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Abstract
Weconsider the quantumproblemof a particle in either a spherical box or a finite spherical well
confined by a circular conewith an apex angle 2θ0 emanating from the center of the sphere, with
0< θ0< π. This non-central potential can be solved by an extension of techniques used in spherically-
symmetric problems. The angular parts of the eigenstates depend on azimuthal anglej and polar
angle θ as ql

j( )P cos em im where lPm is the associated Legendre function of integer orderm and (usually
noninteger) degreeλ. There is an infinite discrete set of valuesl l= i

m (i= 0, 1, 3, ...) that depend on
m and θ0. Each li

m has an infinite sequence of eigenenergies l( )En i
m , with corresponding radial parts

of eigenfunctions. In a spherical box the discrete energy spectrum is determined by the zeros of the
spherical Bessel functions. For several θ0 we demonstrate the validity ofWeyl’s continuous estimate

W for the exact number of states  up to energy E, and evaluate thefluctuations of  around W .
We examine the behavior of bound states in awell offinite depthU0, andfind the critical valueUc(θ0)
when all bound states disappear. The radial part of the zero energy eigenstate outside thewell is
1/rλ+1, which is not square-integrable forλ� 1/2. (0< λ� 1/2) can appear for θ0> θc≈ 0.726π and
has no parallel in spherically-symmetric potentials. Bound states have spatial extent ξwhich diverges
as a (possiblyλ-dependent) power law asU0 approaches the valuewhere the eigenenergy of that state
vanishes.

1. Introduction

Closed form solutions of the non-relativistic Schrödinger equation for a single particle are useful for intuitive
understanding of quantummechanics [1]. Unfortunately, exact solutions are not very common. Even in one
dimension (1D) the list of ‘simple,’ analytically solvable, potentials is rather short: it includes the trivial cases of
‘particle in a box’ orfinite-depth squarewell potential, harmonic oscillator, and a list ofmoderate length of
additional potentials [2–4], or potentials that can be reduced to such simple potentials by appropriate
transformations (see, e.g., [5] and references therein). In higher dimensions, ‘exactly solvable’ problems are
usually reduced to a sequence of 1Dproblems, such as separation of the d-dimensional ‘particle in a rectangular
box’ problem into d 1Dproblems inCartesian coordinates, or similar separation of a d-dimensional harmonic
oscillator into 1Doscillators. (In exceptional cases not amenable to variable separation, alternativemethods
based on supersymmetry or shape invariance exist [6, 7].) For central potentials, such asCoulomb interaction, or
‘spherical box’ orfinite spherical well, the simplification is achieved by separating the radial equation from the
angular part, while the angular part in d� 3 can also be separated into several differential equations
corresponding to various angles such as the polar angle θ and the azimuthal anglej in three dimensions (3D) [5].

In this workwe consider a particle either confined in a 3D spherical box or placed in afinite depth spherical
well. In both cases the allowed space is also confined by a rigid cone of apex angle 2θ0 with the apex located at the
center of the sphere. The resulting potential is not spherically-symmetric, i.e. non-central, but it can be solved
using a slight extension of central potentialmethodswhichwould be used in the absence of the confining cone.
The angle θ0 is a dimensionless parameter that can qualitativelymodify the solutions of Schrödinger equation
and introduce some features the are absent in the central potential cases.
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Besides the pedagogical value of this particular quantumproblem aswell as applicability to small quantum
systemswith similar geometry, it is also related to several classical problems: (a)When i∂/∂t in the Schrödinger
equation is replaced by∂/∂t, it resembles a diffusion equation, with quantumpotentialV(r) proportional to
particle production or absorption rate at position r, while a combination of other constants is proportional to a
diffusion constant; it is one of the simpler forms of the Fokker-Planck equation [8]. (b) For long ideal polymers
the partition functionZ satisfies an equation resembling the Schrödinger equation [9]with time replaced by
imaginary iN, whereN is the number ofmonomers, and the quantumpotentialV replaced by the potential of the
polymer problemdivided by kBT (cf., [10]). (Sequence of the instantaneousmonomer positions r(i), where i is
themonomer number, can also be viewed as a time sequence r(t) of a diffusing particle, thusmapping the
polymer problemonto a diffusion problem.) In the polymer problem the usual dependence of the quantum state
with energyE on time∼ eiEt/ÿ is replaced by the polymer length dependence ∼ e−EN, and therefore it is
dominated by the ground state. The presence or absence of bound states in the quantumproblem corresponds to
the presence or absence of adsorption in the polymer problem [10, 11].

The 3Dproblems that are not spherically symmetric are usually not exactly solvable.However, a particular
class of non-central potentials that has the form [12, 13]

q j
q j

q
= + +( ) ( ) ( ) ( ) ( )V r U r

f

r

g

r
, ,

sin
1

2 2 2

can be separated in a form resembling central potentials. In classical physics, such aHamiltonian has three
constants ofmotion [14], while in Schrödinger equation the parts dependent of θ andj have the form that is
naturally present when the equation is written in spherical coordinates, and the resulting equation separates into
an azimuthal (j-dependent) part that has a possibly non-integer eigenvaluem, which appears in the eigenvalue
equation for the polar (θ-dependent) part with possibly non-integer eigenvalueλ. Of course, separation of the
Schrödinger equation into three one dimensional equations does not by itselfmake it exactly solvable, but for a
certain collection of potentials it is possible to express the solutions via known functions and even provide
algebraic expressions for the eigenvalues [12, 13]. For central potentials the angular parts have integer eigenvalues
m andλ= ℓ, and the angular functions are spherical harmonicsYℓm(θ,j).

In this workwe consider a potential without azimuthal dependence (g(j)= 0), thus leaving that part of
eigenfunction in the standard form ( jeim with integerm) familiar from central potentials [1]. The polar part of
the potential represents the confinement of a particle inside an infinite circular cone

q
q q

=
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¥
⎧
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Such a potential does not introduce additional energy scales, but forces the polar part of the eigenfunction to
vanish for θ= θ0. For the particular case of θ0= π/2 it represents a repulsive plane. By itself, the infinite conical
surface is length scale-free and represents an interesting case formany physical problems described by a Laplacian
in the presence of a conical boundary, such as as problems of heat conduction or diffusion near cones [15], or
polymers attached to conical probes [16–19], or Casimir forces experienced by conical conductors [20], or
diffraction of electromagnetic [21–24] and acoustic [25]waves by conical surfaces.

