and α  TERM then:

 ⟦P(α)⟧M,g = 1 iff ⟦α⟧M,g  ⟦P⟧M,g; 0 otherwise.

 3. If R  PRED2 and α,β  TERM then:

 ⟦R(α,β)⟧M,g = 1 iff <⟦α⟧M,g, ⟦β⟧M,g>  ⟦R⟦M,g; 0 otherwise.

 4. If φ  FORM then:

 ⟦φ⟧M,g = 1 iff ⟦φ⟧M,g = 0; 0 otherwise

 5. If φ,ψ  FORM then:

 ⟦(φ  ψ)⟧M,g = 1 iff ⟦φ⟧M,g = ⟦ψ⟧M,g = 1; 0 otherwise

 6. If φ,ψ  FORM then:

 ⟦(φ  ψ)⟧M,g = 1 off ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1; 0 otherwise

 7. If φ,ψ  FORM then:

 ⟦(φ → ψ)⟧M,g = 1 iiff ⟦φ⟧M,g = 0 or ⟦ψ⟧M,g = 1; 0 otherwise

4. Truth for L2. (Independent of assignments)

We define, for formulas of L2, in terms of the recursively defined notion of

'interpretation in M relative to g' (⟦ ⟦M,g), the notions of 'truth in M' (⟦ ⟧M = 1) and 'falsity in M' (⟦
⟧M = 0).

So ⟦ ⟧M is defined in terms of ⟦ ⟧M,g

 Let φ  FORM:

 ⟦φ⟧M = 1 iff for every assignment g for L2: ⟦φ⟧M,g = 1

 ⟦φ⟧M = 0 iff for every assignment g for L2: ⟦φ⟧M,g = 0

3. Entailment for L2: Defined in terms of ⟦ ⟧M.

 Let φ, ψ  FORM

 φ entails ψ, φ  ψ iff for every model M for L2: if ⟦φ⟧M = 1 then ⟦ψ⟧M = 1

39

For formulas without variables we have:

FACT: if φ is a formula without variables, then:

 for every model M: either ⟦φ⟧M=1 or ⟦φ⟧M = 0

Formulas with variables are often neither true, nor false on a model (but undefined), because

their truth varies with assignment functions.

Example:

Let FM(P)  DM, d1, d2  DM and d1  FM(P), d2  FM(P).

Let g1(x)=d1, g2(x)=d2.

 FM(P)

 d1 d2

 g1(x) g2(x)

Then: ⟦P(x)⟧M  1, because ⟦P(x)⟧M,g2

 = 0

 ⟦P(x)⟧M  0, because ⟦P(x)⟧M,g1
 = 1

Not all formulas with variables come out as undefined, though:

 ⟦P(x)  P(x)⟧M = 1 iff

for every g: ⟦P(x)  P(x)⟧M,g = 1 iff

 for every g: g(x)  FM(P) or g(x)  FM(P) iff

 for every g: g(x)  FM(P) or g(x)  DM − FM(P) iff

 for every g: g(x)  DM. Which is true.

40

So: ⟦P(x)  P(x)⟧M = 1

Note:

⟦P(x)  P(x)⟧M,g1
 = 1 because ⟦P(x)⟧M,g1

 = 1

⟦P(x)  P(x)⟧M,g2
 = 1 because ⟦¬P(x)⟧M,g2

 = 1

Similarly:

 ⟦P(x)  P(x)⟦M = 0 iff

 for no g: g(x)  FM(P) and g(x)  DM − FM(P)

So: ⟦P(x)  P(x)⟧M = 0

Hence, P(x)  P(x) is a tautology, and P(x)  P(x) is a contradiction.

Later we will follow the logical tradition in defining entailment only for formulas whose truth

doesn't vary with assignments (formulas without free occurrences of variables). But it is

important to note that the technique applies correctly to formulas with free variables as well.

The technique of defining truth in M as truth relative to all variation parameters, and

falsity as falsity relative to all variation parameters plays an important role in semantics (for

instance in the analysis of vagueness). It is called the technique of super valuations. (van

Fraasen)

Excursus: Vagueness as a problem for many-valued logic (Kamp)

We assume that our domain consists only of humans (for simplicity)

(1) Bob is male

(2) Bob is a typical adolescent, borderline between grown-up and not-grown up

(3) A grown-up male is a man

 A non-grown-up male is a boy

⟦male(bob)⟧M,g = 1

⟦grown-up(bob)⟧M,g = ⊥ and ⟦grown-up(bob)⟧M,g = ⊥

(undefined, or any intermediate value between 1 and 0, this is allowed in many-valued logic)

⟦man(bob)⟧M,g = 1 iff ⟦male(bob)⟧M,g = 1 and ⟦grown-up(bob)⟧M,g = 1

⟦boy(bob)⟧M,g = 1 iff ⟦male(bob)⟧M,g = 1 and ⟦grown-up(bob)⟧M,g = 0

So:

⟦man(bob)⟧M,g = ⊥

⟦boy(bob) ⟧M,g = ⊥

41

Kamp's problem of conditionals:

Intuitively (1a) and (1b) are true:

 (1) a. If Bob is grown-up, he is a man.

 b. If Bob is not grown-up, he is boy.

We show the problem with material conditional, though the problem can be reconstructed for

other analyses of the conditional as well.

 [1] grown-up(bob) → man(bob)

working out the definition of man, this is equivalent to:

 [2] grown-up(bob) → (male(bob)  grown-up(bob))

using the truth-table for the material implication (φ → ψ is equivalent to φ  ψ), this is

equivalent to:

 [3] grown-up(bob)  (male(bob)  grown-up(bob))

using the distributive law ((φ  (ψ  χ)) is equivalent to ((φ  ψ)  (φ ∨ χ))), this is equivalent

to:

 [4] (grown-up(bob)  male(bob))  (grown-up(bob)  grown-up(bob))

The first conjunct: grown-up(bob)  male(bob)

⟦grown-up(bob)⟧M,g = ⊥ and ⟦male(bob)⟧M,g = 1

In the strong-systems of many-valued logic, this means that the disjunction is true (one true

disjunct is enough). So, let's assume that: the first conjunct is true.

We want [4] itself to come out as true. By the same reasoning as for disjunction, we will need

both conjuncts in [4] to come out as true: in many-valued logic, if one of the conjuncts has a

value less than 1, the conjunction will itself have a value less than 1, which is not good enough

for us, because, with Kamp, we want (1a) to come out as true. So we need the second conjunct

to come out as true.

The second conjunct: grown-up(bob)  grown-up(bob)

We are now back to the problem of tautologies. The value of grown-up(bob) is intermediate

between 0 and 1 (in three-valued logic ⊥, but the problem is the same for theories with more

values, like fuzzy logic). This means by necessity in many-valued logic that the value of 

grown-up(bob) is less than 1 (namely, depending on your definition of , 0 or intermediate).

42

But in many-valued logic, the disjunction of two values that are less than one is never 1. This

means that the tautology does not come out as 1, and with that (1a) does not come out as true.

So (1a) and (1b) do not come out as true.

Sketch of the solution (Kamp, Fine):

-Truth of sentences with vague predicates depends on a contextual standard of precision and the

ways in which this standard of precision can be refined.

-Three-valued logic: Bob is a borderline case of a man (boy), because our standard of precision

doesn't count him among the grown-ups, nor among the non-grown-ups.

-Supervaluations: This means that some refinements of our standard of precision make him a

grown-up, and some refinements of our standard of precision make him a non-grown-up. A

completion of s is a refinement of s that makes all the predicates involved completely precise.

-Truth is 'super-truth': if s is our standard of precision, we define:

 φ is supertrue in s iff every completion of s makes φ true

 φ is superfalse in s iff every completion of s makes φ false

Results:

male(bob) is supertrue it is already true in s

grown-up(bob) is not supertrue some completion makes grown-up(bob) false

grown-up(bob) is not supertrue some completion makes grown-up(bob) true

but: grown-up(bob)  grown-up(bob) is supertrue,

because tautologies are true in all completions

and: grown-up(bob) → man(bob) is supertrue

 because in every completion where bob is counted among the

grown-ups he is a grown-up male, hence a man.

Notice the parallel with the definition of truth/falsity as truth/falsity relative to all assignments.

43

WH(x) that one wears a hat

⟦WH(x)⟧M,g = 1 iff g(x) ∈ FM(WH)

V. L3, A LANGUAGE WITH QUANTIFIERS AND VARIABLES

Syntax of L3:

L3 has the same syntax as L2, except that we add two more clauses to the definition of FORM:

 7. If x  VAR and φ  FORM, then xφ  FORM

 8. If x  VAR and φ  FORM, then xφ  FORM

Semantic for L3:

The notion of model for L3 and variable assignment for L3 on a model are the same as for L2.

Note on compositionality:

I introduce the symbols  and  in the formula definition and not in the lexicon (such symbols are called

syncategorematic, meaning, not part of a lexical category).

Similarly, I will specify the truth conditions of sentences with these symbols, but not give an explicit interpretation

for them, i.e. their interpretation will be specified implicitly.

 This is solely for your convenience. Just as in L2 I defined explicitly FM() as a function, I can explicitly define

FM() and FM() as functions.

But doing this is technically more involved.

The reason is that, whereas the operations introduced so far (like , , ) are extensional with respect to

assignment functions (meaning that the interpretation of a complex in M relative to g, depends on the

interpretations of the parts in M relative to that same g), the quantifiers are intensional with respect to assignment

functions (meaning that the interpretation of a quantificational complex in M relative to g, depends on the

interpretations of the parts in M relative to other assignments g').

And this means that if we want to introduce the interpretations of quantifiers explicitly, we need to introduce for

their interpretations complex functions from sets of assignment functions to sets of assignment functions.

Since this is too technical at this point of the exposition, we explain for your convenience what a quantifier does in

the theory, rather than what a quantifier is in the theory.

Importantly: this doesn't mean that the semantics for L3 given is not compositional; it only means that for your

convenience I won't work out all compositional details.

Resetting values of variables.

Let g be a variable assignment for L3 on M, g: VAR → DM

We define: gx
d, the result of resetting the value of variable x in assignment g

to object d.

