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Elasticity of Gaussian and nearly Gaussian phantom networks

Oded Farago and Yacov Kantor
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69 978, Israel

~Received 18 May 2000!

We study the elastic properties of phantom networks of Gaussian and nearly Gaussian springs. We show that
the stress tensor of a Gaussian network coincides with the conductivity tensor of an equivalent resistor
network, while its elastic constants vanish. We use a perturbation theory to analyze the elastic behavior of
networks of slightly non-Gaussian springs. We show that the elastic constants of phantom percolation networks
of nearly Gaussian springs have a power-law dependence on the distance of the system from the percolation
threshold, and we derive bounds on the exponents.

PACS number~s!: 62.20.Dc, 61.43.2j, 64.60.Fr, 65.50.1m
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I. INTRODUCTION

Rubber and gels are large polymeric solid netwo
formed when polymers or monomers in fluid solutions a
randomly cross-linked by permanent bonds. This proces
called vulcanization or gelation, where the latter term usua
applies to cross-linking of monomers or very sho
polymers—gels, while the former term usually describes
formation of dense networks of long polymers — rubb
Rubber and gels are much more flexible than ordinary c
talline solids and, moreover, may remain in the linear ela
regime even in response to deformations increasing thei
mensions far beyond their original, unstrained, size. Suc
behavior is attributed to the network structure of these m
rials, and to the fact that the elastic restoring forces are
entropic, rather than energetic, origin. The simplest theory
rubber elasticitywhich captures these essential physical f
tures is the ‘‘phantom network’’~PN! model introduced by
James and Guth@1#. This model assumes that the configur
tions of the different polymer chains are independent of e
other, and neglects the excluded volume interactions
tween the monomers. With these simplifying assumptio
one can treat each polymer chain in the network as an i
one. By averaging over the positions of the monomers
finds that the probability density of finding chain ends se
rated by rW takes a Gaussian form;exp@21

2Br2#, where B
usually depends on the temperatureT. The free energy of the
chain is proportional to~minus! the logarithm of this prob-
ability density and, therefore, is proportional tor 2, as if it is
a linear spring of vanishing equilibrium length, which will b
calledGaussian spring. In the PN model, the thermal ave
ages of some quantities can be calculated analytically du
the Gaussian form of the statistical weights@2#, and this
makes it an excellent starting point for models with exclud
volume interactions and entanglements@3#.

The problem ofgel elasticity introduces an additiona
complication already at the level of the PN model. In gels
network strands are very short and do not necessarily
semble Gaussian springs. Nevertheless, one may still
struct a Gaussian model of gel elasticity simply by replac
each bond of the gel by a Gaussian spring. In the absenc
excluded volume interactions, the validity of this model
justified by the fact that even if the elementary pair poten
PRE 621063-651X/2000/62~5!/6094~9!/$15.00
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between bonded atoms is very different from that of a Gau
ian spring, theeffectiveinteraction between somewhat mo
distant atoms is, almost always, quadratic. This is a w
known feature of long polymer chains@4#, but it has also
been demonstrated for more complicated networks@5#. de
Gennes used an analogy between the elasticity of netw
of Gaussian springs and the conductivity of random resis
networks@6#, and argued that rigidity, just like conductivity
appears at the connectivity threshold, when a macrosc
cally large network spans the system. He further argued
at the phase transition the shear modulus and the condu
ity should have the same dependence on the distance o
system from the connectivity threshold. Surprisingly, the d
tails of the argument of de Gennes have never been wo
out, i.e., there is no detailed calculation of the quantit
characterizing the elastic response of Gaussian netwo
namely the stress and elastic constants tensors.@There are
several analytical studies of the statistical properties~includ-
ing the elastic properties! of systems of Gaussian spring
@2,7#, but none of them makes such an explicit calculatio#
In Sec. II of this paper we derive exact results for the str
and elastic constants of Gaussian networks. We prove
the stresstensorof a Gaussian elastic network isequalto the
conductivity tensorof an equivalent resistor network. A de
tailed proof of this equality, which holds for a Gaussian n
work of arbitrary topology, is given in the Appendix of th
paper. We also show that the elastic constants of a sys
consisting of a single spanning cluster of Gaussian spri
vanish. We discuss the effect of the finite clusters whi
model the small molecules formed in the process of cro
linking and show that they play a crucial role in stabilizin
the system.