If the apex of the confining cone is placed in the center of a spherical box or afinite spherical well of radius a,
then the angle θ0 controls the length scale aθ0 and therefore strongly influences the eigenstates of the system.
However, a change in θ0 does notmodify the angular part of the Schrödinger equation, but only imposes
boundary conditions on that part of thewavefunction.

In section 2we demonstrate the variable separation in Schrödinger equation for a particle in a spherical box,
and show the θ0-dependence of the angular constants and the energy eigenvalues.We also study the structure of
eigenvalue bunches that are created, and the behavior of the eigenvalues for θ0 nearπ or 0. In section 3we verify
the validity of a continuous function that estimates the number of states up to a certain energyE, and study the
deviations of the exact results from the continuous estimates. Similar techniques are used in section 4 to study a
particle in afinite spherical well. Special attention is paid to the presence or absence of bound states. In section 5
we examine the properties of zero-energy eigenstates that appear for special values of thewell depth and show
that for large θ0 some eigenstates are not normalizable.We show that, when the decreasingwell depth
approaches the conditionwhere eigenenergy of a particular state vanishes, the spatial extent of the eigenfunction
diverges with an exponent thatmay depend on θ0. In section 6we compare some our results with analogous
properties of spherically-symmetric potentials, and also discuss the application of our results to polymer
adsorption.
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2. Infinite potential well

As a simplest example of a central potential confined by a conical surface, we consider a quantumparticle of
massm in a 3D spherical box (infinite potential well) of radius a bounded by a conewith apex angle 2θ0, such that
the complete potential can bewritten as

q q
=

< <
¥

⎧
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( ) ( )V r
r a0, , ,

, otherwise,
30

where the radius r and polar angle θ are the spherical coordinates. An example of such confining space is
represented infigure 1. It is convenient toworkwith dimensionless variables, where distances aremeasured in
the units of sphere radius a, while the energies aremeasured in the units of ÿ2/2ma2. The time-independent
Schrödinger equation [1] in these dimensionless variables is

y y- + =( ) ( )V E , 42

where E is the energy eigenvalue andψ is the eigenfunction. In the absence of a confining cone, a spherical box is
a textbook example [1] of a confined particle. In the presence of a cone, we follow a similar path of solving the
equation by separation of variables, which in spherical coordinates leads to
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As in the case of a central potential the solution can be separated into a product of radial, polar and azimuthal
functionsψ(r, θ,j)= R(r)Θ(θ)Φ(j). Since, the potential in equation (2) is independent ofj, the azimuthal part
of the eigenstate satisfies the same equation as in the case of central potentials

j
-

F
= F ( )d

d
m , 6

2

2
2

which is satisfied by the functions jF = j( ) em
im withm= 0,± 1,± 2,.... These are eigenstates of the z

component of the angularmomentum since the potential is invariant under rotations around z axis.
The equation for the polar functionΘ(θ) coincides with the usual equation used for a central potential, since

the restricting cone in equation (2) only influences the boundary conditions (Θ(θ0)= 0) but does not otherwise
affect the differential equation. The functionΘ(θ) obeys the general Legendre equation, in the variable

q=x cos , which in terms of polar angle θ has the form

Figure 1. Spherical box (infinite potential well) of radius a bounded by a conewith apex angle 2θ0 (orange volume), with the symmetry
axis along theCartesian z axis.
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where the eigenvalue−λ(λ+ 1) is expressed in terms of the constantλ called the degree of the equation. In the
absence of a confining cone, the degree of this equation has integer valuesλ= ℓ, withℓ� |m|, and the
eigenfunctions are given by the associated Legendre polynomials of qcos of orderm and degreeℓ,

q qQ =( ) ( )ℓP cosm , and as a result the entire angular part of the eigenfunction is a spherical harmonic
qµ j( )ℓ ℓY P cos em m im [1].While the orderm explicitly appears in equation (7), it only influences the shape of the

eigenfunction, but does not affect the integer degreesℓ, and the angular part as well as the energy of the entire
eigenstate remains (2ℓ+ 1)-fold degenerate. This is not the case in the presence of a confining cone: The
associated Legendre polynomial solutions of equation (7) are replaced by the associated Legendre functions

ql ( )P cosm . For each integerm this equation has an infinite set of (usually non-integer) degrees li
m (i= 0,1,2, ...),

such that the polar function vanishes on the boundary ( q =l ( )P cos 0m
0i

m ).
As the angle of the cone changes, and the value of q=w cos 0 varies between−1 and 1, the geometry of

confinement changes between almost unconfinedwell with an excluded ‘needle’ along the negative z axis for
w=− 1, to an excluded cone along the negative z axis (−1< w< 0), to confinement by a plane, i.e., particle
confined in the z> 0 hemisphere (w= 0), and to a particle confined inside a cone along the positive z axis
(0< w< 1). Ifw is changed continuously, the degree li

m also changes continuously as depicted infigure 2. For
w=− 1we essentially have an unconstrained particle in a spherical box and l = ii

m for i= 0, 1, 2, ...
independently of the values ofm, as long as i� |m|. These are theℓvalues of the spherical harmonics, and each
l == ℓℓi

m is degenerate 2ℓ+ 1 times. This degeneracy is lifted oncew becomes larger than−1, except for two-
fold degeneracy form≠ 0 for+m and−m pairs, sincem appears only asm2 in equations (6) and (7). Allλs
monotonically increase withw eventually diverging in thew→ 1 limit. Thus every value ofλi(w=− 1) splits
into i+ 1 branches li

m corresponding to different |m|s. (Wewill refer to each such group of lines as a bundle.)
The divergence of the li

0 lines inw→ 1 limit infigure 2 can be inferred from the properties of the zeros

(roots) ql
( )j ( j= 1,2, ...) ofm= 0 Legendre functions ql ( )P cos in the open interval (0,π) of θs, i.e. the solutions

of q =l l( )( )P cos 0j . (Forℓ< λ� ℓ+ 1 there areℓ+ 1 such roots.) In fact, all the curves infigure 2 have been
constructed by choosing fixedλ andfixedm anfinding all the roots, when every root belongs to a different curve
in the figure, and then tracing the curves by gradually varyingλ. For integerλs only a discrete set of ql