 𝐠𝐱
𝐝 = the assignment function such that:

 1. for every y  VAR−{x}: gx
d(y) = g(y)

 2. gx
d(x) = d

i.e. gx
d assigns to all variables except for x the same value as g assigns, but it assigns to variable

x object d, it varies the value for variable x.

44

Example:

g = x1 → d1 gx2

d1 = x1→ d1 gx2 x1

d1 d2 = x1 → d2

 x2 → d2 x2 → d1 x2 → d1

 x3 → d1 x3 → d1 x3 → d1

 x4 → d2 x4 → d2 x4 → d2

gx2 x1 x2
d1 d2 d2 = x1 → d2 gx2 x1 x2 x1

d1 d2 d2 d1 = x1 → d1

 x2 → d2 x2 → d2

 x3 → d1 x3 → d1

 x4 → d2 x4 → d2

Compositional semantics for x[P(x)].

The truth value ⟦P(x)⟧M,g is not enough to define compositionally the truth value

⟦xP(x)⟧M,g.

What you need is not the extension of P(x) in M relative to g, the truth value in M relative to g,

but the pattern of variation of the extension, the truth value, of P(x) in M, when you vary the

value of x.

Given DM and g(x)=d1.

The pattern of variation of the value of x over domain DM is the list:

 gx
d1: x → d1

 gx
d2: x → d2

 gx
d3: x → d3

 … for all d  DM.

The pattern of variation of the truth value of P(x) over domain DM is the list:

 < gx
d1: ⟦P(x)⟧

M,gx
d1

 >

 < gx
d2: ⟦P(x)⟧

M,gx
d2

 >

 < gx
d3: ⟦P(x)⟧

M,gx
d3

 >

 … for all d  DM.

⟦xP(x)⟧M,g = 1 iff you get truth value 1 everywhere in the list.

Equivalently: iff for every d  DM: ⟦P(x)⟧M,gx
d =1; 0 otherwise

⟦xP(x)⟧M,g = 1 iff you get truth value 1 somewhere in the list.

45

Equivalently: iff for some d  DM: ⟦P(x)⟧M,gx
d =1; 0 otherwise

Moral: The meanings of expressions in predicate logic are not extensions, but these lists of

assignment-extension pairs.

Explanation:

⟦x⟧M,g = 1/0? ⟦x⟧M,g = 1/0?

1. Form the list which varies in g the value of x through the domain:

⟦⟧
M,gx

d1 ⟦⟧
M,gx

d2 ⟦⟧
M,gx

d3 ⟦⟧
M,gx

d4 …

gx
d1 gx

d2 gx
d3 gx

d4 …

2. Add the truth value of ⟦⟧M,h relative to all these assignmens h:,

say:

1 1 1 0 …

⟦⟧

M,gx
d1 ⟦⟧

M,gx
d2 ⟦⟧

M,gx
d3 ⟦⟧

M,gx
d4 …

gx
d1 gx

d2 gx
d3 gx

d4 …

so:

1 1 1 0 …

 PV(φ)

gx
d1 gx

d2 gx
d3 gx

d4 …

3. This is the relevant pattern of variation for . PV()

The truth conditions say the following:

⟦x⟧M,g = 1 if you only get 1's in PV()

⟦x⟧M,g = 0 if you get one or more 0 in PV()

46

⟦x⟧M,g = 1 if you get one or more 1 in PV()

⟦x⟧M,g = 0 if you only get 0's in PV()

This means:

⟦x⟧M,g = 1 iff for every d  DM: ⟦φ⟧M,gx
d = 1

 0 iff for some d  DM: ⟦φ⟧M,gx
d = 0

⟦x⟧M,g = 1 iff for some d  DM: ⟦φ⟧M,gx
d = 1

 0 iff for everyd  DM: ⟦φ⟧M,gx
d = 0

Tarski's formalization of Frege's intuition:

A Frege-Tarski-quantifier like x is a function that does two things simultaneously:

1. The quantifier binds all occurrences of variable x that are free in the input.

What corresponds to this semantically is: the quantifier sets up a pattern of variation for the

input. The occurrences of the variable x are bound in this pattern of variation.

This bit is the same for all quantifiers.

2. The quantifier expresses a quantificational constraint, its particular lexical meaning.

What corresponds to this semantically is: the quantifier expresses a constraint on the pattern of

variation for the input. (i.e. the meaning of x tells you that you need to get value 1 at every

place in the list, the meaning of x that you need to get value 1 at some place in the list.

I will argue later that natural language semantics took off in the 1960s, when this analysis of

quantification and binding was rejected for a similar, but nevertheless different analysis. But to

understand that, we need to understand the Frege-Tarski analysis first.

47

Recursive semantics for L3:

We define ⟦α⟧M,g in exactly the same way as for L2, except that we add two interpretation

clauses:

 8. If x  VAR and φ  FORM then:

 ⟦xφ⟧M,g = 1 iff for every d  DM: ⟦φ⟧M,gx
d =1; 0 otherwise

 9. If x  VAR and φ  FORM then:

 ⟦xφ⟧M,g = 1 iff for some d  DM: ⟦φ⟧M,gx
d =1; 0 otherwise

Truth and entailment: see below

48

VI. L4, FULL PREDICATE LOGIC WITH IDENTITY

Syntax of L4

CON = {c1,c2,...} The set of individual constants (= names)

For every n>0: PREDn = {Pn
1,P

n
2,...} The set of n-place predicates.

(For CON and each PREDn you choose which and how many elements these sets have in L4.)

VAR = {x1,x2,...} The set of variables.

(VAR contains infinitely many variables.)

NEG = {}, CONN = {,,→}

LEX = CON  PREDn  NEG  CONN (for each n>0)

TERM = CON  VAR

FORM is the smallest set such that:

 1. If P  PREDn and α1,...αn  TERM, then P(α1,...,αn)  FORM

 2. If α1,α2  TERM, then (α1=α2)  FORM

 3. If φ,ψ  FORM, then φ, (φ  ψ), (φ  ψ), (φ → ψ)  FORM

 4. If x  VAR and φ  FORM, then xφ, xφ  FORM

Semantics for L4.

A model for L4 is a pair M = <DM,FM>, where:

 1. DM, the domain of M, is a non-empty set.

 2. FM, the interpretation function for M, is given by:

 a. for every c  CON: FM(c)  DM

 b. for every P  PREDn: FM(P)  (DM)n

Here (DM)1 = DM

 (DM)2 = DM  DM

 (DM)3 = DM  DM  DM

 etc.

 d. FM(): {0,1} → {0,1}

 FM() = 0 → 1

 1 → 0

 e. FM(): {0,1}  {0,1} → {0,1}

 FM() = <1,1> → 1

 <1,0> → 0

 <0,1> → 0

 <0,0> → 0

 f. FM(): {0,1}  {0,1} → {0,1}

 FM() = <1,1> → 1

 <1,0> → 1

 <0,1> → 1

 <0,0> → 0

49

 g. FM(→): {0,1}  {0,1} → {0,1}

 FM(→) = <1,1> → 1

 <1,0> → 0

 <0,1> → 1

 <0,0> → 1

A variable assignment for L4 on M is a function g: VAR → DM

 Let g be a variable assignment for L4.

 𝐠𝐱
𝐝 = the assignment function such that:

 1. for every y  VAR−{x}: gx
d(y) = g(y)

 2. gx
d(x) = d

Recursive specification of vα⟧M.g, the interpretation of α in model M, relative to assignment g,

for every expression of L4:

 0. If α  LEX, then ⟦α⟧M,g = FM(α)

 If α  VAR, then ⟦α⟧M,g = g(α)

 1. If P  PREDn and α1,...,αn  TERM then:

 ⟦P(α1,...,αn)⟧M,g = 1 iff < ⟦α1⟧M,g,...,⟦αn⟧M,g >  ⟦P⟧M,g; 0 otherwise.

 2. If α1,α2  TERM, then:

 ⟦(α1=α2)⟧M,g = 1 iff ⟦α1⟧M,g
 = ⟦α2⟧M,g; 0 otherwise.

 3. If φ,ψ  FORM then:

 ⟦φ⟧M,g = ⟦⟧M,g (⟦φ⟧M,g)

 ⟦(φ  ψ)⟧M,g = ⟦⟧M,g (<⟦φ⟧M,g, ⟦ψ⟧M,g>)

 ⟦(φ  ψ)⟧M,g = ⟦⟧M,g (<⟦φ⟧M,g, ⟦ψ⟧M,g>)

 ⟦(φ → ψ)⟧M,g = ⟦→⟧M,g (<⟦φ⟧M,g, ⟦ψ⟧M,g>)

 4. If x  VAR and φ  FORM then:

 ⟦xφ⟧M,g = 1 iff for every d  DM: ⟦φ⟧M,gx
d =1; 0 otherwise

 ⟦xφ⟧M,g = 1 iff for some d  DM: ⟦φ⟧M,gx
d =1; 0 otherwise

Note, we have introduced = syncategorematically. We could also assume that

=  PRED2,

specify its semantics as: FM(=) = {<d,d>: d  DM},

and introduce a notation convention: (α = β) := =(α,β)

(:= means 'is by definition')

Truth and entailment: See below.

50

VII: QUANTIFIER SCOPE: BOUND AND FREE VARIABLES

The construction tree of a formula of L4 is the tree showing how the formula is built from L4-

expressions.

Rather than defining this notion precisely, I indicate in the following example what the

construction trees look like.

Let x,y  VAR, j  CON, P,Q  PRED1, R  PRED2

(x(P(x) → y(R(x,y)  R(y,j)))  Q(x))  FORM

We usually change the notation a bit to make the formula more legible. This can involve not

write some brackets where this doesn't lead to confusion, adding some brackets to bring out the

structure more clearly, or change the form of the brackets, so that you see more clearly which

brackets belong together.