In Sec. III we investigate the elastic behavior of phanto
networks of nearly Gaussian springs, whose energy dep
dence on their extension includes a small quartic term a
tional to the quadratic one. A perturbative analysis yields
expression for the elastic constants. In Sec. IV we use
expression to evaluate the elastic constants of phantom
colation networks@8#, close to the percolation thresholdpc .
We conjecture a universal scaling law for the elastic co
stants,C;(p2pc)

g, and derive exact bounds for the scalin
exponentg. Section V includes a short summary and discu
sion of the main results.
6094 ©2000 The American Physical Society
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PRE 62 6095ELASTICITY OF GAUSSIAN AND NEARLY GAUSSIAN . . .
II. ELASTICITY OF SYSTEMS OF GAUSSIAN SPRINGS—
EXACT RESULTS

A. Definitions in the theory of elasticity

The theory of elasticity describes deformations of therm
dynamic systems in response to external forces. At a fi
temperature, it is convenient to considerhomogeneousdefor-
mations of theboundariesof the system, which can be de
scribed by aconstant matrix Mi j . When the system is
strained, the separation between a pair of surface po
which prior to the deformation wasRW , changes to

r i5Mi j Rj , ~1!

where the subscripts denote Cartesian coordinates, and
mation over repeated indices is implied. Usually the ene
of the system depends on the relative distances betwee
atoms. The squared distance in the deformed system is e
to

r 25r kr k5MkiRiMk jRj5~MtM ! i j RiRj[~d i j 12h i j !RiRj ,
~2!

whereMt is the transpose ofM, andh i j is thestrain tensor,
while d i j is the Krönecker delta. The strain tensor vanishes
the undeformed reference state. Expanding the mean
energy density in the strain variables

f ~$h%!5 f ~$0%!1s i j h i j 1
1

2
Ci jkl h i j hkl1•••, ~3!

we identify the coefficientss i j as the components of th
stresstensor, whileCi jkl are theelastic constants~sometimes
referred to as theelastic stiffness tensor!. The elastic con-
stants of a thermodynamic system are related to each o
through certain equalities. The actual number of independ
elastic constants depends on the symmetries of the sys
Isotropic systems, for instance, have only threedifferentnon-
vanishing elastic constants:C11[Cxxxx5Cyyyy5Czzzz; C12
[Cxxyy5Cyyzz5Czzxx5••• ; and C44[

1
2 (Cxyxy1Cxyyx)

5••• . Moreover, these three elastic constants obey an a
tional relation@9#: C112C1252C44, which reduces the num
ber of independent elastic constants of isotropic system
two. Frequently, one finds it more useful to describe
elastic behavior in such systems in terms of theshearmodu-
lus m and thebulk modulusk, defined by@10#

m5C442P, ~4!

and

k5H 1

2
~C111C12! for two-dimensional systems

1

3
~C1112C121P! for three-dimensional systems

~5!

whereP52sxx52syy52szz is the pressure. Whenk and
m are positive, the system is mechanically stable@11#.
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B. Description of the system

We consider ad-dimensional system shown schematica
in Fig. 1. The black circles in Fig. 1 represent atoms wh
the zigzag lines indicate the bonds, attractive pair-potenti
which connect them in a certain fixed~quenched! topology.
Atoms that are found inside the volume of the systems
called internal atoms.Surfaceatoms have fixed coordinate
on the boundaries of the system. The bonds connect at
into clusters. Clusters containing only internal atoms arefree
to move in the entire volume. Clusters with both internal a
surface atoms are non-free. Among them, one~and, in some
cases, several! may extend from one side of the system to t
opposite side. This is the ‘‘spanning’’ cluster.

The system that we study in this section consists of po
like atoms connected by Gaussian springs. The energ
each Gaussian spring is given by

fab~RW a2RW b!5
1

2
Kab~RW a2RW b!25

1

2
Kab~Rab!2, ~6!

whereRW a andRW b denote the positions of atomsa andb, and
Rab is the distance between these atoms. The spring cons
Kab is assumed to have a fixed,temperature-independen,
value. The total elastic energy is given by the sum over
energies of all the springs

E5 (
^ab&

fab5 (
^ab&

1

2
Kab~Rab!2.

C. Elasticity of the system

The components of the stress tensor of our system
related to the pair potentials,fab(Rab), via the relation

s i j 5
1

V K (
^ab&

fab8 ~Rab!
Ri

abRj
ab

Rab L 2
NkTd i j

V
, ~7!

which was derived 30 years ago by Squire, Holt, and Hoo
@12# as an extension of the Born and Huang theory of el

FIG. 1. A schematic picture of a network of springs. The syst
includes a spanning elastic network as well as some finite clus
Atoms can be either internal, i.e., free to move inside the volume
external, i.e., attached to a permanent positions on the bounda
Non-free-clusters have at least one external atom.
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6096 PRE 62ODED FARAGO AND YACOV KANTOR
ticity @13# to systems at finite temperature. In expression~7!
summation over all distinct pairs of atoms,ab, is performed,
whereRi

ab and Rj
ab are thei th and thej th Cartesian com-

ponents ofRW ab[RW a2RW b. The symbol̂ & indicates a therma
average, whileN andV denote the number of internal atom
and the volume of the system, respectively. For potential~6!
the expression~7! reduces to

s i j 5
1

V K (
^ab&

KabRi
abRj

abL 2
NkT

V
d i j , ~8!