( )j can be
accommodated, but for generalλs the roots can have any value. This statement can also be inverted to say that
any value of θ0 can be a root corresponding to an infinite sequence of l si

0 or any vertical line infigure 2 intersects
infinity of li

0 curves. Several tight bounds on the roots are known—see, e.g., [26] and references therein. They
can be used to produce large-λ approximation l p q» ai i

0
0, with i+ 1/2< ai< i+ 1, where the bounds on ai

are derived from the bounds on the position of (i+ 1) th root. (Strictly speaking, the bounds on the roots in [26]

Figure 2.Dependence of polar eigenvalues (degrees) li
m for various azimuthal eigenvaluesms of a particle in a spherical box, confined

by a cone of apex angle 2θ0, on q=w cos 0. Four lowest line bundles are shown (frombottom to top) i = 0 (black), i = 1 (red), i = 2
(blue) and i = 3 (green). The leftmost point of each bundle corresponds to the integer degree l = = ℓii

m . Forw > − 1 each bundle
splits into i = ℓseparate lines form = 0,1,K, i = ℓwith (top to bottom in each bundle)m = 0 depicted as solid lines,m = 1—dashed
lines,m = 2—dot-dashed lines, andm = 3—dotted line.When the cone becomes a plane (w = 0) then the lowest line l0

0 corresponds
to integer degree and order (1,0), the second lowest line is l1

1 atw = 0 geometry corresponds to (2,1), while the third lowest point
(intersection of l1

0 and l2
2 lines) corresponds to (3, 0) and (3, 2). The orderm remains constant along each of the lines, while the degree

λ changes.
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have been derived for integerλs, but for small θ0and largeλ they can be used for nonintegerλs.) Since for small
θ0, we can approximate q » -( )w2 10 , and the functional dependence of the branches becomes

l p» -( )a w2 1i i
0 , thus explaining the divergences seen infigure 2. The bounds on the coefficients ai also

ensure that the different branches li
0 do not intersect. (Non-intersection of li

0 lines is also ensured by the fact,
that an intersectionwould create amultiple root ofPλ thus contradicting the known fact that all their roots are
simple.)

From the definition of associated Legendre functions lPm via derivatives of regular (m= 0) Legendre
functions Pλ, or from standard recurrence relations between the functions [27], onefinds that

= - - +
-

l
l

l
+ ( )P x

dP

dx

mx

x
P1

1
. 8m

m
m1 2

2

At two consecutive zeros (simple roots) of lPm the second terms on the right hand side of equation (8) vanish,
while thefirst terms (the derivatives) have opposite signs, and therefore l

+Pm 1will have opposite signs at those
points. Thus, the zeros of l

+Pm 1 lie in between the zeros of lPm. Consequently, the branch of li
m infigure 2will be

locked between branches l -
i
m 1 and l -

-
i
m

1
1, if they both exist, andwill not intersect with them. Thusm= 1

branches will be betweenm= 0 branches, andm= 2 branches will be betweenm= 1 branches, etc (However,
m= 2 branch can intersectm= 0 branch, as can be seen in the intersection of l3

2 and l2
0 lines infigure 2.)

Nevertheless, itmeans that lines li
m with anym diverge as - w1 1 forw→1, i.e. have the same divergence as

m= 0 branches. At every integer levelλ= ℓ, the horizontal line infigure 2will cutℓ−m branches with that
particularm, since this is the number of zeros of ℓPm in the open interval (− 1,1) ofw. (This excludes extra zero at
w=− 1). For a nonintegerλ between someℓandℓ+ 1, the number of such intersections isℓ−m+ 1.

The eigenfunctionsmust vanish on the cone boundaries, even in the limit where the excluding cone becomes
needle-like along the negative z axis and, eventually, just a line forw→− 1. Form≠ 0 the polar eigenfunction of
an unrestricted sphere ℓPm vanishes at θ= π and therefore lPm naturally approaches ℓPm as θ0 approaches π.
Consequently, allm≠ 0 curves in figure 2 approachw=− 1 points linearly. This is not the case form= 0,
where ℓP0 does not vanish at θ= π, and differs from q =l ( )P cos 00

0 for q= = - +w cos 10  , with 0< ò= 1.
Asw approaches−1 the restricted and unrestricted solutions become almost identical everywhere except for a
very narrow region around the negative z axis, that remains present although its volume vanishes. This behavior
is reflected in the fact that theλi=ℓ approaches its limiting valueℓalmost vertically: From the asymptotic forms
of lP0 near the singularity [28] onefinds that forw close to−1 the eigenvalue l » - += ℓ ( )ℓ w1 ln 1i

0 .
To gain some intuition into the behavior of the curves infigure 2we examine the relations between the

eigenstates of unconfined particles in a spherical box (w=− 1) and particles confined in a hemisphere (w= 0).
We note, thatλs are integers andwith significant degeneracy forw=− 1, but also forw= 0 theλs are integers,
and there is some degeneracy due to intersections of different branches. In the former case the polar eigenvalues
ℓ= 0, 1,..., are degenerate 2ℓ+ 1 times, since for eachℓwehavem= 0,± 1,K,± ℓ. Spherical harmonics ℓY m

can also be used to build the eigenstates of a hemisphere.We note that equality q = =( )ℓP cos 0 0m
0 is valid

whenℓandm have opposite parity. Thus almost half of the eigenfunctions of an unrestricted sphere vanish on
the plane θ0= π/2 (or z= 0) and can be used as a set of angular functions for hemisphere. Thuswe have
eigenfunctions and eigenvalues with (ℓ,m)= (1, 0), (2,± 1), (3, 0), (3,± 2),... The seeming reduction in the
number of the eigenstates reflects the decrease in the volume of the system.We can nowobserve how the lowest
branch that begins with l = - =( )w 1 00

0 , which corresponds to (ℓ,m)= (0, 0) state of the complete sphere,
increases with increasingw and reaches l = =( )w 0 10

0 , which corresponds to (ℓ,m)= (1, 0) eigenstate of the
hemisphere. Similarly, them= 1 branch of l = - =( )w 1 11

