
Chess Board Problem - 07/01

Part (a)

For conductivity σ, we assume J = σE. From the continuity equation, ∇ · J = dρ
dt = 0 because we are

dealing with a statics problem. Thus:

∇σ ·E + σ∇ ·E = ∇ · (σE) = ∇ · J = 0

Now if we let E = −∇φ, then:

∇2φ = −∇σ · ∇φ

σ
or ∇ ·E = −∇σ ·E

σ
(1)

Inside each square of the chessboard, σ is constant, so ∇σ vanishes. Thus we may assume that inside a
black square the potential is given by a harmonic function b1(x, y) and inside a white square it is given by
the harmonic function w1(x, y). The exact form of these two functions depends on the boundary conditions.
However, for a very large chessboard, the boundary conditions will be the same for each black and each
white square because they won’t vary much from square to square. Since harmonic functions are determined
uniquely by their boundary conditions, we can use b1 for each black square and w1 for each white square.

Part (b)

Since b1 and w1 are harmonic, they can each be treated as real parts of analytic functions B and W , where
B(x, y) = b1(x, y) + ib2(x, y) and similarly for W . The important thing here is that the real and imaginary
parts of any analytic function must obey the Cauchy-Riemann equations:

∂b1

∂x
=

∂b2

∂y
and

∂b1

∂y
= −∂b2

∂x

and similarly for W . These relationships between the derivatives of the real and imaginary parts of B and
W imply a relationship between electric fields. Specifically, the fields we would get from b2 and w2 by a
naive direct calculation are equal to the fields of b1 and w1 rotated by ninety degrees at each point. Let the
original field be E and current density be J, while the field and current from b2 and w2 are E′ and J′. Also
let R = 1

σ , so:
∇ · J = 0 and ∇× (RJ) = 0 (2)

or
∇ · (σE) = 0 and ∇×E = 0 (3)

Using the Cauchy-Riemann equations, we find that:

∇ ·E′ = 0 and ∇× (σE′) = 0 (4)

or
∇ · (RJ′) = 0 and ∇× J′ = 0 (5)

Thus equations 2 & 4 and 3 & 5 are the same, with E → J′, J → E′, and σ → R, so b2 and w2 do solve
a different chessboard problem when we switch fields with currents. This is possible because the conditions
on E that guarantee continuity of the potential force the new current E′ to have a continuous normal
component across the boundaries, while the continuity of the normal component of J across the boundaries
forces continuity of the new potential (which has negative gradient J′).
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Part (c)

We are looking for 〈σ〉, the ‘average’ conductivity, which we can define by:

〈σ〉 =
〈σE〉
〈E〉

However, from comparison of solutions in part (b), we know that:

1
〈σ〉

=

〈
E
σ

〉
〈E〉

Thus if 〈σ〉 = F (σ1, σ2) then:

F (σ1, σ2) =
1

F (1/σ1, 1/σ2)
=

1
F (1/σ2, 1/σ1)

=
σ1σ2

F (σ1σ2/σ2, σ1σ2/σ1)
=

σ1σ2

F (σ1, σ2)

This completes the solution:
〈σ〉 = (σ1σ2)1/2

We have made several assumptions: (i) Existence of 〈σ〉, which is very reasonable for a large chessboard,
though not necessarily for a small one (ii) Symmetry when switching black and white squares, F (a, b) =
F (b, a), which obviously works for the large chessboard geometry (iii) Scale invariance, so F (ka, kb) =
kF (a, b) (iv) Isotropy, which is perhaps more subtle. Technically our final result is (with the first three
assumptions):

Fx(σ1, σ2)Fy(σ1, σ2) = σ1σ2

because the F ’s are evaluated in perpendicular directions. Of course, Fx = Fy is reasonable for the chess-
board, but not in general. For instance it is instructive to test our result with a ‘row geometry’, with rows
of all black squares and rows of all white squares in a 50-50 mix. With the obvious choice for x and y,
Fx = σ1+σ2

2 while Fy = 2σ1σ2
σ1+σ2

, so:

FxFy =
2σ1σ2

σ1 + σ2

σ1 + σ2

2
= σ1σ2

as predicted. Thus given the formula for the effective resistance of resistors in parallel or resistors in series,
our solution gives a very sophisticated proof of the other formula.

Note however that these are the only assumptions we have made, so our result is applicable to many
other geometries other than the chessboard - consider, for example, a random 50-50 mixture of two materials.
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