where the sum is over the connected pairs.
The two terms in expression~8! are called the configura

tional and kinetic terms, respectively. The configuratio
term can be divided into terms, each one including the s
over the bonds of one distinct cluster. Since there are
excluded volume interactions, these terms are independe
each other~the clusters do not interact with each other!, and
the contributions of the different clusters to the stress
additive. We identify the stress applied by each cluster a

s i j
cluster5

1

V K (
^ab&Pcluster

KabRi
abRj

abL 2
NIkT

V
d i j , ~9!

whereNI is the number of internal atoms of the cluster.

D. The contribution of the free clusters

The gas of free clusters is an ideal gas.Since the different
clusters do not ‘‘feel’’ each other, it is intuitively clear tha
the contribution to the stress of each free cluster~fc! should
be as of a pointlike atom. To prove this result~which is
general and does not depend on the particular form of
pair potential!, we use the fact that for a free cluster, one c
integrate outd degrees of freedom~of say,RW 1) in Eq. ~9!,
and express the terms appearing in it in the relative coo
natesR̃i

a5Ri
a2Ri

1 $a52, . . . ,NI%. ~This statement is cor
rect only in the thermodynamic limit, when the linear size
the system becomes much larger than the radius of gyra
of the free cluster.! One can easily verify that in the relativ
coordinates Eq.~9! may also be written in the following way

s i j 5
1

V K (
a52

NI

R̃i
a ]E

]R̃j
aL 2

NIkT

V
d i j ,

which from the equipartition theorem givess i j 5
2(kT/V)d i j . The stress applied byall the free clusters is
simply

s i j
fc52

N0kT

V
d i j , ~10!

whereN0 is the total number of free clusters. Similarly, th
contribution of the free clusters to the elastic constants
also as of an ideal gas, given by the kinetic term@12#

Ci jkl
fc 5

2N0kT

V
d i l d jk . ~11!
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E. Elasticity of the spanning cluster

The stress and elastic constants of the spanning netw
of Gaussian springs with temperature-independent fo
constants are temperature independent.The free energyF of
the spanning network is a function of the temperatureT and
the positions of the surface atoms$RW s%. If the values of these
variables change quasi statically, then

dF52SdT1(
s

fWext
s
•dRW s, ~12!

whereS is the entropy,fWext
s is the external force which drag

the surface atoms, and summation is made over all the su
face atoms. In a quasistatic process, the forcefWext

s is balanced

by the forcefWs applied by the network on atoms, namely,

2 fWext
s 5 fWs5K (

a
Kas~RW a2RW s!L , ~13!

where summation is over all atomsa connected to atoms.
The terms appearing in the thermal average in Eq.~13! are
linear in the coordinatesRW a. Since the Boltzmann weight is
Gaussian, i.e., an exponent of a quadratic form of the co
dinates, these averages coincide with the most probable
ues, namely their values at the energetic ground state,
therefore do not depend on the temperature. We thus c
clude thatfWs is a temperature-independent quantity, and fro
Eqs.~12! and ~13! we readily find that

]2F

]T]RW s
52

] fWs

]T
50.

The last result implies thatF can be decomposed into tw
parts

F~T,$RW s%!5F1~T!1F2~$RW s%!.

If we consider homogeneous deformations we may defin
reference system and use the strain variables$h i j %, instead of

$RW s%,

F5F1~T!1F2~$h i j %!.

The stress and elastic constants are the coefficients in the$h%
expansion ofF2 @see Eq.~3!#. Therefore, they do not depen
on the temperature.

The stress applied by the spanning network is equal to
conductivity of a resistor network with the same topolog
The stress of the spanning cluster~spc! @Eq. ~9!#

s i j
spc5

1

V K (
^ab&Pspc

KabRi
abRj

abL 2
NIkT

V
d i j ,

can be rewritten in the form
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s i j
spc5

1

V H K (
a51

NI

Ri
a

]E

]Rj
aL 1K (

^as&Pspc
KasRi

sRj
saL J

2
NIkT

V
d i j , ~14!

where the first sum is over all the internal atoms while
second sum is over all the bonds connecting internal
surface atoms.~The subscriptss and a denote surface and
internal atoms, respectively.! In the thermodynamic limit we
deduce from the equipartition theorem that the first and
third ~kinetic! terms in Eq.~14! cancel each other. We ar
thus left only with the second term

s i j
spc5

1

V F (
^as&Pspc

KasRi
s^Rj

sa&G . ~15!