1 which corresponds to (ℓ,m)= (1, 1) of a complete
sphere increases and reaches value l = =( )w 0 21

1 , which corresponds to (ℓ,m)= (2, 1) eigenstate of the
hemisphere. Them= 0 branch that also begins at l = - =( )w 1 11

0 , which corresponds to (ℓ,m)= (1, 0) of a
complete sphere reaches value l = =( )w 0 31

0 , which corresponds to (ℓ,m)= (3, 0) eigenstate of the
hemisphere. Atw= 0 the latter branch intersectsm= 2 branch that started at l = - =( )w 1 22

2 and reached
l = =( )w 0 32

2 , which corresponds to (ℓ,m)= (3, 2) eigenstate of the hemisphere, and therefore completes the
eigenstatementioned before withm= 0. Thus, increase inw causes ‘reordering’ of the eigenstates. There are
additional intersections of different branches, corresponding to a variety of cone angles θ0. Those, however, are
accidental degeneracies of unrelated states.

The line intersections in figure 2 described in the previous paragraph are in linewith the theorem [29] that
two associated Legendre functions ( )ℓP wm and ¢( )ℓP wm with integer degrees and orders and ¹ ¢∣ ∣ ∣ ∣m m have no
common zeros with exception of the case whenℓandm have opposite parity, as well asℓand ¢m have opposite
parity, inwhich case they have common zeros atw= 0. This exactly describes the intersections atw= 0 in
figure 2. At the same time, itmeans that there can be no other intersections at integerλs. Indeed, the accidental
intersection of l3

3 and l2
0 lines infigure 2 appears at non-integerλ slightly larger than 3.
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The radial partR(r) of the eigenfunctions of equation (5) is a solution of the equation

l l
+

+
= -⎛

⎝
⎞
⎠

( ) [ ( )] ( )
r

d

dr
r

dR

dr r
R E U r R

1 1
, 9

2
2

2

where the radial componentU(r) of the potentialV(r) vanishes inside thewell, and onlymanifests by the
boundary conditionR(r= 1)= 0. This is correct both in the absence and the presence of the confining cone.We
note that the equation only depends on the polar eigenvalueλ but not onm, although the actual value ofλmay
depend onm. This equation is solved by the spherical Bessel functions l ( )j E r , so that the complete
eigenfunctions are y q j qµ l l

j( ) ( ) ( )r j E r P e, , cosm im . By imposing the boundary condition =l ( )j E 0, we
find the energy spectrumof the system

l a l=( ) ( ) ( )E , 10n n
2

whereαn(λ) is the nth zero of jλ(x). Figure 3 shows part of the energy spectrum as function of qcos 0 for different
values of n,λ and |m|. Since the eigenenergies directly depend only onλ, thefigure 3 slightly resemblesfigure 2.
In particular degeneracies (accidental or not) seen infigure 2 are ‘reproduced’ in the energy lines. To facilitate
comparison of these twofigures, we employed the same coloring and line-type scheme for the graphs: the energy
line types and colors are identical to lines types and colors used to describedλs for which those energies were
calculated.However, since every specific value ofλ produces an infinite series of rootsαn(λ), with n= 1, 2...,
every single line infigure 2 producesmany lines infigure 3. They are distinguished infigure 3 by line thickness
where n= 1 corresponds to the thickest lines, and the thickness decreases with increasing n. Besides the energy
degeneracies originating in the degeneracies ofλs, there are additional accidental degeneracies when roots of
different order belonging to differentλs coincide. Due to simple relation between the energies andλs in
equation (10) the properties ofλs inw→− 1 andw→ 1 limits are partially (qualitatively)mimicked in the
energy spectrum.

Since for largeλ thefirst rootα1(λ)∼ λ [30], the ground state energywill (due to equation (10)) diverge in
thew→ 1 limit as l q~ ~ -( ) ( )w1 1 10

0 2
0
2 . The same conclusion can be reached fromHeisenberg’s

uncertainty principle, since for small θ0 the confining dimension in the sphere of radius a constrained by the
cone is aθ0 leading to uncertainty inmomentumof order ÿ/aθ0, which corresponds in our dimensionless units
to energy q~E 1 0

2.

3.Weyl relations in a confined infinitewell

As can be seen infigure 3 the eigenenergies corresponding to a particular branch increase with increasing
confinement, and the number of eigenstates ( )E with energies below a certain value E decreases. The exact

( )E in a box of an arbitrary shape is a step-wise function, which jumps upwards by an integer amountwhenever
an eigenenergy is encountered. The size of the jump is the degeneracy of that energy level. Formore than a

Figure 3.The energy E spectrum as function of q=w cos 0. For eachλ shown infigure 2 there is an infinite sequence of roots n = 1,
2,... shownwith different line thicknesses, the very thick (lowest) line (n = 1), intermediate thickness (higher) line (n = 2), thin
(highest) line (n = 3), while the line styles and colors are the same is infigure 2. Since the roots of Bessel functions depend only on the
values ofλ every bundle ofλs infigure 2 createsmultiple similar bundles of energy lines in thisfigure. Degeneracies ofλ lines in
figure 2 translate into energy degeneracies in thisfigure. Additional accidental energy degeneracies are created by intersection energy
lines belonging to different ns.
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centuryWeyl and his successors developed a smooth function ( )EW approximating ( )E , which in d
dimensions has the form = + + +- -( ) ( )a E a E a E ...W

d d d
1

2
2

1 2
3

3 2 . (For an overview see [31–33].)The
expression for W is rather general and requires surprisingly little information about the system.However,
some uncertainty exists both regarding the exact conditions for the validity of such expressions and the behavior
of the remainder

º -( ) ( ) ( ) ( )r E E E . 11W 

The subject has been extensively studied for a particle in a square (cubic) box in 2D (3D), where the problemof
number of states is reduced to the counting of number of square (cubic) lattice points  within a circle (sphere)
of radiusR. (The radiusR is proportional to E in the quantumproblem.)One can easily produce a continuous
estimate W for such geometries [31]. However, the estimate of the remainder r(E)dates back to ‘Gauss circle
problem’ (in 2D case), and has a long history of bounds [31] that are specific to the shapes of the quantumboxes.