So I write the above formula as:

(x[P(x) → y[R(x,y)  R(y,j)]]  Q(x))

51

Its construction tree is:

(x[P(x) → y[R(x,y)  R(y,j)]]  Q(x))

x[P(x) → y[R(x,y)  R(y,j)]]  Q(x)

x [P(x) → y[R(x,y)  R(y,j)]] Q x

 P(x) → y[R(x,y)  R(y,j)]

 P x y [R(x,y)  R(y,j)]

 R(x,y)  R(y,j)

nitty gritty

 R x y  R(y,j)

 R y j

Note that in this tree all nodes are labeled by expressions of L4, except for the nodes with labels

x and y, which are not L4-expressions. As remarked earlier, we set up L4 in this way to make

the semantics simpler to read and understand for you.

For the purpose of the construction tree, we will assume that x and y are L4 expressions, we

call them universal and existential quantifiers.

52

Note that in this tree all nodes are labeled by expressions of L4, except for the nodes with labels

x and y, which are not L4-expressions. As remarked earlier, we set up L4 in this way to make

the semantics simpler to read and understand for you.

For the purpose of the construction tree, we will assume that x and y are L4 expressions, we

call them universal and existential quantifiers.

For the purpose of the construction tree, we will assume that x and y are L4 expressions, we

call them universal and existential quantifiers.

Important: for the purpose of the notionsg defined below, we will not decompose x into 

and x, the same for y.

This means that, while we normally call  the universal quantifier and  the existential

quantifier, we will here call x a universal quantifier and y an existential quantifier.

Thus, on this mode of speech, L4 contains infinitely many different universal quantifiers, and

infinitely many existential quantifiers:

x1, x2, x3,...

x1, x2, x3,...

FACT about L4: each formula of L4 has a unique construction tree.

We say: L4 is syntactically unambiguous.

Let φ be an L4 formula and α an L4 expression.

 α occurs in φ iff there is a node in the construction tree of φ labeled by α.

If φ and ψ are formulas and ψ occurs in φ, we call ψ a subformula of φ.

b

 Let α be an L4 expression and φ an L4 formula.

 an occurrence of α in φ is a node in the construction tree of φ labeled by α.

So an expression α may occur more than once, say, twice, in a formula φ. In that case there are

two occurrences of α in φ, and these two occurrences are nodes in the construction tree of φ.

Let φ be an L4 formula, x  VAR.

Let α be an occurrence of a quantifier x or x in φ (that is, α is a node in the

construction tree of φ labeled by x or by x).

 The scope of α in φ is the sisternode of α in the construction tree of φ.

 Let β be a node in the construction tree of φ.

β is in the scope of α iff β is a daughternode of the scope of α.

Example: In the above formula, there is an occurrence of quantifier x. Its scope is the sister

node which is boldfaced. In the formula, there are three occurrences of variable x, two of these

occurrences of x are in the scope of the occurrence of x, one occurrence of x is not in the scope

of the occurrence of x.

53

There is an occurrence of quantifier y in the formula. Its scope is its boldfaced sister node.

There are two occurrences of variable y in the formula. Both these occurrences are in the scope

of the occurrence of y.

 Let φ be an L4 formula,

let α be an occurrence of quantifier x or x in φ,

 let β be an occurrence of variable x in φ.

 β is bound by α in φ iff

1. β is in the scope of α.

2. There is no occurrence γ of either x or of x in φ such that both

 (a.) and (b.) hold:

 a. γ is in the scope of α.

 b. β is in the scope of γ.

This means that an occurence β of a variable x is bound by an occurrence α of a quantifier x or

y in φ if β is in the scope of α, and there is no occurrence of a quantifier with the same variable

x (i.e. x or x) in between α and β in φ.

Thus an occurrence of x is bound by the closest occurrence of x or x in φ that it is in the

scope of.

∀x[∃x[P(x)] ∧ Q(x)] ∧ S(x)

∀x[∃x[P(x)] ∧ Q(x)] ∧ S(x)

 S x

∀x ∃x[P(x)] ∧ Q(x)

 ∃x[P(x)] ∧ Q(x)

 Q x

∃x P(x)

 P x

Note that this means that an occurrence of a variable x is never bound by an occurrence of a

quantifier which is not in variable x (i.e. never by y or y).

54

 Let φ be an L4 formula.

 Occurrence β of variable x in φ is free for occurrence α of quantifier x or x

in φ iff β is not bound by α in φ

 Occurrence β of variable x in φ is bound in φ iff β is bound by some

occurrence of quantifier x or x in φ.

 Occurrence β of variable x in φ is free in φ iff β is not bound in φ.

 Variable x occurs bound in φ iff some occurrence of x in φ is bound in φ.

 Variable x occurs free in φ iff some occurrence of x in φ is free in φ.

 Variable x is bound in φ iff every occurrence of x in φ is bound in φ.

 Variable x is free in φ iff every occurrence of x in φ is free in φ.

55

Example:

Let φ be the following L4 formula:

(x[P(x) → x[Q(x)  y[R(x,y,z)]]])  S(x,y)

We write x for the occurrence of x in φ, similarly for the other quantifiers.

Let's indicate the occurrences of the variables in φ by superscripts:

(x[P(x) → x[Q(x)  y[R(x, y, z)]]])  S(x, y)

       

 x1 x2 x3 y1 z1 x4 y2

occurrence x1 is bound by occurrence x in φ

occurrence x2 is bound by occurrence x in φ

occurrence x3 is bound by occurrence x in φ

occurrence y1 is bound by occurrence y in φ

occurrence z1 is free in φ

occurrence x4 is free in φ

occurrence y2 is free in φ

variable z is free in φ

variables x,y are neither free, nor bound in φ, they occur both free and bound in φ.

56

((x[P(x) → x[Q(x)  y[R(x, y, z)]]])  S(x, y))

x[P(x) → x[Q(x)  y[R(x, y, z)]]] ∧ S(x, y)

x (P(x) → x[Q(x) ∧ y[R(x, y, z)]])

 P(x) → x[Q(x) ∧ y[R(x, y, z)]]

 x (Q(x) ∧ y[R(x, y, z)])

 Q(x) ∧ y[R(x, y, z)]

 y R(x, y, z)

57

A formula φ of L4 is a sentence of L4 iff every variable occuring in φ is bound in φ.

 SENT = {φ  FORM: φ is a sentence of L4}

Truth for L4

 Let φ  FORM:

 ⟦φ⟧M = 1 iff for every assignment g for L2: ⟦φ⟧M,g = 1

 ⟦φ⟧M = 0 iff for every assignment g for L2: ⟦φ⟧M,g = 0

FACT: If φ  SENT then for every model M for L4: ⟦φ⟧M =1 or ⟦φ⟧M = 0

i.e. formulas in which every variable occurring is bound are true or false independent of

assignment functions.

Thus, even though the truth conditions of the formula (P(x) → Q(x)) depend on assignment

functions, the truth conditions of the sentence x[P(x) → Q(x)], built from it, do not depend on

assignment functions.

Entailment for L4

 Let φ, ψ  SENT

 φ entails ψ, φ ⇒ ψ iff for every model M for L2: if ⟦φ⟧M = 1 then ⟦ψ⟧M = 1

 φ and ψ are equivalent, φ ⇔ ψ iff φ ⇒ ψ and ψ ⇒ φ

Let Δ  SENT, ψ  SENT

We write Δ\ψ for an argument with as premises the sentences in Δ, and as conclusion the

sentence ψ.

 Argument Δ\ψ is valid, Δ ⇒ ψ iff for for every model M for L3:

 if for every φ  Δ: ⟦φ⟧M = 1, then ⟦ψ⟧M = 1

i.e. Δ\ψ is valid iff in every model where all the premises in Δ are true, the

conclusion ψ is true.

 ψ is valid, ⇒ ψ, iff Ø ⇒ ψ

 i.e. ψ is valid iff ψ is true in every model.

58

VIII. THE SEMANTICS OF BOUND AND FREE VARIABLES

x[P(x)  R(x,y)]  Q(x)

    

 bound bound free free

1. ⟦x[P(x)  R(x,y)]  Q(x)⟧M,g = 1 iff

2. ⟦⟧M,g (< ⟦x[P(x)  R(x,y)]⟧M,g, ⟦Q(x)⟧M,g >) = 1

2. ⟦⟧M,g (< ⟦x[P(x)  R(x,y)]⟧M,g, ⟦Q(x)⟧M,g >) = 1 iff

3. FM()(< ⟦x[P(x)  R(x,y)]⟧M,g, ⟦Q(x)⟧M,g >) = 1 iff

4. <1,1> → 1

 <1,0> → 0 (< ⟦x[P(x)  R(x,y)]⟧M,g, ⟦Q(x)⟧M,g >) = 1 iff

 <0,1> → 0

 <0,0> → 0

5. ⟦x[P(x)  R(x,y)]⟧M,g = 1 and ⟦Q(x)⟧M,g = 1

5. ⟦x[P(x)  R(x,y)]⟧M,g = 1 and ⟦Q(x)⟧M,g = 1 iff

6. ⟦x[P(x)  R(x,y)]⟧M,g = 1 and ⟦x⟧M,g  ⟦Q⟧M,g

6. ⟦x[P(x)  R(x,y)]⟧M,g = 1 and ⟦x⟧M,g  ⟦Q⟧M,g iff

7. ⟦x[P(x)  R(x,y)]⟧M,g = 1 and g(x)  ⟦Q⟧M,g

7. ⟦x[P(x)  R(x,y)]⟧M,g = 1 and g(x)  ⟦Q⟧M,g iff

8. ⟦x[P(x)  R(x,y)]⟧M,g = 1 and g(x)  FM(Q)

59

8. ⟦x[P(x)  R(x,y)]⟧M,g = 1 and g(x)  FM(Q) iff

9. for some d  DM: ⟦P(x)  R(x,y)⟧M,gx
d = 1 and g(x)  FM(Q)

9. for some d  DM: ⟦P(x)  R(x,y)⟧M,gx
d = 1 and g(x)  FM(Q) iff

10. for some d  DM: ⟦⟧M,g (< ⟦P(x)⟧M,gx
d, ⟦R(x,y)⟧M,gx

d >) =1 and g(x)  FM(Q)