The thermal averages in Eq.~15! are of quantities which
are linear in the coordinates of the internal atoms and th
fore may be replaced by the equilibrium values of the
quantities~see earlier in this section!. The equilibrium values
of RW a minimize the energy of the spanning cluster

Espc5 (
^ab&P spc

1

2
Kab~RW a2RW b!2

5(
j 51

d F (
^ab&Pspc

1

2
Kab~Rj

a2Rj
b!2G

[(
j 51

d

Ej
spc. ~16!

The dependence ofEspc on the componentsRj
a correspond-

ing to one Cartesian directionj is included in the termEj
spc.

The problem of finding the equilibrium values ofRW a de-
couples intod scalar problems of finding the equilibrium
values ofRj

a . In order to calculate these values we need
solved sets of the linear equation~one set for each Cartesia
component!,

(
b

Kab~Rj
a2Rj

b!50, ~17!

corresponding to the vanishing of thej th component of the
force acting on each internal atom.~For each atoma, sum-
mation in the relevant equation is over all atomsb connected
to it.!

Let us define a resistor network with the same connec
ity as the elastic network, in which each spring is replaced
a resistor with conductanceKab. The values of the electric
potential at the internal nodes,$wa%, are obtained by mini-
mization of the heat power produced in the network,P
5(^ab&K

ab(wa2wb)2. Except for a prefactor of12 , P is
identical withEj

spc ~16!, wherewa plays the role ofRj
a . If we

replaceRj
a by wa in the force equations~17!, we obtain the

set of Kirchoff equations enforcing the vanishing of the su
of currents entering the internal nodes of the network.
replacingRj

a by wa, we define a mapping of the mechanic
e
d

e

e-
e

o

-
y

y
l

problem to an electrostatic one. In fact, we haved different
electrostatic problems corresponding to each Cartesian c
ponent of the mechanical problem. They differ from ea
other in their boundary conditions, namely the values of
electric potential on the surface nodes,$ws%. In the j th elec-
trostatic problem, we setws equal toRj

s , i.e., we assume tha
the electric potential at each boundary point is equal to
j th Cartesian coordinate of the point.

The interesting question now is what is the analog of
stress tensor in the electrostatic problem. This appears t
the conductivity tensorS i j defined by

^ j i&5S i j ^Ej&,

where ^ jW& and ^EW & are thevolume averagesof the current
density and the electric field, respectively. More precisely
we follow the mapping defined above we have theexact
equality

s i j 5S i j . ~18!

A detailed proof of this equality is given in the Appendix
this paper. Here we just note that the proof consists of t
steps: In the first step we show that in thej th electrostatic
problem, because of the choice of boundary conditions,^EW &
is a unity electric field pointing in the (2 j )th direction. In
the presence of such an electric field^ j i&52S i j . On the
next step of the proof we show that2^ j i&, and thereforeS i j
are given by the electrostatic equivalent of Eq.~15!

S i j
spc5

1

V F (
^as&Pspc

KasRi
s~ws2wa!G , ~19!

and therefore Eq.~18! is valid.
The elastic constants of the spanning network vanish.We

have already shown thatCi jkl , the elastic constants of th
spanning cluster of Gaussian springs with temperatu
independent force constants, are temperature indepen
Therefore, we may calculate them at any temperature, an
particular atT50. At zero temperature the free energy coi
cides with the internal energy, given by Eq.~16!, where

$RW a%, the positions of the internal nodes, take their equil
rium values. Suppose now that the system is homogeneo
strained. The positions of the surface nodes,$RW s%, change
according to the linear transformation~1!, with a constant
matrix Mi j . @Transformation~1! was originally defined for
the separation between surface points. However, we can
ways set the origin of axes to be on the original~unstrained!
surface, and in this case the transformation applies to
positions of the surface points.# In order to find the new
equilibrium positions of the internal atoms in the strain
system, we need to solve the set of equations~17! with the
new boundary conditions. Since both the equations and
transformation of the boundary conditions are linear, the n
solution is given byr i

a5Mi j Rj
a . The elastic energy of the

strained spanning cluster is given by@see Eqs.~2! and ~16!#
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Espc5
1

2 (
^ab&P spc

Kab~r ab!2

5
1

2 (
^ab&P spc

Kab@~MtM ! i j Ri
abRj

ab#

5
1

2 (
^ab&Pspc

Kab@~2h i j 1d i j !Ri
abRj

ab#.

This gives the dependence ofE on the strain variables, which
include only linear terms inh i j . Since the elastic constan
are the coefficients of the quadratic terms in the$h% expan-
sion of the free energy@Eq. ~3!#, we conclude that

Ci jkl
spc[0. ~20!