Robinett studied a circular box in 2D confined in a sector [34].When the opening angle of the sector is
changing, the area and the perimeter of the confining box both change, but they are are not proportional to each
other. The structure of the eigenfunctions is relatively simple, since the azimuthal (angular) eigenstates are
simple sine functions. This work demonstrated the validity of two-dimensional (2D)Weyl formula for the
system. Particularly enlightening in that study is the comparison of full (unconstricted) circle, with a circle when
the the sector has a angle of 2π, i.e., degenerates into a single excluding radius line, andwith the sector that has
opening angleπ, i.e., the particle is restricted to a semi-circular box.Our problemof a spherical box restricted by
a cone is the 3D generalization of the same problem.However, as explained in the previous section, already the
determination of the polar degreesλ as functions of the cone apex half-angle θ0 had to be performed
numerically, followed by a solution of the radial eigenvalue equation determining the eigenenergies E, that are
related to the numerically known roots of Bessel functions. Nevertheless, we verified the accuracy ofWeyl
expressions for several angles θ0. Unlike the 2Dproblem, the case corresponding to θ0= π, i.e., when the cone
becomes an excluded needle, the spectrum coincides with that of completely unrestricted sphere, i.e., in 3D the
excluded zero-width radial line does notmodify the energy spectrum. In this sectionwe present in detail
comparison of the θ0= π and θ0= π/2 cases, i.e., a complete sphere and a hemisphere. The angular parts of the
eigenfunctions in these cases are represented by integerℓs andms and provide intuitive insights into the
properties ofWeyl formula.

The fact that density of states per unit volume in 3D system exists independently of the overall shape of the
system, i.e., the leading term in the number of states  is proportional to the system volume  , was implicit in
the calculations of black body radiation or countingmechanical oscillatorymodes in a solid already in the late
19th and early 20th centuries. Similar problem appears in the statistics of the eigenenergies of Schrödinger
equation for a particle in a box.Mathematically, this is a scalar Laplacian eigenvalue problemof determining the
number of eigenstates up to a certain valueE. (It is related, but not identical, to nonscalar problems, such as
classical electromagnetic or elastic waves, where E is replaced by squaredwavevector.) It has been formally
proven byWeyl that to the leading order  is proportional to the system volume  . In our dimensionless
variables this number of states (for a scalar problem in 3D) is p= ( )E61

2 3 2  . Our choice of unit length scale
a does not affect the formula, because a choice of different length scale a, modifies values of  andE, while
making no change in the coefficient of the formula. Similarly, the change in the shape of the box does not
influence this expression. In our examples of the sphere- and hemisphere-shaped boxes the unit length defined
as the radius of the sphere, and the system volumeswill be p=◯ 4 3 and p=◯ 2 3 , respectively.

For finite systems boundaries introduce subleading corrections to the total number of states. The corrections
depend on the type of boundary conditions (b.c.) imposed on thewavefunction, such as function vanishing on
the boundary (Dirichlet b.c.), or normal derivative of the function vanishing on the boundary (Neumann b.c.),
or linear combination of the function and its normal derivative vanishing (Robin b.c.) [35] conditions. In 1913
Weyl conjectured [36] that for smooth bounding surfaces the correction to the number of eigenstates in the
Laplacian problemwithDirichlet b.c. is proportional to the surface area  and is given by p= -( )E162  .
(The coefficient in this expression depends on b.c. [35] and, in particular, forNeumann b.c. it is the same
expression but with an opposite sign.) In our examples of sphere- and hemisphere-shaped boxes the surface
areas are p=◯ 4 and p=◯ 3 , respectively.

Even smaller correction originates from the shape (‘curvature’) of the surface, and is given by
p= ( )E63

2 1 2  . The differentiable parts of the surfacewhere twomain radii of curvatureR1 andR2 can be
defined contribute to  the integral ofmean curvature ò +( )dS R R1 11

2 1 2 . If the surface contains sharp

wedges, then their contribution depends on thewedge angle [31], and in particular 90°wedges contribute to 
amount p( )3 8 , where  is the total length of suchwedges. In our examples for a spherical boxwe have only
the curvature term: since themean curvature of the sphere of unit radius is 1, the total curvature contribution is

p=◯ 4 . For the hemisphere the nonvanishing curvature contributes 2π, while the 90° edge of length
2πcontributes another 3π2/4, leading to total p p= +◯ 2 3 42 .
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By combining the volume, surface area and ‘curvature’ terms ofWeyl functionwe get the following
expression for the number of states [31]

p p p
= + + + = - + +( ) ( ) ( )E E E E o E...

6 16 6
, 12W 1 2 3 2

3 2
2

1 2 1 2   
  

In the specific cases of sphere and hemisphere, these can bewritten as

p p
= - + + ( )◯ E E E

2

9

1

4

2

3
... 13W

3 2 1 2

p p
= - + + +# ⎛

⎝
⎞
⎠

( )E E E
1

9

3

16

1

3

1

8
... 14W x D& 025 7;

3 2 1 2

The validity of these expressions is demonstrated infigure 4(a)which has been obtained by numerically
enumerating the total number of states for each energy E. Thefigure presents the exactlymeasured ( )E both
for the sphere and the hemisphere and compares the exact results withWeyl functions in equations (13) and
(14). Each of the latter equations are shown in three approximate forms: solid line depicts only the firstWeyl
terms, the dashed line depicts first twoWeyl terms, and the dotted line depicts three termsWhile two-term lines
represent strong improvement in the correspondence withmeasured  over the single-term lines, the three-
term lines are barely distinguishable from two-term lines infigure 4(a).Moreover, the fluctuations of the
remainder r(E) defined in equation (11) increase withE, and their departure from the continuous curves is larger
than the third term correction to W . (Ameaningful comparison and validation of the third term can be done
only if the exact stepwise curve  is smoothed by an averaging procedure [31].)The extent offluctuations can
be characterized by a bound |r(E)|< cEβ, where c andβ are some constants. For a cubic box there exist some
theoretical bounds onβ, but no such bounds are known for a spherical box. By numerically examination the |r
(E)| graphs in the rangeE< 4000, we note that all data points of a sphere fit under a curvewithβ= 1/2, and
c≈ 3.2, while for the hemispherewe have the sameβwith twice smaller c. (However, these numbers are just the
‘ballpark’ estimates of a ‘random’ function in a limited energy range.)