10. for some d  DM: ⟦⟧M,g (< ⟦P(x)⟧M,gx
d, ⟦R(x,y)⟧M,gx

d >) =1 and g(x)  FM(Q) iff

11. for some d  DM: FM() (< ⟦P(x)⟧M,gx
d, ⟦R(x,y)⟧M,gx

d >) =1 and g(x)  FM(Q) iff

 <1,1> → 1

12. for some d  DM: <1,0> → 0 (< ⟦P(x)⟧M,gx
d, ⟦R(x,y)⟧M,gx

d >) =1 and

 <0,1> → 0 g(x) FM(Q) iff

 <0,0> → 0

13. for some d  DM: ⟦P(x)⟧M,gx
d = 1 and ⟦R(x,y)⟧M,gx

d = 1 and g(x)  FM(Q)

13. for some d  DM: ⟦P(x)⟧M,gx
d = 1 and ⟦R(x,y)⟧M,gx

d = 1 and g(x)  FM(Q) iff

14. for some d  DM: ⟦x⟧M,gx
d  ⟦P⟧M,gx

d and ⟦R(x,y)⟧M,gx
d = 1 and g(x)  FM(Q)

14. for some d  DM: ⟦x⟧M,gx
d  ⟦P⟧M,gx

d and ⟦R(x,y)⟧M,gx
d = 1 and g(x)  FM(Q) iff

15. for some d  DM: ⟦x⟧M,gx
d  FM(P) and ⟦R(x,y)⟧M,gx

d = 1 and g(x)  FM(Q)

15. for some d  DM: ⟦x⟧M,gx
d  FM(P) and ⟦R(x,y)⟧M,gx

d = 1 and g(x)  FM(Q) iff

16. for some d  DM: gx
d(x)  FM(P) and ⟦R(x,y)⟧M,gx

d = 1 and g(x)  FM(Q) iff

60

17. for some d  DM: d  FM(P) and ⟦R(x,y)⟧M,gx
d = 1 and g(x)  FM(Q)

17. for some d  DM: d  FM(P) and ⟦R(x,y)⟧M,gx
d = 1 and g(x)  FM(Q) iff

18. for some d  DM: d  FM(P) and < ⟦x⟧M,gx
d, ⟦y⟧M,gx

d >  ⟦R⟧M,gx
d and

 g(x)  FM(Q)

18. for some d  DM: d  FM(P) and < ⟦x⟧M,gx
d, ⟦y⟧M,gx

d >  ⟦R⟧M,gx
d and

 g(x)  FM(Q) iff

19. for some d  DM: d  FM(P) and < ⟦x⟧M,gx
d, ⟦y⟧M,gx

d >  FM(R) and g(x)  FM(Q)

19. for some d  DM: d  FM(P) and < ⟦x⟧M,gx
d, ⟦y⟧M,gx

d >  FM(R) and g(x)  FM(Q)

 iff

20. for some d  DM: d  FM(P) and <gx
d(x), ⟦y⟧M,gx

d >  FM(R) and g(x)  FM(Q) iff

21. for some d  DM: d  FM(P) and <d, ⟦y⟧M,gx
d >  FM(R) and g(x)  FM(Q)

21. for some d  DM: d  FM(P) and <d, ⟦y⟧M,gx
d >  FM(R) and g(x)  FM(Q) iff

22. for some d  DM: d  FM(P) and <d, gx
d(y)>  FM(R) and g(x)  FM(Q) iff

23. for some d  DM: d  FM(P) and <d, g(y)>  FM(R) and g(x)  FM(Q)

61

Assume that for every M: FM(P) is the set of boys in M,

FM(Q) is the set of girls in M,

FM(R) is the love relation in M,

g(y) = YOU THERE and

g(x) = YOU OVER THERE

Then x[P(x)  R(x,y)]  Q(x) is true in any situation M, relative to g, where

some boy loves you there and you over there are a girl.

62

IX. ENTAILMENT FOR SENTENCES

(1) (P(m) → Q(m))

(2) P(m)

(3) Q(m)

1. Assume ⟦P(m)⟧M = 1

Then: For every g: ⟦P(m)⟧M,g = 1

Then: For every g: FM(m)  FM(P)

Then: FM(m)  FM(P)

2. Assume ⟦(P(m) → Q(m))⟧M
 = 1

Then: For every g: ⟦(P(m) → Q(m))⟧M,g
 = 1

Then: For every g: ⟦P(m)⟧M,g
 = 0 or ⟦Q(m)⟧M,g = 1

Then: For every g: FM(m)  FM(P) or FM(m)  FM(Q)

Then: FM(m)  FM(P) or FM(m)  FM(Q)

3. Combining (1) and (2), it follows that:

FM(m)  FM(Q)

Hence: For every g: FM(m)  FM(Q)

Hence: For every g: ⟦Q(m)⟧M,g
 = 1

Hence: ⟦Q(m)⟧M
 = 1

This means, by definition of entailment that (1) and (2) entail (3).

63

{(1),(2)}\3

(1) x[CAT(x)  y[DOG(y) → CHASE(x,y)]]

(2) DOG(fido)

(3) x[CAT(x)  CHASE(x,fido)]

{(1),(2)}  3 iff for every M: if ⟦(1)⟧M = 1 and ⟦(2)⟧M = 1, then ⟦(3)⟧M = 1

1. ⟦(1)⟧M = 1 iff

2. ⟦x[CAT(x)  y[DOG(y) → CHASE(x,y)]]⟧M = 1 iff

3. for every g: ⟦x[CAT(x)  y[DOG(y) → CHASE(x,y)]]⟧M,g = 1

3. for every g: ⟦x[CAT(x)  y[DOG(y) → CHASE(x,y)]]⟧M,g = 1 iff

4. for every g: for some d  DM: ⟦CAT(x)  y[DOG(y) → CHASE(x,y)]⟧M,gx
d = 1

4. for every g: for some d  DM: ⟦CAT(x)  y[DOG(y) → CHASE(x,y)]⟧M,gx
d = 1 iff

5. for every g: for some d  DM: ⟦CAT(x)⟧M,gx
d = 1 and ⟦y[DOG(y) → CHASE(x,y)]⟧M,gx

d = 1

5. for every g: for some d  DM: ⟦CAT(x)⟧M,gx
d = 1 and ⟦y[DOG(y) → CHASE(x,y)]⟧M,gx

d = 1 iff

6. for every g: for some d  DM: ⟦x⟧M,gx
d  ⟦CAT⟧M,gx

d and ⟦y[DOG(y) → CHASE(x,y)]⟧M,gx
d = 1

iff

7. for every g: for some d  DM: gx
d(x)  FM(CHASE) and ⟦y[DOG(y) → CHASE(x,y)]⟧M,gx

d = 1 iff

8. for every g: for some d  DM: d  FM(CAT) and ⟦y[DOG(y) → CHASE(x,y)]⟧M,gx
d = 1

8. for every g: for some d  DM: d  FM(CAT) and ⟦y[DOG(y) → CHASE(x,y)]⟧M,gx
d = 1 iff

64

9. for every g: for some d  DM: d  FM(CAT) and for every b  DM:

 ⟦DOG(y) → CHASE(x,y)]⟧M,gx y
d b = 1

9. for every g: for some d  DM: d  FM(CAT) and for every b  DM:

 ⟦DOG(y) → CHASE(x,y)]⟧M,gx y
d b = 1 iff

10. for every g: for some d  DM: d  FM(CAT) and for every b  DM:

 ⟦DOG(y)⟧M,gx y
d b = 0 or ⟦CHASE(x,y)]⟧M,gx y

d b = 1

10. for every g: for some d  DM: d  FM(CAT) and for every b  DM:

 ⟦DOG(y)⟧M,gx y
d b = 0 or ⟦CHASE(x,y)]⟧M,gx y

d b = 1 iff

11. for every g: for some d  DM: d  FM(CAT) and for every b  DM:

⟦y⟧M,gx y
d b  ⟦DOG⟧M,gx y

d b or < ⟦x⟧M,gx y
d b, ⟦y⟧M,gx y

d b >  ⟦CHASE⟧M,gx y
d b iff

12. for every g: for some d  DM: d  FM(CAT) and for every b  DM:

gx y
d b(y)  FM(DOG) or < gx y

d b(x), gx y
d b(y) >  FM(CHASE) iff

13. for every g: for some d  DM: d  FM(CAT) and for every b  DM:

b  FM(DOG) or <d, b>  FM(CHASE)

13. for every g: for some d  DM: d  FM(CAT) and for every b  DM:

b  FM(DOG) or <d, b>  FM(CHASE) iff

14. for every g: for some d  DM: d  FM(CAT) and for every b  FM(DOG):

<d, b>  FM(CHASE)

14. for every g: for some d  DM: d  FM(CAT) and for every b  FM(DOG):

<d, b>  FM(CHASE) iff

15. for some d  DM: d  FM(CAT) and for every b  FM(DOG): <d, b>  FM(CHASE)

15. for some d  DM: d  FM(CAT) and for every b  FM(DOG): <d, b>  FM(CHASE) iff

16. for some d  FM(CAT) for every b  FM(DOG): <d, b>  FM(CHASE).

65

1. ⟦(2)⟧M = 1 iff

2. ⟦DOG(fido)⟧M = 1 iff

3. for every g: ⟦DOG(fido)⟧M,g = 1 iff

4. for every g: ⟦fido⟧M,g  ⟦DOG⟧M,g iff

5. for every g: FM(fido)  FM(DOG) iff

6. FM(fido)  FM(DOG)

1. ⟦(3)⟧M = 1 iff

2. ⟦x[CAT(x)  CHASE(x,fido)]⟧M = 1 iff

3. for every g: ⟦x[CAT(x)  CHASE(x,fido)]⟧M,g = 1 iff

4. for every g: for some d  DM: ⟦CAT(x)  CHASE(x,fido)⟧M,gx
d = 1 iff

5. for every g: for some d  DM: ⟦CAT(x)⟧M,gx
d = 1 and ⟦CHASE(x,fido)⟧M,gx

d = 1 iff

6. for every g: for some d  DM: gx
d(x)  FM(CAT) and <gx

d(x),FM(fido)>  FM(CHASE) iff

7. for every g: for some d  DM: d  FM(CAT) and <d,FM(fido)>  FM(CHASE) iff

8. for some d  DM: d  FM(CAT) and <d,FM(fido)>  FM(CHASE) iff

9. for some d  FM(CAT): <d,FM(fido)>  FM(CHASE).0

66

In sum:

⟦(1)⟧M = 1 iff for some d  FM(CAT) for every b  FM(DOG): <d,b>  FM(CHASE).