F. The stability of systems of Gaussian springs

We have mentioned earlier in this section that stable s
thermodynamic systems have positive bulk and sh
moduli, k andm @Eqs.~4! and~5!#. In phantom systems, th
contributions of the spanning cluster and the ensemble
free clusters tok andm are additive. Due to the vanishing o
the elastic constants of the spanning cluster~20!, we find that
its contribution to the elastic moduli ismspc52P spc.0, and
kspc50 ~two dimensions! or k spc5Pspc/3,0 ~three dimen-
sions! @Pspc is the negative~stretching! pressure applied by
the spanning cluster#. The fact thatk is not positive means
that the spanning cluster alone is not stable against hom
neous volume fluctuations. The contribution of the free cl
ters to the elastic moduli is as of an ideal gas, given bym fc

50 andk fc5N0kT/V @see Eqs.~4!, ~5!, ~10!, and~11!#. The
vanishing of the shear modulus simply indicates that the
lection of free clusters is a fluid. The positive contribution
the free clusters to the bulk modulus is crucial for the sta
ity of the system. Two-dimensional Gaussian networks
stabilized in the presence of free clusters sincek5kspc

1k fc5k fc.0. Three-dimensional systems are stabiliz
provided that the positive contribution of the free clusters
k overcomes the negative contribution of the spanning c
ter.

In real gels, it is possible to wash out the finite clusters~or
most of them! and obtain a so-called dry gel. Within th
Gaussian model such a system is expected to be unst
This contradicts experimental observations and demonstr
the importance of excluded volume~EV! and entanglements
effects. In the presence of EV interactions, the polym
chains forming the network cannot be treated as Gaus
springs. Therefore, the elastic constants of such network
not vanish, and consequently, there is no simple relation
tween the pressure and the elastic moduli. Moreover,
interactions make a positive contribution to the press
which may, therefore, be both positive or negative. In de
systems, EV interactions may effectively cancel out@4#.
However, dense systems can only be achieved in
presence of the finite clusters. In that case different clus
interact with each other, and their contributions to the pr
sure and elastic moduli are not additive. In the followi
section we consider a different correction to the Gauss
model: without EV interactions but with a non-Gaussian p
potential.
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III. ELASTICITY OF SYSTEMS OF NEARLY GAUSSIAN
SPRINGS

The elastic response of polymers and polymeric netwo
is as of systems of Gaussian springs only in the first appr
mation. It always includes a nonlinear part, which becom
significant when the network is sufficiently stretched, mu
beyond its characteristic thermal lengths@1,14#. In order to
study the nature of this correction, we consider networks
springs having the spring energies

fab~Rab!5
1

2
Kab~Rab!21

1

4
aab~Rab!4. ~21!

Our choice for the spring energy is inspired by the free
ergy of a finite long polymer chain@1#, where the leading
correction to the linear relation between the force and
chain end-to-end vectorfW5KRW is a term proportional to
R2RW . The elastic energy of the system is given, again, as
sum of all springs energies

E5 (
^ab&

fab

5 (
^ab&

F1

2
Kab~Rab!21

1

4
aab~Rab!4G

[E01E1 . ~22!

We assume thatE1!E0, and we treat the quartic term pe
turbatively. In fact, we will make a more restrictive assum
tion that for each bondaab(Rab)4!Kab(Rab)2. Since the
quadratic termE0 does not make any contribution to th
elastic constants, we will mainly focus on the contribution
the perturbation termE1 to them.

In the lowest order of a perturbation theory, the elas
constants of the network are temperature independent.Sub-
stituting the pair potential~22! into expression~7! for the
stress tensor, and expanding this expression to the first o
in aab, yields

s i j 5s i j
0 1

1

V K (
^ab&

aab~Rab!2Ri
abRj

abL
0

2
1

VkTK dS (
^ab&

KabRi
abRj

abD dE1L
0

, ~23!

where dA[A2^A&0 denotes a thermal fluctuation of th
quantityA, and^ &0 denotes a thermal average with the~un-
perturbed! Gaussian Boltzmann weight exp(2E0 /kT). s i j

0 is
the stress tensor of the corresponding Gaussian netw
~where aab[0), given by Eq.~8!, which can be also ex-
pressed by its value atT50

s i j
0 5

1

V (
^ab&

@Kab~R0
ab! i~R0

ab! j #. ~24!

In the above expression (R0
ab) i is the i th Cartesian compo-

nent of the bond vectorRW 0
ab at the ground state of the unpe

turbed Gaussian network.
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The next step is to substitute the pair potential~22! into
the expression for the elastic constants@12# @see also Eq.~7!
in Ref. @15##. By expanding this expression to the first ord
in $aab%, and using the fact that for the Gaussian netwo
Ci jkl [0 ~20!, we find that

Ci jkl 5
2

V K (
^ab&

aabRi
abRj

abRk
abRl

abL
0

1^X&0 ,

whereX is a combination of terms, each of which includ
the thermal fluctuations of some quantities. Since atT50
there are no thermal fluctuations, that term vanishes and
readily find that

Ci jkl ~T50!5
2

V K (
^ab&

aabRi
abRj

abRk
abRl

abL
0

5
2

V (
^ab&

@aab~R0
ab! i~R0

ab! j~R0
ab!k~R0

ab! l #.