As explained in the previous section the eigenstates of a complete sphere and a hemisphere can be
represented by integer ls, and the energies become independent ofm. Therefore both the exact s and their
Weyl approximations W are simply related. For a complete sphere eachℓstate is 2ℓ+ 1 times degenerate,
while in hemisphere the parity ofℓandmmust be opposite, and therefore eachℓstate is degenerateℓtimes. Let

( )ℓ E be a number of zeroes of the spherical Bessel function jl(x) up to certainmaximal value =x E , which
via relation (10) is the number of distinct eigenenergies, up to energyE. (This function ignores the degeneracies
of the energies.)Then

å= +ℓ( ) ( ) ( ) ( )
ℓ

ℓ◯ E E2 1 , 15 

Figure 4. (a)The exact numbers of eigenstates (step-wise solid black lines) for sphere (top bundle of lines) and hemisphere (lower
bundle of lines) as functions of the energy E. The exact results are comparedwithWeyl approximate continuous lines for a sphere (red)
and a hemisphere (blue) as in equations (13) and (14), where in each bundle the top solid lines showonly thefirst (leading) term for
both geometries, the lowest dashed lines show twofirst terms, and a dotted lines slightly above the dashed lines show all three terms (b)
The exact difference between the numbers of steps in a sphere and twice the number of states in a hemisphere (step-wise solid lines)

-◯ ◯2  as function of the energy E. It is comparedwith theWeyl estimates of the difference. The leading terms inWeyl formulas

cancel out, and the dashed (blue) line represents the difference of second terms ( E1

8
), while the dotted (red) line represents the

difference of second and third terms, i.e., -E E1

8

1

4
1 2.
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å= ℓ( ) ( ) ( )
ℓ

ℓ◯ E E . 16 

(The summation overℓisfinite since startingwith someℓthere are nomore eigenstates with energies lower
thanE.) It is known [30] that for largeℓs the density of zeros of spherical Bessel function jℓ approaches a
constant: r p= + +ℓ( ) ( )( ( ) )x x1 1 1 2 2 2 1 2 for x> ℓ+ 1/2. Consequently, for a givenℓthe number of
roots up to energyEwill be (to the leading order and neglecting prefactors) ~ - ℓ( ) ( )ℓ E E . Both ( )◯ E

and ( )◯ E in equations (15) and (16) include òå ~ - ~ℓ ℓℓ ℓ( ) ( )ℓ ℓ E d E E
E 3 2 , thus explaining the

leading terms in theWeyl relations.
It is interesting to consider the difference between the number of states in a sphere and twice the number of

states in a hemisphere. From equations (15) and (16) - = å( ) ( ) ( )ℓ ℓ◯ ◯E E E2   . Not surprisingly, this
difference cancels out the terms proportional to volume, andwe can expect to have the leading term

proportional toE. Indeed from the approximate value of l wefind that òå ~ - ~ℓ ℓ( ) ( )ℓ ℓ E d E E
E

 .

Analogously, by subtractingWeyl functions of these systemswe get - = -( ) ( )◯ ◯E E E E2W W
1

8

1

4
1 2  .

Figure 4(b) depicts the exact difference between the numbers of states by a step-wise solid line. This result is
comparedwith the difference obtained fromWeyl expressions truncated at the second term (dashed line) and
including also the third term (dotted line).We note an excellent agreement between the exact results and the
predictions ofWeyl functions. Such clarity of the result is a consequence of very small remainders r(E)which are
significantly smaller thanwere seen infigure 4(a). In fact in the range ofE< 4000we found that |r(E)|< 4, i.e., it
does not increase with E. Apparently, since this is the sumof sl that does not account for degeneracies of the
eigenstates, the fluctuations are significantly suppressed. The accuracy of the third term inWeyl equation can be
clearly seen in this picture. It seems that the entire increase in thefluctuations |r(E)| infigure 4(a)was caused by
the growing degeneracy of the high energy eigenstates.

4. Finite spherical well bounded by a cone

It is well known in quantummechanics that purely attractive potential in d= 1 always has a bound state [37],
and for a sufficiently deepwell itmay havemany bound states. (There is also a slightlymore relaxed criterion
guaranteeing the presence of bound states [38–40].) Similar situation also exists in 2D,where the bound state can
always be found [41]. If space dimension d is considered as continuous variable, it can be shown that this
property disappears when d> 2 [42]. In particular, in 3D the presence or absence of the bound state depends on
the shape and depth of the binding potential. However, for potentials that have repulsive parts, such as infinite
barriers, the bound states are not necessarily present, and 3D casemay resemble lower-dimensional situations.

In this sectionwe consider a finite spherical well of radius a= 1with depthU0 below zero potential outside
thewell,measured in the same dimensionless units as in section 2. Thefinite well is bounded by a circular cone
with an apex angle 2θ0 such that

q q
q q=

- < <
> <

¥

⎧
⎨
⎩

( ) ( )V r
U r

r
, 1, ,

0, 1, ,
, otherwise.

17
0 0

0

This system admits both bound (E< 0) and unbound (E> 0) eigenstates, andwewill examine the transitions
between them for variouswell depths and apex half-angles θ0. Since the problempermits the same variable
separation as in the infinite well case discussed in section 2 the angular (polar and azimuthal) dependence of both
bound and unbound states inside and outside the spherical well are determined by the cone and are identified by
the same l si

m corresponding to a particular θ0, that were depicted infigure 2 and explained in detail in section 2.
The radial component of thewavefunctionsR(r) also satisfies the same equation (9) as for infinite potential

well described in section 2 but with the radial part of the potential

=
- <

>{( ) ( )U r
U r

r
, 1,

0, 1.
180

Within the regions that the potential is constant (either−U0 or 0), equation (9) can be solved by sphericalBessel
functions of thefirst and second kind, jλ and nλ, respectively, when the eigenenergy exceeds the potential, and
modified sphericalBessel functions iλ andκλ for eigenenegies below the the potential. The spherical Bessel
functions are related to the regular (nonspherical)Bessel functions (denoted by the capital letters) by

p=l l+( ) ( )j x x J x2 1 2 , k p=l l+( ) ( )x x K x2 1 2 , and the same for other function pairs.We note, that the
regular Bessel functions Jλ,Nλ, Iλ, andKλ solve analogous radial equation in 2D [10], and some of the results
presented below resemble solutions of 2Dproblem,withλ shifted by 1/2.