⟦(2)⟧M = 1 iff FM(fido)  FM(DOG)

⟦(3)⟧M = 1 iff for some d  FM(CAT): <d,FM(fido)>  FM(CHASE)

Now let M be any model such that ⟦(1)⟧M = 1 and ⟦(2)⟧M = 1.

This means that:

for some d  FM(CAT) for every b  FM(DOG): <d, b>  FM(CHASE) and FM(fido)  FM(DOG).

Then for some d  FM(CAT): <d, FM(fido)>  FM(CHASE), hence ⟦(3)⟧M = 1.

We have shown that the semantics predicts that {(1),(2)} ⇒ 3.

67

Arguing in a picture.

Some cat chases every dog

(1) x[CAT(x)  y[DOG(y) → CHASE(x,y)]

⟦(1)⟧M = 1 iff whatever else holds in M, you find the following:

 FM(CAT) FM(DOG) = The picture indicates that

 there could be more cats

 o o and we don’t know about

 o M their chasing, but the righthand

 ... o side stands for the set of

 o all dogs.

The arrows indicate part of FM(CHASE)

Fido is a dog

(2) DOG(fido)

⟦(2)⟧M = 1 iff whatever else holds in M, you find the following:

 FM(DOG)

 o

 o FM(Fido) M

 o

 o

A model that satisfies both (1) and (2) hence look like this:

 FM(CAT) FM(DOG) =

 o o

 o FM(Fido) M

 ... o

 o

You can read off this picture that in any such model M (3) is true:

(3) Some cat chases Fido.

x[CAT(x)  CHASE(x,fido)]

68

X. ALPHABETIC VARIANTS

Let φ be an L4 formula, x and y variables.

Let qx be an occurrence of x or x in .

Let { v1,x, … , vn,x} be the set of all occurrences of variable x bound by qx in φ.

(So q and v1,...,vn stand for nodes in the construction tree.)

We call < qx, v1,x, … , vn,x > a binding relation in φ.

Crucially, this means that, if < qx, v1,x, v2,x > is a binding relation in φ, then

< qx, v1,x > is not a binding relation in φ, it got to be all and only the bound occurrences to be

called a binding relation.

Now take the construction tree for φ, and binding relation < qx, v1,x, … , vn,x > in φ

and:

1. replace < qx, v1,x, … , vn,x > by < qy, v1,y, … , vn,y >.

2. adjust the nodes above in the tree accordingly.

This gives a formula which we can call: φ<qy,v1,y,…,vn,y>

Example 1:

 φ<qy,n1,y>

xP(x)  Q(x) yP(y)  Q(x)

xP(x) Q(x) yP(y) Q(x)

q n2 q n2

x P(x) Q x y P(y) Q x

 n1 n1

 P x P y

Example 2:

 φ<qy,my>

xR(y,x) yR(y,y)

 q q

x R(y,x) y R(y,y)

 R y x R y y

 n m n m

69

Now we define:

Formulas φ and ψ are basic alphabetic variants iff

there are variables x and y and there is a binding relation < qx, v1,x, … , vn,x > in φ such

that 1. ψ = φ<qy,v1,y,…vn,y> and

 2. < qy, v1,y, … , vn,y > is a binding relation in ψ.

Again, the requirement that < qy, v1,y, … , vn,y > is a binding relation in ψ means that

{v1,y, … , vn,y} is exactly the set of occurrences of variable y bound by occurrence qy in ψ, not

less, and not more.

Formulas φ and ψ are alphabetic variants iff

there is a sequence of formulas <1,…,n> such that 1=  and n=ψ and

for every i<n: i and i+1 are basic alphabetic variants.

THEOREM: if  and ψ are alphabetic variants then  ⇔ ψ.

Example 1:

 φ<qy,n1,y>

xP(x)  Q(x) yP(y)  Q(x)

xP(x) Q(x) yP(y) Q(x)

q n2 q n2

x P(x) Q x y P(y) Q x

 n1 n1

 P x P y

q binds n1 q binds n1

<qy, n1,y> is a binding relation in φ<qy,n1,y>, hence φ and φ<qy,n1,y> are basic alphabetic variants,

hence alphabetic variants, and so, by the theorem, φ and φ<qy,n1,y> are logically equivalent.

70

Example 2:

 φ<qy,my>

xR(y,x) yR(y,y)

 q q

x R(y,x) y R(y,y)

 R y x R y y

 n m n m

q binds m q binds n and m

φ<qy,my> is not an alphabetic variant of φ, because φ<qy,my> is not a basic alphabetic variant of

φ.

φ<qy,my> is not a basic alphabetic variant of φ, because <qy, my> is not a binding relation in

φ<qy,my>.

<qy, my> is not a binding relation in φ<qy,my>, because the binding relation is

<qy, ny,my>, not <qy, my> .

Hence the theorem does not say that xR(y,x) and yR(y,y) are equivalent, it says nothing

about these formulas.

(They are, provably not equivalent, actually, we see that below.)

Alphabetic variants:

φ1 = x[x[P(x)]  Q(x)]  S(x) φ1 and φ2 and φ3 are alphabetic variants

φ2 = x[y[P(y)]  Q(x)]  S(x)

φ3 = z[y[P(y)]  Q(z)]  S(x)

So even though you cannot go in one step from φ1 to φ3 by replacing a binding relation, you can

in two steps. φ1 and φ3 are not basic alphabetic variants, but they are alphabetic variants.

71

More examples:

xy[R(x,y)] and uz[R(u,z)] are alphabetic variants.

xy[R(x,y)]  P(x) and uz[R(u,z)]  P(x) are alphabetic variants.

(only the first occurrence of x is bound by x, so only the first occurrence of x gets changed.)

xy[R(x,y)]  P(x) and uz[R(u,z)]  P(u) are not alphabetic variants.

(because you have changed also an occurrence of x which wasn't bound by x).

So, P(x) and P(u) are not alphabetic variants.

xy[R(x,y)] and xx[R(x,x)] are not alphabetic variants.

You change y to x and y to x. But after the change, x binds not only the occurrence of x

where we changed the label, but also the occurrence of x which was an occurrence of x to start

with. This means that we do not satisfy the constraint of basic alphabetic variants.

Hence: xy[R(x,y)] ⇔ uz[R(u,z)].

Note: xy[R(x,y)] and xx[R(x,x)] are not equivalent.

(and if we extend the notion of equivalence to formulas in general, P(x) and P(y) are not

equivalent.)

72

Showing the equivalence of alphabetic variants semantically:

(1) ⟦xy[R(x,y)]⟧M = 1 iff

(2) for every g: ⟦xy[R(x,y)]⟧M,g = 1 iff

(3) for every g: for every d  DM: ⟦y[R(x,y)]⟧M,gx
d = 1 iff

(4) for every g: for every d  DM there is a b  DM: ⟦R(x,y)]⟧M,gx y
d b = 1 iff

(5) for every g: for every d  DM there is a b  DM: <g𝐱 𝐲
d b(x),g𝐱 𝐲

d b(y)>  FM(R) iff

(6) for every g: for every d  DM there is a b  DM: <d,b>  FM(R) iff

(7) for every g: for every d  DM there is a b  DM: <g𝐮 𝐳
d b(u),g𝐮 𝐳

d b(z)>  FM(R) iff

(8) for every g: for every d  DM there is a b  DM: ⟦R(u,z)]⟧M,gu z
d b = 1 iff

(9) for every g: for every d  DM: ⟦z[R(u,z)]⟧M,gu
d = 1 iff

(10) for every g: ⟦uz[R(u,z)]⟧M,g = 1 iff

(11) ⟦uz[R(u,z)]⟧M = 1

Hence for every M: ⟦xy[R(x,y)]⟧M = 1 iff ⟦uz[R(u,z)]⟧M = 1,

which means, indeed, that: xy[R(x,y)]  uz[R(u,z)].

73

(1) ⟦xy[R(x,y)]⟧M = 1 iff

(2) for every d  DM there is a b  DM: <d,b>  FM(R)

(1) ⟦xx[R(x,x)]⟧M = 1 iff

(2) for every g: ⟦xx[R(x,x)]⟧M,g = 1 iff

(3) for every g: for every d  DM: ⟦x[R(x,x)]⟧M,gx
d = 1 iff

(4) for every g: for every d  DM: there is a b  DM: ⟦R(x,x)⟧M,gx x
d b = 1 iff

(5) for every g: for every d  DM: there is a b  DM: <gx x
d b(x), gx x

d b(x)>  FM(R) iff

gx
d (x) is the result of resetting g(x) to d.

gx x
d b(x) is the result of resetting gx

d (x) to b.

So gx x
d b(x) = gx

b (x)

(6) for every g: for every d  DM: there is a b  DM: <b,b>  FM(R) iff

(7) there is a b  DM: <b,b>  DM(R).

Let M be a model with DM = {d1,d2} and FM(R) = {<d1,d2>,<d2,d1>}

Then ⟦xy[R(x,y)]⟧M = 1 but ⟦xx[R(x,x)]⟧M = 0. d1 d2

Hence the two are not equivalent.

This model shows that xy[R(x,y)] does not entail xx[R(x,x)].

A model M' with DM = {d1,d2} and FM(R) = {<d1,d1>} shows that also

 xx[R(x,x)] does not entail xy[R(x,y)]. d1 d2

In fact, it is easy to show that: xx[R(x,x)] ⇔ x[R(x,x)].

We call the quantifier x in xx[R(x,x)] vacuous, since it binds no variable.

And we see that semantically the vacuous quantifier doesn't contribute to the meaning of the

whole.