~25!

The second equality in the above equation is obtained
equating the expression inside^ &0 to its value at equilibrium
~at zero temperature the thermal average coincides with
value!.

At a finite temperature we may write the elastic consta
as the product ofCi jkl (T50), and a dimensionless function
which may depend only on terms of the for
(kT aab)/(KgdKez). Expanding the function into a powe
series in these variables yields

Ci jkl 5Ci jkl ~T50! F11S linear terms inH kT aab

KgdKezJ D
1•••G .

SinceCi jkl (T50) is a linear function in the quantitiesaab,
and since we are interested only in the first-order correc
due to the perturbation~namely, in terms linear inaab), we
conclude that to the lowest order inaab, Ci jkl are tempera-
ture independent, and are therefore given by the above
pression~25!.

IV. ELASTICITY OF PHANTOM PERCOLATION
NETWORKS

A. The percolation model

One of the models which has been proposed to desc
the process of gelation ispercolation@8#. In the percolation
model, the sites or the bonds of a lattice are randomly oc
pied by, respectively, atoms or bonds, with an occupat
probability p. In the site percolation model, one links eve
two neighboring occupied sites, while in the bond perco
tion model one assumes that all the sites are occupied
atoms and each pair of neighbors is linked if the bond
tween the atoms exists. Within the percolation model, the
point is identified with the percolation threshold, the critic
site or bond concentration above which a spanning cluste
formed. The percolation model predicts that close to the p
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colation threshold,pc , quantities such as the mean clust
mass, typical cluster linear size, and the gel fraction h
power-law dependence on (p2pc). The relevant exponent
are universal and depend only on the dimensionality of
system, but not on the atomic-scale features of the sys
The values of these exponents have been measured ex
mentally for various gel systems@16#. A fairly good agree-
ment has been found between the measured exponents
their values as predicted by the percolation model, wh
proves the applicability of the percolation model to gelatio

The situation concerning the elastic behavior of gels is
that clear. The main question is whether the shear mod
also follows a scaling lawm;(p2pc)

f with a universal ex-
ponentf. Experimental values of this exponent measured
different polymeric systems are very scattered@17#. On the
theoretical side, it has been demonstrated that atT50, the
elastic behavior of percolation systems depends on the na
of the interactions in the system. For nonstressed cen
force networks the rigidity threshold occurs at a concen
tion of bonds much larger thanpc @18#. If bond-bending
forces are present, rigidity and percolation thresholds co
cide; however, the rigidity exponentf is considerably larger
than the conductivity exponentt, suggesting that the two
problems belong to different universality classes@19#. As the
number of models of elasticity of random systems increas
it became clear that de Gennes’s conjecture about the i
tity of the exponentf to the conductivity exponentt @6# can
be justified only within models which ‘‘reduce’’ the thermo
dynamic behavior of gels to so-called ‘‘scalar elasticity
models@20#. Recently, the equalityf 5t was measured by
Plischkeet al. in a numerical study ofphantomcentral force
percolation networks atTÞ0 @21#. The authors attributed
this elastic behavior to the entropic part of the elastic f
energy.

B. Elasticity of percolation networks

We would like to apply our results from Secs. II and III t
phantom percolation networks of identical springs having
energyE5 1

2 KR2 ~Gaussian network! or E5 1
2 KR21 1

4 aR4

~nearly Gaussian network!. We discuss the critical elasti
behavior of such networks in the regime where the corre
tion lengthj;(p2pc)

2n is much larger than the characte
istic atomic length scaleb, but much smaller than the linea
size of the systemL. The correlation length is the lengt
scale below which the spanning cluster has a fractal struc
and above which the system is homogeneous. A quantity
follows a power law as (p2pc)

Y;j2(Y/n) whenL@j scales
asL2(Y/n) whenj@L. ~At pc the latter power law is always
relevant becausej is infinite.! Since j@b, we expect the
structure of the spanning cluster to ‘‘forget’’ the details
the lattice, and have the elastic properties of an isotro
system. In the Gaussian case, the tensorial equalitys i j
5S i j ~18! becomes a scalar equality2P5S. Also, because
of the vanishing of the elastic constants of Gaussian n
works ~20!, we have for the shear modulus of the spann
cluster thatm5C442P52P5S ~4!. Close to the percola-
tion threshold, the conductivity scales asS;(p2pc)

t, and
therefore we conclude that for Gaussian networks
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m52P5S;~p2pc!
t, ~26!

in accordance with de Gennes’s argument. This result is
changed if we also include the finite clusters, since the la
make no contribution to the shear modulus~just as they do
not contribute to the conductivity of the system!. The equal-
ity of the shear modulus and the stress, a signature of Ga
ian elasticity, was observed numerically in Ref.@21#.