For bound states (−U0< E< 0) the radial part of thewavefunction is proportional to jλ(kr), with
= +k E U0 inside thewell, while nλ is dismissed since it diverges at the origin, andκλ(qr), with = -q E
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outside thewell, while iλ is dismissed since it diverges at r→∞ . Thus thewavefunction has the form

y q
k

µ
<
>l l

j l

l

⎧
⎨⎩

( ) ( )
( )
( )

( )P e
j kr r

qr r
r cos

, 1,

, 1.
19n m

m im

Since the radial part of the Schrödinger equation is second order differential equationwith a potential which is a
stepfunction ar r= 1, both thewave function and its derivativemust by continuous at r= 1, although the slope
of the derivative changes at r= 1 leading to afinite jump in the second derivative, and therefore

k
¢

=
¢l

l

l

l

( )
( )

( )
( )

( )kj k

j k

qk q

q
, 20

where prime denotes derivative of the function. The overall prefactor of the functions is determined from
normalization conditions. Since the value of l l= i

m was determined form the angular equation, andU0 is
implicit in the definition of k, the only unknownparameter in equation (20) is energyE that determines both k
and q. The possible values ofE satisfying this equation are the eigenenegies of the bound eigenstates. Interestingly
enough, if we express the spherical Bessel functions via regular ones and perform the derivatives in the
numerators of all the functions, equation (20) becomes the relation

¢
=

¢l

l

l

l

+

+

+

+

( )
( )

( )
( )

( )
kJ k

J k

qK q

K q
, 21

1 2

1 2

1 2

1 2

which is exactly the 2Dcontinuity relation for a circularwell containedby a sector, butwith a shiftλ→ λ+ 1/2 [10].
For various l si

m there can be several, one or no bound eigenenergy solutions of equations (20) or (21). As the
well becomes shallower (U0 decreases) the number of bound states also decreases, until only one bound
eigenstate corresponding to l l= 0

0 remainswith some eigenenergy E0< 0.When thewell depth decreases to
some criticalUc the bound states disappear altogether.When E0→ 0, then q→0, and the right hand side of
equation (21) approaches− (λ+ 1/2) [10], while in the left hand side k Uc . The relation for critical depth
of thewell is

l
¢

= - +l

l

+

+

( )
( )

( ) ( )
U J U

J U
1 2 , 22

c c

c

1 2

1 2

which by using recurrence relations between Bessel functions and their derivatives [43] reduces to

= =l l- -( ) ( ) ( )J k j k0, or 0, 231 2 1

with =k Uc . ThusUc is simply the square of the first zero of these functions. As can be seen infigure 2 for each
θ0 (or q=w cos 0) there exists an infinite sequence of li

m s. Since,Uc represents the case when the last remaining
(ground) eugenstate has zero energy, wemust use the lowest l l= 0

0, and therefore

a l= -( ) ( )U 1 . 24c 1
2

0
0

(To compare this result with the 2D case, see equation (16) in [10].)figure 5(a)depicts the dependence of the
critical depthUc on the cone apex half-angle θ0. For small θ0 the confinement is strong and largeUc is required.
Indeed, for largeλ thefirst root of Jλ is approximatelyλ, and therefore l q~ ~U 1c

2
0
2. As θ→π the critical

depth drops to the critical value of an unconstrained spherical well. Equations (22) and (23) relied solely on the
assumption that the energy of the eigenstate vanishes andwere not specific to the case of single remaining bound
state.Wemight consider situations when a vanishing energy eigenstate appears for deeper wells, when additional
negative energy bound states are still present. For each li

m there is an infinite amount of suchwell depths
corresponding to different zeros of the sameBessel function:

a l= -( ) ( )( )U 1 . 25i m n
n i

m
0

, , 2

The criticalUc in equation (24) is just the smallest depth in the infinite sequence of values in equation (25).

5. Critical exponents

The radial part of thewavefunction of a bound state is characterized by energy E< 0 and the corresponding
= -q E outside thewell is described byκλ(qr), where the polar constant (degree) l l= i

m, while the energy

(or q) is obtained fromone of the solutions of equation (20). For qr? 1, the function k ~l
-( )qr e

qr
qr1 , i.e., it has

a typical decay (localization) length x º = -q E1 1 . As the energy of a specific eigenstate approaches 0 the
length ξ→∞ . Eigenstates with zero binding energy for several potential types have been studied in [44, 45], and
became parts of textbooks (see, e.g., [1]). For theE= 0 eigenstate the radial part of the eigenfunction becomes
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µ
<

>
l

l+
⎧
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( )
( )

( )R r
j kr r

r r

, 1,

1 , 1,
26

1

where the continuity condition at r= 1 in equation (20) is the same as in equations (20)–(23). If we are
considering the single surviving bound state, then l l= 0

0, =k Uc , which is given by the critical valueUc

defined in equation (24). This case plays an especially important role, because in the analogy between quantum
states and ideal polymers, the state of long polymer is dominated by the ground state of the quantumproblem,
andwhether this state is bound or not determines whether the polymer is adsorbed or not to the attractive
potential area. (See section 6.)However, the argument presented here can also be applied for deeper potentials
U0 that support several bound states, for each case of the depth = ( )U U i m n

0 0
, , as defined in equation (25) for

which a zero energy state appears. For simplicity, belowwewillmostly consider only awell slightly deeper than
Uc and admitting a single bound state.

The normalization of the ground state requires the radial integration ∫r2|ψ|2dr. If the radial partR(r) of the
eigenstate behaves at large distances as 1/rλ+1, the integral will only converge forλ> 1/2. Figure 5(b) redraws
the lowest branch l0

0 offigure 2 as a function of θ0. There is an entire region of this branchwhere l< 0 1 20
0

correspondingπ> θ0> θc≈ 0.726π. In that region the normalization cannot be performed, and theseE= 0
energy states can be categorized as unbound states. Figure 6(a) depicts such a non-normalizable state forU0=Uc

at large θ0. Interestingly enough, E= 0 states corresponding to other branches ofλ spectrum always have
l  1i

m and therefore are normalizable. For deepU0 theremay be other eigenstates corresponding to l0
0 and

higher order zeros of of Bessel function, which also cannot be normalized at these angles. The bound state

Figure 5. (a)The critical depth of thewell a l= -( )U 1c 1
2

0
0 (see text) as a function of the cone apex half-angle θ0. (b)The ground-state

angular degree l0
0 as a function of the cone apex half-angle θ0. The special value l = 1 20

0 is shown by a dashed line.