74

THE GAME OF LOVE

 a b

DM = {a,b,c,d}

FM(LOVE) = {<a,a>,<b,c>,<c,d>,<d,c>}

Game: You win if ⟦xyLOVE(x,y)⟧M,g = 1

 c d

iff for every d  DM: ⟦yLOVE(x,y)⟧M,gx
d = 1

iff a: ⟦yLOVE(x,y)⟧M,gx
a = 1

and b: ⟦yLOVE(x,y)⟧M,gx
b = 1

and c: ⟦yLOVE(x,y)⟧M,gx
c = 1

and d: ⟦yLOVE(x,y)⟧M,gx
d = 1

CASE a: To stay in the game you must show that

for some f  DM: ⟦LOVE(x,y)⟧M,gx y
a f = 1

This means you must get 1 for one of:

 a1: ⟦LOVE(x,y)⟧M,gx y
a a iff <a,a>  FM(LOVE)

 a2: ⟦LOVE(x,y)⟧M,gx y
a b iff <a,b>  FM(LOVE)

 a3: ⟦LOVE(x,y)⟧M,gx y
a c iff <a,c>  FM(LOVE)

 a4: ⟦LOVE(x,y)⟧M,gx y
a d iff <a,d>  FM(LOVE)

 a b

 c d

You get 1 at a1: <a,a>  FM(LOVE), hence at a, so you stay in the game.

75

CASE b: To stay in the game you must show that

for some f  DM: ⟦LOVE(x,y)⟧M,gx y
b f = 1

This means you must get 1 for one of:

 b1: ⟦LOVE(x,y)⟧M,gx y
b a iff <b,a>  FM(LOVE)

 b2: ⟦LOVE(x,y)⟧M,gx y
b b iff <b,b>  FM(LOVE)

 b3: ⟦LOVE(x,y)⟧M,gx y
b c iff <b,c>  FM(LOVE)

 b4: ⟦LOVE(x,y)⟧M,gx y
b d iff <b,d>  FM(LOVE)

 a b

 c d

You get 1 at b3, <b,c>  FM(LOVE), hence at b, so you stay in the game.

76

CASE c: To stay in the game you must show that

for some f  DM: ⟦LOVE(x,y)⟧M,gx y
c f = 1

This means you must get 1 for one of:

 c1: ⟦LOVE(x,y)⟧M,gx y
c a iff <c,a>  FM(LOVE)

 c2: ⟦LOVE(x,y)⟧M,gx y
c b iff <c,b>  FM(LOVE)

 c3: ⟦LOVE(x,y)⟧M,gx y
c c iff <c,c>  FM(LOVE)

 c4: ⟦LOVE(x,y)⟧M,gx y
c d iff <c,d>  FM(LOVE)

 a b

 c d

You get 1 at c4, <c,d>  FM(LOVE), hence at c, so you stay in the game.

CASE d: To stay in the game you must show that

for some f  DM: ⟦LOVE(x,y)⟧M,gx y
d f = 1

This means you must get 1 for one of:

 d1: ⟦LOVE(x,y)⟧M,gx y
d a iff <d,a>  FM(LOVE)

 d2: ⟦LOVE(x,y)⟧M,gx y
d b iff <d,b>  FM(LOVE)

 d3: ⟦LOVE(x,y)⟧M,gx y
d c iff <d,c>  FM(LOVE)

 d4: ⟦LOVE(x,y)⟧M,gx y
d d iff <d,d>  FM(LOVE)

 a b

 c d

You get 1 at d3, <d,c>  FM(LOVE), hence at d, so you stay in the game.

You have gotten 1 at a,b,c,d: YOU WIN! 

77

Change the model to:

DM = {a,b,c,d}

FM(LOVE) = {<a,a>,<b,c>,<c,d>}

 a b

 c d

The cases a,b,c stay the same, but now on case d you get 0 everywhere in the list, cases

d1,d2,d3,d4. This means you get 0 on d, <d,c> ∉ FM(LOVE), and you lose!.

When you get more experienced, you may do without writing out all the cases and work out the

semantics directly:

⟦xyLOVE(x,y)⟧M,g = 1 iff

for every d  DM there is an f  DM: ⟦LOVE(x,y)⟧M,gx y
d f = 1 iff

for every d  DM there is an f  DM: <gx y
d f (x), gx y

d f (y)>  FM(LOVE) iff

for every d  DM there is an f  DM: <d,f>  FM(LOVE) iff

dom(FM(LOVE)) = DM

where dom(R) = {d1 ∈ D: for some d2 ∈ D: <d1, d2> ∈ R}

78

You check:

In the first example:

 a b

 c d

FM(LOVE) = {<a,a>,<b,c>,<c,d>,<d,c>}

So dom(FM(LOVE)) = {a,b,c,d} = DM TRUE

In the second example:

 a b

 c d

FM(LOVE) = {<a,a>,<b,c>,<c,d>}

So dom(FM(LOVE)) = {a,b,c}  DM FALSE

79

Similarly

⟦yxLOVE(x,y)⟧Mg = 1 iff

for every f  DM there is a d  DM: <d,f>  FM(LOVE) iff

ran(FM(LOVE)) = DM

where ran(R) = {d2 ∈ D: for some d1 ∈ D: <d1, d2> ∈ R}

In our example:

 a b

 c d

FM(LOVE) = {<a,a>,<b,c>,<c,d>,<d,c>}

ran(FM(LOVE)) = {a,c,d}  DM FALSE

⟦xyLOVE(x,y)⟧M,g = 1 iff

for some d  DM for every f  Dm: <d,f>  FM(LOVE)

Let Ld = {f  DM: <d,f>  FM(LOVE)}

Hence:

⟦xyLOVE(x,y)⟧M,g = 1 iff

for some d  DM : Ld = DM

In our example:

 a b

 c d

La = {a}, Lb ={c} Lc = {d}, Ld = {c} FALSE

80

⟦yxLOVE(x,y)⟧M,g = 1 iff

for some f  DM for every d  DM: <d,f>  FM(LOVE)

Let BLd = {f  DM: <d,f>  FM(LOVE)}

Hence:

⟦yxLOVE(x,y)⟧M,g = 1 iff

for some f  DM: BLf = DM

 a b

 c d

BLa = {a}, BLb = Ø, BLc = {b,d}, BLd = {c} FALSE

We see already here that xyLOVE(x,y) does not entail yxLOVE(x,y)

However, assume a model M' where yxLOVE(x,y) is true.

then for some f  DM': BLf = DM',

i.e. for some f  DM': {d  DM' : <d,f>  FM'(LOVE)} = DM'

But, obviously, then DOM(FM'(LOVE)) = DM'

and this means that xyLOVE(x,y) is true in M'

This means, that yxLOVE(x,y) entails xyLOVE(x,y).

In words: if somebody loves everybody, then everybody is loved.

81

XI. EXTENSIONALITY

We define:

 (φ  ψ) := (φ → ψ)  (ψ → φ)

Let φ,ψ, χ be sentences of L4 and let αψ be an occurrence of ψ in φ (so ψ is a subformula of φ). Let T(φ) be the

construction tree of φ, Let αχ be the result of changing the label ψ on αψ to χ in T(φ), let T(φ)[αχ/αψ] be the resulting

construction tree and let φ[αχ/αψ] be the L4 formula of which T(φ)[αχ/αψ] is the construction tree.

EXTENSIONALITY OF L4 (for subsentences of sentences):

 (ψ  χ) ⇒ (φ  φ[αχ/αψ])

Thus, in every model where ψ and χ have the same truth value, φ and the result of substituting χ for ψ in φ have the

same truth value.

It follows from this that if ψ ⇔ χ, then φ ⇔ φ[αχ/αψ]).

Let φ be a sentence of L4 and t,s  CON and let αt be an occurrence of t in φ.

Let αs be the result of changing the label on αt in T(φ) from t to s, and let

T(φ)[αs/αt] and φ[αs/αt] be construction tree and formula resulting from this change.

EXTENSIONALITY OF L4 (for constants in sentences):

 (t = s) ⇒ (φ  φ[αs/αt])

In every model where t and s have the same interpretation, φ and the result of substituting s for t in φ have the same

truth value.

It follows from this that if t and s have the same interpretation in every model (i.e. ⇒ (t=s)), then

φ ⇔ φ[αs/αt]).

There are also more general versions of these principles for formulas and terms in general:

Let x1,…,xn be exactly the variables occurring free in ψ or χ.

EXTENSIONALITY OF L4 (for subformulas of formulas):

 x1…xn(ψ  χ) ⇒ (φ  φ[αχ/αψ])

In every model where for every assignment g every resetting of the values of x1,…,xn in g gives the same truth value

to ψ and χ, in every such model, every assignment g gives φ and φ[αχ/αψ]) the same truth value.

Let t,s be terms, x1,x2 the variables occurring in t,s (since in our version of predicate logic we don't have complex

terms, x1, x2 can only possibly occur in t,s if t or s is x1 or x2.

EXTENSIONALITY OF L4 (for terms in formulas):

 x1x2(t = s) ⇒ (φ  φ[αs/αt])

In every model where for every assignment g every resetting of the values of x1,x2 in g assigns t and s the same

interpretation, in every such model, every assignment g gives φ and φ[αs/αt]) the same truth value.

82

XII. CONNECTIONS BETWEEN CONNECTIVES AND QUANTIFIERS

xP(x) ⇔ xP(x).