In the nearly Gaussian case, we have from Eq.~23! that
the leading term in the expression for the stress is the Ga
ian term, and therefore we expect to have the same sca
behavior as in Eq.~26!. What distinguishes non-Gaussia
networks from purely Gaussian ones is the nonvanish
elastic constants of the former. For percolation networks
reasonable to assume that the elastic constants also foll
power law C;(p2pc)

g. The elastic constants of a near
Gaussian network should be ‘‘almost’’ zero, namely mu
smaller than the network stress. Therefore, the perturba
analysis in Sec. III would be self-consistent only if it yield
that the exponentg. f . We can use expression~25! for the
elastic constants to derive exact bounds on the value of
exponentg. Consider a percolation network of linear sizeL
in d dimensions atpc . An upper bound on the exponentg is
obtained by including only a partial set of the bonds of t
spanning cluster in the sum in expression~25!. We take the
set of singly connected bonds~SCBs!, which are such bonds
that removal of each one of them disconnects the span
cluster. Their number scales asL1/n @22#. The force acting on
a SCB is the total force applied on the surface of the syst
which is proportional toPL(d21);L (2t/n1d21). The length
to which a SCB is stretched, (R SCB)0, is proportional to the
force, and therefore has the same scaling form

~RSCB!0;L (2t/n1d21), ~27!

and consequently from Eq.~25! we get

C;L2g/n>L2dL1/nL4(2t/n1d21),

which yields the upper boundg<(4t21)2n(3d24). A
lower bound forg is obtained by noting that for any bon
other than the SCBs, (Rbond)0,(RSCB)0. That is because the
SCBs are the only bonds which experience the total fo
acting on the system. We use this fact in expression~25! and
write that

C;L2g/n<@~RSCB!0#2H 1

V (
bonds

a@~Rbond!0#2J .

The term in braces in the above inequality is, however, p
portional to the pressure@see Eq.~24!#, which scales like
L2t/n. This, together with result~27!, brings us to the lower
boundg>3t22n(d21). Using the known values of the ex
ponentst and n @23,8#, we find that in three dimension
2.48<g<2.6. In six dimensions both bounds coincide
give g54. This last result reflects the fact that in six dime
sions essentially all the bonds that carry the force across
network are SCBs. In two dimensions we have the bou
1.22<g<1.52. However, we must mention a special featu
of the two-dimensional case which questions the validity
the ‘‘nearly’’ Gaussian model. The model assumes that
ot
er
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contribution of the quartic term to the spring energy is sm
compared to the quadratic term@Eq. ~21!#. This happens only
if the bond length satisfies

Rbond!~K/a!1/2. ~28!

The longest bonds in the network are the bonds thatinside a
cell of sizejd serve as SCB’s. Close topc , their length
scales like

Rbond;j2t/n1(d21);~p2pc!
t2n(d21)[~p2pc!

y.

In two dimensions the exponenty,0, which implies that the
length of the SCBs diverges, and certainly does not sat
criterion ~28!. The problem is not limited to the SCBs only
but is relevant to a larger fraction of the bonds, including t
doubly connected bonds, triply connected bonds, and so
It is difficult to predict, a priori, whether this observation
should modify the results of the nearly Gaussian model fr
Sec. III. Note that we do not encounter such a problem fo
dimensionality larger than two, where the exponenty is posi-
tive.

V. SUMMARY AND DISCUSSION

We have studied the elastic properties of phantom Ga
ian and nearly Gaussian networks. For Gaussian netwo
the stress and elastic constants were calculated exactly
found that a characteristic feature of Gaussian network
the vanishing of their elastic constants. This feature is b
temperature and network-topology independent. We a
proved the equality between the stress tensor of a Gaus
elastic network to the conductivity tensor of a resistor n
work, in which the conductance of each resistor is equa
the corresponding spring constantKab. This result quantifies
the somewhat vague statement about an analogy betw
elasticity of Gaussian networks to conductivity of resisto
networks.

We have investigated the nonlinear correction to the e
tic behavior by studying the properties of networks
springs whose energies include small quartic terms in a
tion to the leading quadratic~Gaussian! terms. While the
stress tensor is still dominated by the contribution of t
quadratic term, the elastic constants~which vanish in the
Gaussian network! are solely due to the non-Gaussian co
rection. We calculated the elastic constants to the first or
in perturbation theory.