Figure 6.Probability density function |ψ(r, θ,j = 0)|2 (not normalized) for θ0 = 5π/6 ≈ 0.833π. The horizontal plane of the
graph represents θ, r coordinate plane, i.e., a cut through x − z plane of Cartesian coordinates. The excluded cone is represented by the
darker area of the plane. Two cases with two different eigenenergies are shown: (a)E = 0 eigenstate forU0 = Uc ≈ 4.740,
corresponding to l » 0.3550

0 withψ that decays as a power law ∼ 1/r1.355 outside the sphere, and therefore is not square-integrable.
(b)Bound eigenstate withE ≈ − 7.613 corresponding to the second zero of the Bessel function forU0 = 40 ≈ 8.44Uc and the same
l0

0, that decays exponentially for large distances.While this is the second state of l0
0, it is the sixth lowest state overall.
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depicted infigure 6(b) corresponds (for largeU0 to the second zero of Bessel function for the same l0
0 is the

eigenstate infigure 6a. The fact that it is the second zero can be seen in the single oscillation that performs the
wavefunction inside thewell. IfU0 is decreased, at some point the eigenenergy of this state will reach zero and it
will resemble the behavior of the state infigure 6(a) but with larger k in the r< 1 region. Similar type of
normalizability problem exists in 2Dproblemof a sector confining a circle. However, in 2D the borderline θc
corresponds to the sector becoming a straight line, while in our case the special angle of θc has no ‘special’
geometricalmeaning.

ForU0>Uc the ground state hasfinite q and ξwhichwe expect to vanish and diverge, respectively, as
U0→Uc.When δU≡U0−Uc=Uc, thenE is also small andwe can expand both sides of equation (20) in these
small quantities tofind the dependence ofE on δU, and therefore the dependence of ξ on δU.We denote the left
hand side of equation (20) by º ¢l l l( ) ( ) ( )k kj k j kL, , and right hand side by k kº ¢l l l( ) ( ( )q q q qR, . The
expansion of the left hand side is given by [43]

d l d= + + » - - - +l l( ) ( ) ( ) ( )k U U E E U1
1

2
, 27cL, L, 

while the formof the expansion of the right hand side depends on the value ofλ [43]:
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By equating =l lL, R,  we extract the dependence of− E on δU, and consequently the δU-dependence of ξ, in
the form ξ∼ δU− ν:
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For small angles θ0 (largeλ) the critical exponent controlling the δU-dependence of ξ is ν= 1/2.However for
large enough angles θ0> θc the exponent ν= 1/(2λ+ 1) becomes angle θ0-dependent and reaches 1when
θ0→π. Note that the transition between angle-dependent and angle-independent regimes occurs when at θ0= θc
whenλ= 1/2.

The above derivation could be repeated also in the situationwhenU0 approaches any of the
( )U i m n
0

, , defined
in equation (25), and the equation (29) is validwith d º - ( )U U U i m n

0 0
, , . However, the onlyλ capable of having

values below 1/2 is l0
0. Therefore, the usual value of the exponent is ν= 1/2, with exception of the cases of

θ0> θc and l < 1 20
0 , corresponding to various order zeros, i.e., ( )U n

0
0,0, with n= 1, 2,...

6.Discussion

Some of the results derived in ourwork resemble the regular solutions of a particle in a spherical box or a particle
in afinite potential well in the absence of the cone.However, in the spherically-symmetric case the degreeℓis
integer, andmany of the effects described in this work are absent. For instance, the discussion of E= 0
eigenstates in [44, 45] omits the trivialℓ= 0 case, and proceeds to discussℓ� 1 case, when the interesting effects
and the qualitative change in the behavior, such as lack of integrability of the E= 0 state, appears for noninteger
λ� 1/2.

In themapping between the quantumand the ideal polymer problems [9] the quantumpotential is replaced
by the actual potential divided by kBT. The probability density of the end-point of anN-monomer polymer is
given by a superposition of the r-dependent quantum eigenstatesmultiplied by e−EN, where E is energy of a
particular state and the exponent replaces the time-depended oscillatory termof the quantummechanics. For
largeN the state with the smallestEwill dominate the density distribution and its localization length ξwill be the
spatial extent of the polymer. Since ξ isfinite only for the bound quantum states, the absence or presence of the
polymer adsorption is related to the existence of the bound state. The effective depth of the ‘polymer potential’ is
varied by changingT, andwhenT approaches the critical adsorption temperatureTa the effective valueU of the
quantumproblem approachesUc and δU∼ (Ta− T). In this situation equation (29) can be re-written in the
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form

x

l

l

l

~

- >

- - =

- <

-

-

- l+

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )

∣ ( )∣ ( )

( )

( )



T T

T T T T

T T

, for
1

2
,

ln , for
1

2
,

, for 0
1

2
,

30

a

a a

a

1
2

1
2

1
2

1
2 1

whichmakes it an interesting thermal phase transition for very long polymers, with possibly cone apex angle-
dependent critical exponent. Since the behavior of the ideal polymer is dominated by the ground state,
equation (30) can be used only for l l= 0

0 and only in the neighborhood ofUc, which is related to the first zero of
the Bessel function as in equation (24). The behavior of real polymers in good solvents, where themonomers
strongly repel each other, follows the behavior of the ideal polymers only qualitatively. Evenwhen the quality of
the solvent is decreased and effectively cancels out themonomer repulsion (in so-called ‘θ-solvents’ [46]), the
correspondence to ideal polymers is only approximate.Moreover, for a very long polymer the adsorption in a
finite-volume spherical well is geometrically impossible. However, the polymers ofmoderate stiffness (such as
DNA) have a broad range of length-scales where the rigidity can be neglected, while themutual repulsion of the
monomers is still very weak, that emulates long ideal polymers [47], and therefore can exhibit the transition
effects.
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