(1) ⟦xP(x)⟧M = 1 iff

(2) for every g: ⟦xP(x)⟧M,g = 1

(2) for every g: ⟦xP(x)⟧M,g = 1 iff

(3) for every g: for every d  DM: ⟦P(x)⟧M,gx
d = 1

Now: ⟦P(x)⟧M,gx
d = 1

iff

 1 → 0 (\⟦P(x)⟧M,gx
d) = 0

 0 → 1

So:

(3) for every g: for every d  DM: ⟦P(x)⟧M,gx
d = 1 iff

(4) for every g: for every d  DM: 1 → 0 (⟦P(x)⟧M,gx
d) = 0

 0 → 1

(4) for every g: for every d  DM: 1 → 0 (⟦P(x)⟧M,gx
d) = 0 iff

 0 → 1

(5) for every g: for every d  DM: FM() (⟦P(x)⟧M,gx
d) = 0 iff

(6) for every g: for every d  DM: ⟦⟧M,gx
d (⟦P(x)⟧M,gx

d) = 0

(6) for every g: for every d  DM: ⟦⟧M,gx
d (⟦P(x)⟧M,gx

d) = 0 iff

(7) for every g: for every d  DM: ⟦P(x)⟧M,gx
d = 0

(7) for every g: for every d  DM: ⟦P(x)⟧M,gx
d = 0 iff

83

(8) for every g: for no d  DM: ⟦P(x)⟧M,gx
d = 1

(8) for every g: for no d  DM: ⟦P(x)⟧M,gx
d = 1 iff [semantics of ]

(9) for every g: ⟦xP(x)⟧M,g = 0

(9) for every g: ⟦xP(x)⟧M,g = 0 iff

(10) for every g: 1→0 (⟦xP(x)⟧M,g) = 1

 0→1

(10) for every g: 1→0 (⟦xP(x)⟧M,g) = 1 iff

 0→1

(11) for every g: FM()(⟦xP(x)⟧M,g) = 1 iff

(12) for every g: ⟦⟧M,g (⟦xP(x)⟧M,g) = 1

(12) for every g: ⟦⟧M,g (⟦xP(x)⟧M,g) = 1 iff

(13) for every g: ⟦xP(x)⟧M,g = 1 iff

(14) ⟦xP(x)⟧M = 1

Similarly xP(x) ⇔ xP(x).

Note that  generalizes  and  generalizes :

Let DM = {d1,…,dn) and FM(c1)=d1,…,FM(cn)=dn

Then:

 ⟦xP(x)⟧M,g = 1 iff ⟦P(c1)  …  P(cn)⟧M,g = 1

 ⟦xP(x)⟧M,g = 1 iff ⟦P(c1)  …  P(cn)⟧M,g = 1

This explains the similarity between xP(x) ⇔ xP(x) and the de Morgan law which says

that: (φ  ψ) ⇔ (φ  ψ).

84

(1) a. Every cat is smart.

 b. x[CAT(x) → SMART(x)]

(2) a. Some cat is smart.

 b. x[CAT(x)  SMART(x)]

Question: Does (1) entail (2)?

Answer: (1b) does not entail (2b).

Namely, assume: FM(CAT) = Ø.

Then ⟦x[CAT(x)  SMART(x)]⟧M = 0

But, ⟦x[CAT(x) → SMART(x)]⟧M = 1 iff for every d  FM(CAT): d  FM(SMART),

and this is trivially the case:

⟦x[CAT(x) → SMART(x)]⟧M = 1

Hence (1b) does not entail (2b).

FACT: { x[CAT(x) → SMART(x)], x[CAT(x)]} ⇒ x[CAT(x)  SMART(x)]

So: on every model where there are cats and every cat is smart, there is indeed a smart cat.

Question: Why don't we make this part of the meaning?

 Why don't we change the semantics of every to:

(1) c. x[CAT(x)]  x[CAT(x) → SMART(x)]

Answer: Because we think that It is not the case that every cat is smart should be

 equivalent to some cat isn't smart.

FACT: x[CAT(x) → SMART(x)] ⇔ x[CAT(x)  SMART(x)]

Namely:

 x[CAT(x) → SMART(x)] ⇔ (as we saw above)

 x[CAT(x) → SMART(x)] ⇔ ((φ → ψ) ⇔ (φ  ψ))

x[CAT(x)  SMART(x)]

FACT: (x[CAT(x)  x[CAT(x) → SMART(x)]) ⇔

 (x[CAT(x)]  x[CAT(x)  SMART(x)])

So: It is not the case that every cat is smart would mean: either there are no cats, or some cat is

not smart. And this seems too weak: if anything, you would want it to mean:

x[CAT(x)]  x[CAT(x) → SMART(x)]

85

But this is just equivalent to: x[CAT(x) → SMART(x)].

(1) a. Not every picture ascribed to Rembrandt is by Rembrandt.

 b. Some picture ascribed to Rembrandt is not by Rembrandt.

(the inference from 1b to 1a is trivial, the one from 1a to 1b is the relevant inference)

Not a question of knowledge, but of fact:

(2) We have no techniques available to tell of any picture ascribed to Rembrandt that

 it is not by Rembrandt, but still I claim (1a)/but still I claim (1b).

(1a) and (1b) make the same claim in this context.

Question: why don't we make it a pressupposition?

 Every cat is smart presupposes that there are cats.

Answer: Some people do. But the more standard view is that that is too strong.

We all agree that there is an effect: normally, when we assert (1a), we commit

ourselves to (2a) as well.

But the effect can be canceled:

(3) [I run a crackpot lottery, and solemnly swear in court:]

 a. Every person who has come to me over the last year, has gotten a prize.

 [aside:]

 Fortunately, I was away on a polar expedition all year.

My statement of (3a) may be insincere, but it is not infelicitous or false.

It would be false, if every entails some, it would be infelicitous, if every presupposes

some.

But it is neither, it is only insincere, because I am well aware that my statement of

(3a) is trivially true.

With the semantics given, we can explain the effect pragmatically as an

implicature:

1. My semantics is the standard semantics for every which does not entail some.

2. I obey Grice's Maxim of Quality: "Do not say what you know to be false."

So I do claim (3a) to be true.

3. But I violate part of Grice's Maxim of Quantity: "Do not give less information than is

required."

86

I violate this, because, in fact, I knowingly give no information at all, because I well know that

the content of my statement is trivial. Since I violate the maxim of quantity to mislead the

judge and jury, I am insincere.

4. But this explains directly, why, in normal contexts, every conversationally implicates some:

The maxim of Quantity entails a maxim of:

 Avoid Triviality: make your statement non-trivial.

We go back to (1) and (2).

 (1) Every cat is smart.

 (2) some cat is smart.

Since (1b) is trivial if there are no cats, the assumption that (1b) is asserted in accordance with

Grice's maxims entails that there are cats, and this means that:

 Even though (1b) does not entail (2b), (1b) conversationally implicates

(2b).

And this is enough to explain the effect.

MORE EXTENDED: ENTAILMENT, PRESUPPOSITION, IMPLICATURE

ENTAILMENT?

Let p be a contingent sentence.

If  'implies' p and  'implies' p then p cannot be an entailment of :

 ) p every model where  is true p is true

 ) p every model where  is true p is true

 p is true in every model (hence not contingent)

Every cat is smart 'implies' there are cats

Not every cat is smart 'implies' there are cats

So: there are cats is not an entailment.

87

PRESUPPOSITION OR IMPLICATURE?

Let ψ entail p.

If p is a presupposition of , then  is only felicitous in a context that already contains p.

This means that I cannot felicitously assert:   ψ, because ψ entails p, and  requires p, this

gives, p  p.

The conjunction test is a test for presuppositions:

Example:

I knew that John was rich 'implies' John was rich

I didn't know that John was rich 'implies' John was rich

John was poor entails John was not rich.

Check:

 I knew that John was rich, even though he was poor.

If this feels inconsistent (a contradiction), the implication relation is presupposition (given

that it is not entailment).

If it is consistent, the implication relation is implicature (and can, apparently, be canceled).

We check:

1 The one person who presented me with a winning lottery ticket last year got a prize.

2 The three persons who presented me with a winning lottery ticket last year got a

 prize.

3 The persons who presented me with a winning lottery ticket last year got a prize.

4 Every person who presented me with a winning lottery ticket last year got a prize.

ψ: Fortunately, I was away all year on a polar expedition.

(We assume that in the relevant context ψ entails that nobody could have presented me with a

winning lottery ticket last year.)

Now we check the intuitions:

 1  ψ inconsistent the one N presupposes N  Ø

 2  ψ inconsistent the three N presupposes N  Ø

 3  ψ ` consistent the Ns implicates N  Ø

 4  ψ consistent every N implicates N  Ø

88

The standard theory of every and the Boolean theory of plurality and definites (in the version of

Landman 2004) predicts these facts.

Confirmation of the facts:

1 in every family, the boy goes into the army.

2 in every family, the three boys go into the army.

3 in every family, the boys go into the army.

4 in every family, every boy goes into the army.

Data: 1 presupposes: In every family, there is a boy

 2 presupposes: In every family, there are three boys

 3, 4 do not presuppose In every family there are boys,

they only quantify over families in which there are boys, i.e. they mean:

 In every family where there are boys, the boys go into the army.

Explanation:

Existence Presupposition failure leads to undefinedness, infelicity

Existence Implicature failure leads to triviality.

The universal quantification over families can be seen as a long conjunction:

1

The boy in family 1 goes into the army  …  the boy in family n goes into the army

If in family i there are no boys, the statement The boy in family i goes into the army is,

as we have seen above, infelicitous.

But then the whole conjunction is infelicitous, and hence 1 is infelicitous. hence 1

presupposes In every family there is a boy.

3

Every boy in family 1 goes into the army  …  Every boy in family n goed into the army

If in family i there are no boys, the statement Every boy in family i goes into the army is, as we

have seen above, trivially true.

But if i is trivially true,   I is equivalent to . Thus, the cases of families where there are no

boys are truth conditionally irrelevant and drop out of the conjunction. hence 3 indeed only

quantifies over families where there are boys.

This means that the standard theory of every and the boolean theory of plurality and definiteness

needs to add nothing to make the right predictions here.

89

AVOID TRIVIALITY

1. Under quantification the triviality of x over boys on an empty domain guarantees, as it

should, that the quantification over families is restricted in the right way.

2. In some cases we use triviality to stay within the law (tell the truth): violating quantity is not

as bad as violating quality.

3. What do we get in normal cases?

I say Every cat is smart.

-You and I assume that I adhere to quality, so I am assumed to make a true statement.

-You and I assume that I adhere to quantity. Trivial statements give no information, hence

violate quantity. This brings in an existence implicature; There are cats.

