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I assume that the box is a parallelepiped with homogenous density, whose
dimensions are l and b. The 3rd dimension is not necessary. The geometry of
the problem is displayed in Fig.1.

Figure 1: Geometry of the Sliding-box problem

The body can be represented by a rectangle in a cartesian plane Oxy; the
initial position is represented in Fig.1 left. Due to gravity, the body will start
sliding (no frictions); the vertex A will move along the x axe during all the
duration of the movement, while the vertex B will move along the y axe only
in the initial phase, just until a certain point, indicated by C in Fig.1 right; in
the second phase, i.e. after the vertex B have passed the point C, the body will
continue its falling but the vertex B will no more be on y axe.

The question is to determine the detach angle θD which will be, in gen-
eral, function of θ0, l, and b. It is important to note that there is a mini-
mum starting angle θc,m = arctan b/l under which the body will rotate in the
”wrong” direction, i.e. clockwise in Fig.1; there is also a maximum starting
angle θc,M = arctan l/b over which the body will not slide on the wall but will
detach just at the release; I assume that θc,m < θ0 < θc,M .

The following quantities can be defined:

• The Center of Mass (hereinafter CM) of the body has the following coor-
dinates:

xCM = 1
2

(
l sin θ + b cos θ) (1)

yCM = 1
2

(
l cos θ + b sin θ) (2)

• The momentum of inertia of the body with respect to the axe passing
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through the CM is given by:

ICM =
M

12
· (l2 + b2

)
(3)

• The kinetic energy is:

T =
1
2
·ICM ·θ̇2+

1
2
·M ·v2 =

1
2
·M
12
·(l2+b2

)·θ̇2+
1
2
·M

4
θ̇2

(
l2+b2−4bl sin θ cos θ

)

(4)
where v is the velocity of the CM and has been computed as follows:

v =
√

v2
x + v2

y =
√

ẋ2
CM + ẏ2

CM =
1
2
θ̇
√

l2 + b2 − 4bl sin θ cos θ (5)

• The potential energy is:

V =
1
2
·Mg

(
l cos θ + b sin θ

)
(6)

• The Hamiltonian of the system:

H = T+V =
1
2
·M

3
·(l2+b2−3bl sin θ cos θ

)·θ̇2+
1
2
·Mg

(
l cos θ+b sin θ

)
(7)

H represents a conserved quantity, i.e. the total energy, which can be set equal
to the potential energy at start:

H = H0 =
1
2
·Mg

(
l cos θ0 + b sin θ0

)
(8)

Now we can use (7) and (8) to find the general equation for θ̇:

θ̇2 =
1
2 ·Mg

(
l cos θ0 + b sin θ0

)− 1
2 ·Mg

(
l cos θ + b sin θ

)
1
2 · M

3 · (l2 + b2 − 3bl sin θ cos θ
) (9)

i.e.

θ̇ =

√
3g ·

(
l cos θ0 + b sin θ0

)− (
l cos θ + b sin θ

)
(
l2 + b2 − 3bl sin θ cos θ

) (10)

[
Comment: the equation of motion θ(t) can be found by integrating (10):

∫ θ

θ0

dθ′

θ̇(θ′)
= t− t0 (11)

where I have imposed the condition θ(t = 0) = θ0.
]
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The problem can be solved once noticed that, starting from the detach point,
no force will act along −→x , i.e. aCM,x = 0. Now, using the definition of vx:

vx = ẋCM =
1
2
θ̇
(
l cos θ − b sin θ) (12)

and (10) we can write the following expression for vx:

vx =
1
2

√
3g

(
l cos θ0 + b sin θ0 − l cos θ − b sin θ)

l2 + b2 − 3bl sin θ cos θ

(
l cos θ − b sin θ) (13)

To compute the value of θD we can use the previous condition:

aCM,x =
dvx

dt
=

dvx

dθ
· dθ

dt
= 0 (14)

Being dθ/dt > 0 for θ > θ0, this is equivalent to:

dvx

dθ
= 0 (15)

which is equivalent to find the maximum of the graph of vx(θ). I didn’t found an
analytic expression for θD(θ0), but I computed a numerical solution. In Fig.2,
I report, as an example, the graph of θD in function of the start angle for l and
b respectively equal to 10 and 5 (arbitrary units).

Figure 2: Detach angle for l=10 and b=5
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