Finally, we applied the results of both the Gaussian a
the nearly Gaussian models to describe the elastic beha
of phantom percolation networks close to the percolat
threshold. Obviously, the well-known result that the she
modulus follows the same scaling law,m;(p2pc)

t, like the
conductivity, was recovered. We made a prediction that
elastic constants also follow a scaling lawC;(p2pc)

g,
with exponentg.t, and found bounds on the values of th
exponentg.
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APPENDIX: THE CONDUCTIVITY TENSOR OF FINITE
RESISTOR NETWORKS

We consider a network whose bonds are resistors of c
ductanceKab, where the superscriptsa and b label the
nodes which the particular resistor connects. The networ
finite and has an arbitrary topology, i.e., we make no
sumption on the symmetry. We denote byRW b the position of
the nodeb and bywb the electric potential at the node. Th
network is placed inside a rectangular box of volumeV
5L13L23•••3Ld , whereLi is the length of the box along
the i th Cartesian direction.~The derivation presented her
can be easily generalized to systems of arbitrary shape.! The
nodes of the network which are located on the surface of
system are called surface nodes, and we label them with
superscripts. The rest of the nodes are called the intern
nodes, which we denote with the superscripta. The super-
scriptsb andg will be used to denote nodes of both type

The conductivity of an electrical system is a tensorS ik
defined by

^ j i&5S ik^Ek&, ~A1!

where the subscripts denote Cartesian coordinates and
mation over repeated indices is implied, while^ jW& and ^EW &
are the volume averages of the current density and the e
tric field, respectively. This definition ofS ik applies to con-
tinuous electrical systems. It can be generalized to disc
networks if we define the current density by a set of Diracd
functions representing the currents in the bonds. Let us
sume now that the electric potentialw, applied on the surface
of the network, is such that on each surface point it is eq
to the j th Cartesian coordinate of the point. SinceEW 5

2¹W w, we have

^Ek&5
1

VE Ek dV

52E ]w

]xk
dV

5
1

V F2E
xk5Lk

w dS1E
xk50

w dSG ,
where the surface integration is over the boundariesxk50
andxk5Lk , normal to thekth direction. However, with our
choice for the electric potential on the boundaries,w5xj , it
is easy to see that^Ek&52dk j , wheredk j is the Krönecker
delta.

The mean current densitŷj i& is given by

^ j i&5
1

VE j i dV. ~A2!

As we have already noted, the above definition~A2! applies
to continuous electrical systems. To make it applicable
resistor networks we need to write the current density a
sum of Diracd functions representing the currents in t
‘‘linear’’ resistors. With this formal representation, the co
tribution to ^ j i& of each resistor is given by the line integr
n-

is
-

e
he
l

m-

c-

te

s-

al

o
a

E
RW a

RW b

I ab dxi5Kab~wa2wb!~Ri
b2Ri

a!,

where I ab5Kab(wa2wb) is the current across the resist
between nodesa andb. Adding the contributions of all the
resistors we find that

^ j i&5
1

V (
^ab&

Kab~wa2wb!~Ri
b2Ri

a!.

We may write the last result in a slightly different way

^ j i&5
1

2V H(
g

(
b

KgbQgb~wg2wb!~2Ri
g!

1(
g

(
b

KgbQgb~wg2wb!Ri
bJ

5
1

V H(
g

~2Ri
g!F(

b
KgbQgb~wg2wb!G J ,

where the variableQgb takes the value 1 if the nodesg and
b are connected by a resistor and if at least one of them i
internal node, and the value 0, otherwise. The sums in sq
brackets corresponding to internal nodesg5a vanish due to
the Kirchoff ‘‘junction rule’’ for the vanishing of the sum o
currents entering an internal node,

(
b

KabQab~wa2wb!50.

We are left with the contribution of the surface nodesg5s
only, i.e.,

^ j i&5
1

V H(
s

Ri
s(

b
KbsQbs~wb2ws!J .

This last result can be also represented by summation
all the resistorŝas&, between surface and internal nodes

^ j i&5
1

V F (
^as&

KasRi
s~wa2ws!G .

Finally, since the electric field is equal to^Ek&52dk j , we
have from Eq.~A1! that

2^ j i&5S i j 5
1

V F (
^as&

KasRi
s~ws2wa!G .

We have obtained expression~19!, which we constructed by
mapping expression~15! for s i j into the electrostatic prob
lem. This proves that indeeds i j 5S i j . Note thatS i j does
not depend on the positions of the internal nodes but only
the details of the conductivity. In large random networks t
relation~A1! suffices to defineS i j without need of a detailed
specification of boundary conditions. However, ourexactre-
sult is valid also for small networks of arbitrary topolog
provided that the electric fieldEW is generated using the ver
specific boundary conditions specified in the Appendix.
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