90

Connections between , ,  and , , 

(1) x[SING(x)  DANCE(x)] Everybody sings or dances

(2) xSING(x)  xDANCE(x) Everybody sings or everybody dances

(3) xSING(x)  xDANCE(x) Everybody sings and everybody dances

(4) x[SING(x)  DANCE(x)] Everybody sings and dances

Entailment Pattern for Every(body):

(3) ⇔ (4):

If everybody sings and dances, then everybody sings.

If everybody sings and dances, then everybody dances.

If everybody sings and everybody dances, then everybody sings and dances.

(3) ⇒ (2)

This is just: φ  ψ ⇒ φ  ψ

(2) does not entail (3): again, φ  ψ does not entail φ  ψ

(2) ⇒ (1)

If everybody sings then everybody sings or dances

If everybody dances then everybody sings or dances

If φ ⇒ χ and ψ ⇒ χ then (φ ∨ ψ) ⇒ χ

Hence indeed (2) ⇒ (1)

(1) does not entail (2). SING DANCE

Let DM = {a,b},

FM(SING) = {a}, FM(DANCE) = {b}. a b

⟦x[SING(x)  DANCE(x)]⟧M = 1

⟦xSING(x)  xDANCE(x)⟧M = 0.

 (1) ∀x[P(x) ∨ Q(x)]
  

 (2) ∀xP(x) ∨ ∀xQ(x)

  

 (3) ⇔ (4) ∀xP(x) ∧ ∀xQx ⇔ ∀x[P(x) ∧ Q(x)]

91

(1) x[SING(x)  DANCE(x)] Somebody sings or dances

(2) xSING(x)  xDANCE(x) Somebody sings or somebody dances

(3) xSING(x)  xDANCE(x) Somebody sings and somebody dances

(4) x[SING(x)  DANCE(x)] Somebody sings and dances

Entailment Pattern for Some(body):

(1) ⇔ (2)

If somebody sings or dances then somebody sings or somebody dances.

If somebody sings then somebody sings or dances

If somebody dances then somebody sings or dances.

If φ ⇒ χ and ψ ⇒ χ then (φ ∨ ψ) ⇒ χ

If somebody sings or somebody dances then somebody sings or dances.

(3) ⇒ (2)

same as above φ  ψ ⇒ φ  ψ

(4) ⇒ (3)

If somebody sings and dances, somebody sings.

If somebody sings and dances, somebody dances.

If φ ⇒ ψ and φ ⇒ χ, then φ ⇒ ψ  χ

Hence (4) entails (3)

(3) does not entail (4).

The same model as above:

 SING DANCE

DM = {a,b},

FM(SING) = {a}, FM(DANCE) = {b}. a b

⟦xSING(x)  xDANCE(x)⟧M = 1

⟦x[SING(x)  DANCE(x)]⟧M = 0

 (1) ⇔ (2) ∃x[P(x) ∨ Q(x)] ⇔ ∃xP(x) ∨ ∃xQ(x)

  

 (3) ∃xP(x) ∧ ∃xQ(x)

  

 (4) ∃x[P(x) ∧ Q(x)]

92

(1) x[SING(x)  DANCE(x)] Nobody sings or dances

(2) xSING(x)  xDANCE(x) Nobody sings or nobody dances

(3) xSING(x)  xDANCE(x) Nobody sings and nobody dances

(4) x[SING(x)  DANCE(x)] Nobody sings and dances

Entailment Pattern for No(body):

(3) ⇔ (1)

If nobody sings and nobody dances, nobody sings or dances.

If nobody sings or dances, nobody sings.

If nobody sings or dances, nobody dances.

(3) ⇒ (2)

Same as above.

(2) ⇒ (4)

If nobody sings or nobody dances, nobody sings and dances.

Assume that nobody sings or nobody dances.

There are three cases:

-nobody sings. In that case obviously nobody sings and dances.

-nobody dances. Also nobody sings and dances.

-nobody sings and nobody dances. The same.

(4) does not entail (2)

The same model:

 SING DANCE

DM = {a,b},

FM(SING) = {a}, FM(DANCE) = {b}. a b

(4) is true, since a sings but doesn't dance and b dances but doesn't sing.

(2) is false: it is not the case that nobody sings (since a sings) and it is not the case that nobody

dances (since b dances). Hence it is not the case that nobody sings or nobody dances.

 (4) ¬∃x[P(x) ∧ Q(x)

  

 (2) ¬∃xP(x) ∨ ¬∃xQ(x

  

 (3) ⇔ (1) ¬∃xP(x) ∧ ¬∃xQ(x) ⇔ ¬∃x[P(x) ∨ Q(x)]

93

Generalize:

 (1) NP sing or dance.

 (2) NP sing or NP dance.

 (3) NP sing and NP dance.

 (4) NP sing and dance.

We saw above that everybody, somebody, nobody have different characteristic patterns. If you

try other noun phrases you find that their patterns differ:

most boys

 (1) Most boys sing or dance.

 (2) Most boys sing or most boys dance.

 (3) Most boys sing and most boys dance.

 (4) Most boys sing and dance.

(4) ⇒ (3)

If most boys sing and dance, more than half of the boys sing and dance.

Then more than half of the boys sing and more than half of the boys dance.

(3) does not entail (4)

 SING DANCE

DM = {a,b,c,d,e}

FM(BOY) = {a,b,c,d,e}

FM(SING) = {a,b,c}, FM(DANCE) = {c,d,e}. a b c d e

In this model more than half of the boys sing, since {a,b,c} is more than half of {a,b,c,d,e}

Also more than half of the boys dance, since {c,d,e} is more than half of {a,b,c,d,e}.

But less than half of the boys sing and dance, since {c} is less than half of {a,b,c,d,e}.

As usual (3) ⇒ (2).

(2) ⇒ (1)

Assume (2) is true.

There are again three cases:

-More than half of the boys sing.

Since everybody who sings sings or dances, it follows that more than half of the boys sing or

dance.

- More than half of the boys dance. A similar argument.

-More than half of the boys sing and more than half of the boys dance. The same argument.

94

(1) does not entail (2)

 SING DANCE

DM = {a,b,c,d,e}

FM(BOY) = {a,b,c,d,e}

FM(SING) = {a,b}, FM(DANCE) = {d,e}. a b c d e

(1) is true, since the set of singers together with the set of dancers {a,b,d,e} is more than half of

{a,b,c,d,e}.

(2) is false, since the set of singers {a,b} is less than half of the boys, and the set of dancers {d,e}

is less than half of the boys.

 (1) Most boys sing or dance

  

 (2) Most boys sing or most boys dance

  

 (3) Most boys sing and most boys dance

  

 (4) Most boys sing and dance

95

Exactly three boys

 (1) Exactly three boys sing or dance.

 (2) Exactly three boys sing or exactly three boys dance.

 (3) Exactly three boys sing and exactly three boys dance.

 (4) Exactly three boys sing and dance.

Here we find only the obvious entailment from (3) to (2), all the others are logically independent.

(4) does not entail (1), (4) doesn't entail (2), (4) doesn't entail (3):

 SING DANCE

DM = {a,b,c,d,e}

FM(BOY) = {a,b,c,d,e}

FM(SING) = {a,b,c,d}, FM(DANCE) = {b,c,d,e} a b c d e

(4) is true, (1) is false, (2) is false, (3) is false.

(3) does not entail (1), (3) doesn't entail (4)

 SING DANCE

DM = {a,b,c,d,e}

FM(BOY) = {a,b,c,d,e}

FM(SING) = {a,b,c}, FM(DANCE) = {c,d,e} a b c d e

(3) is true, (1) is false, (4) is false.

(1) doesn't entail (2), (1) doesn't entail (3), (1) doesn't entail (4):

 SING DANCE

DM = {a,b,c,d,e}

FM(BOY) = {a,b,c,d,e}

FM(SING) = {a,}, FM(DANCE) = {b,c} a b c d e

(1) is true, (2) is false, (3) is false, (4) is false.

96

(2) doesn't entail (1), (2) doesn't entail (3), (2) doesn't entail (4)

 SING DANCE

DM = {a,b,c,d,e}

FM(BOY) = {a,b,c,d,e}

FM(SING) = {a,b,c,d}, FM(DANCE) = {b,c,d,e} a b c d e

FM(SING) = {a,b,c}, FM(DANCE) = {d,e}.

(2) is true, (1) is false, (3) is false, (4) is false.

(1) Exactly three boys sing or dance

(4) Exactly three boys sing and dance

(2) Exactly three boys sing or exactly three boys dance

 

(3) Exactly three boys sing and exactly three boys dance

97

Inverse logic: if you're not sure whether an expression in a language means , say, every or most,

check how that expression interacts with  and . The characteristic pattern will tell you.

Gavagai boys sing or/and dance.

Also, wrt. expressions in different categogies, like adverbials.

Example:

You are a linguist who is doing fieldwork on a peculiar West-Germanic language, and you have

discovered an adverb transscribed in your notes as telkens, pronounced telkəns. You have a

hunch that it might be a quantificational adverb, and you want to find out its meaning. You set

up the following test:

(1) Telkens als het regent trek ik mijn regenpak aan of steek ik mijn paraplu op.

Telkens when it rains I put on my rainsuit or put up my umbrella.

(2) Telkens als het regent trek ik mijn regenpak aan of telkens als het regent steek ik

mijn paraplu op.

Telkens when it rains I put on my rainsuit or

 telkens when it rains I put up my umbrella.

(3) Telkens als het regent trek ik mijn regenpak aan en telkens als het regent steek ik

 mijn paraplu op.

Telkens when it rains I put on my rainsuit and

telkens when it rains I put up my umbrella

(4) Telkens als het regent trek ik mijn regenpak aan en steek ik mijn paraplu op.

Telkens when it rains I put on my rainsuit and put up my umbrella.

You ask your informants for judgements concerning entailments and you find:

 (1)

 

 (2)

 

 (3) ⇔ (4)

You conclude that telkens patterns like everyone, and hence is a universal quantifier.

Note: there may be more than one universal quantifier. Dutch has altijd and telkens, they are

both universal quantifiers. Similarly, every and each are both universal quantifiers. They pattern

alike on the above tests, but other tests distinguish between them (we talk about distributivity and

collectivity later).

