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Abstract
A rectangular box leans on a frictionless wall with one corner and

rests on a frictionless floor with another corner. It starts sliding down.
When will the box become detached from the wall? (Assume that all
the dimensions are given.)

1 General analysis

We assume the length and width of the box to be L and d, respectively and
its mass to be m. In order to deal with the constraints, we introduce θ to
be the angle between side L and the horizontal. We can then express the
position x, y of the center of mass (CM) of the box as:
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where θ0 is the angle between side L of the box and the diagonal. Note that
θ0 is the only parameter of the problem and depends on the geometry only.

The conservation of energy in this context is:
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Solving for θ̇, we obtain the angular velocity as a function of the angle:

θ̇2 =
4g

L2 + d2

1− sin(θ0 + θ)

4/3 + sin2(θ0 − θ)− sin2(θ0 + θ)
. (2)

The horizontal component of the velocity is, thus, proportional to:

ẋ ∼ sin(θ0 − θ)

√
1− sin(θ0 + θ)

4/3 + sin2(θ0 − θ)− sin2(θ0 + θ)
. (3)
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When θ0 = 0 the expression above reduces to:

ẋ ∼ sin θ
√

1− sin θ, (4)

which becomes stationary at θ = arcsin(2/3). This is the usual result one
obtains in the case of a sliding ladder. Because ẍ is proportional to the
normal force exerted by the wall, the box loses contact with the wall when
ẋ is stationary.

To find the angle θ at which ẋ becomes stationary, we have to differentiate
(3) with respect to θ and solve a very difficult (nonlinear) trigonometric
equation. Because this equation contains parameter θ0, it is not possible to
solve it numerically (if we are not interested for a particular θ0). Instead,
we can find an approximate solution, which can later become as accurate as
we like. We consider small perturbations of the “ladder” problem. That is,
we expand (3) in series (with respect to θ0) up to second order. We then
differentiate with respect to θ and obtain a relation of the form:

{terms up to second order in θ0} = 0. (5)

We know the exact solution to be θ = arcsin(2/3) when θ0 = 0, so we expect
the solution to (5) to be a small deviation from arcsin(2/3). It is, therefore,
reasonable to write θ = arcsin(2/3) + ε, where ε is assumed to be small. We
substitute the latter into (5) and obtain a relation of the form:

f(ε, θ0) = 0. (6)

By keeping up to second order terms (with respect to θ) in (6), we can solve
for ε. The final result can be expressed in the form of a series:

θc = c0 + c1 θ0 + c2 θ2
0 + c3 θ3

0 + . . . , (7)

the first few terms of which are:

θc = 0.7297276563 + 0.2444444445 θ0 − 0.4377172082 θ2
0 + O(θ3

0), (8)

where θ0 = arcsin

(
d/L√

1+(d/L)2

)
. We could continue in the same way and

calculate higher order corrections (or improve the accuracy of c1, c2). If we
are interested in a box with d/L ≈ 1, we can simply consider the general
problem as a perturbation of a sliding “square”, rather than box. In any
case, the solution can be calculated in the same manner.
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