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Percolation perspective on sites not visited by a random walk in two dimensions
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We consider the percolation problem of sites on an L × L square lattice with periodic boundary conditions
which were unvisited by a random walk of N = uL2 steps, i.e., are vacant. Most of the results are obtained
from numerical simulations. Unlike its higher-dimensional counterparts, this problem has no sharp percolation
threshold and the spanning (percolation) probability is a smooth function monotonically decreasing with u. The
clusters of vacant sites are not fractal but have fractal boundaries of dimension 4/3. The lattice size L is the
only large length scale in this problem. The typical mass (number of sites s) in the largest cluster is proportional
to L2, and the mean mass of the remaining (smaller) clusters is also proportional to L2. The normalized (per
site) density ns of clusters of size (mass) s is proportional to s−τ , while the volume fraction Pk occupied by
the kth largest cluster scales as k−q. We put forward a heuristic argument that τ = 2 and q = 1. However, the
numerically measured values are τ ≈ 1.83 and q ≈ 1.20. We suggest that these are effective exponents that drift
towards their asymptotic values with increasing L as slowly as 1/ ln L approaches zero.
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I. INTRODUCTION

Percolation theory [1–3] provides a statistical description
of long-range connectivity in lattices or networks when some
of their sites or links have been removed. First emerging in
the context of polymer sciences [4,5] and spread of a fluid
through a porous medium [6], this theory remains a very
active field of research with very diverse applications, ranging
from topography [7], epidemiology [8,9], gelation and colloid
science [10–13], environmental [14] and urban [15] studies,
through more abstract networks [16–19] and more [3]. In this
paper we consider a two-dimensional case of a variant of the
percolation problem, where an initially full lattice has its sites
removed by a single meandering random walk (RW). The
three-dimensional version of the problem models a degrada-
tion of a gel by a single enzyme, or very few enzymes, that
break the crosslinks they encounter [20,21].

A percolating system can be characterized by the level of
its occupation, such as the fraction p of sites present on the
lattice, or the occupied volume fraction in a continuous sys-
tem. (In this paper we consider site percolation on hypercubic
lattices, but the results equally well apply to lattice bonds or
mixed site-bond problems and other types of lattices.) In the
case of lattice percolation the geometry can be viewed as a
collection of clusters formed by neighboring (“connected”)
occupied sites. A cluster is spanning if it forms a continuous
path between opposing boundaries in a specific direction. For
an infinite system, the emergence of a spanning cluster can
be characterized as a phase transition: there exists a sharp
percolation threshold pc, such that for p > pc there exists an
infinite spanning cluster. Both above and below pc the mean
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spatial extent (linear size) of finite clusters is called correlation
length ξ . It diverges near the threshold as ξ ∼ |p − pc|−ν ,
where the universal exponent ν is independent of microscopic
details of the model, but does depend on the dimensionality
d of the system and, possibly, the presence of long-range
correlations. The universality of the critical exponents allows
application of the results of simple models to more realistic
and complicated cases.

One of the simpler percolation models is Bernoulli site
percolation on a d-dimensional lattice where each lattice site
is independently occupied with probability p. The exponent
ν of the Bernoulli problem decreases from νB = 1 at the
lower critical dimension d = 1 to νB = 1/2 for d � dc = 6,
i.e., at and above the upper critical dimension dc [22]. The
generalized Harris criterion [23] has been used to show [24]
that percolation models with short-range correlations or with
power-law correlations ≈1/rb with large power b also belong
to the Bernoulli percolation universality class. However, if
b < 2/νB, then the correlations are relevant, and ν = 2/b [24].
There is a variety of studies of correlated percolation [25–29].

In space dimension d we can consider an initially full
hypercubic lattice of linear size L (in lattice constants) and
number of sites M = Ld the sites of which are being re-
moved by an N-step RW that started at a random position.
Periodic boundary conditions are imposed, i.e., the walker
exiting through one boundary of the lattice reemerges on the
opposite boundary. The number of steps N of the walker is
proportional to the volume of the system, i.e., N = uLd , with
parameter u controlling the length of the walk. In the case
of gel of crosslinked polymers the random walker represents
an enzyme that breaks the crosslinks of a gel that it encoun-
ters [20,21]. The object of the study are the vacant sites not
visited by the random walker, that represent the surviving
crosslinks. The variable u controls the concentration of vacant
sites and naturally replaces p used in the regular percolation.
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For 3 � d � 6 infinite clusters of vacant sites appear for u
below similar threshold values uc ≈ 3 [30]. Banavar et al.
studied the geometry of the clusters created by the vacant sites
in d = 2 and 3 [31], while Abete et al. considered the critical
behavior near the percolation threshold in d = 3 [32]. More
recently Kantor and Kardar studied the percolation properties
of the problem for 2 � d � 6 [30].

Sites visited by an N-step RW on an infinite lattice are
strongly correlated. The final position of such a walk is at a
distance r ≈ aN1/2 away from its starting point, where a is
the lattice constant. This means that number of steps (“mass”)
scales as N ∼ r2, and the fractal dimension [33] of a RW is
d f = 2 independently of the embedding dimension d . There-
fore, we may expect our problem to behave differently in
d = 2 than at higher d . A RW can traverse a finite lattice of
linear size L in ≈ L2 steps, and therefore a walk of uLd steps
traverses (“crosses”) the lattice

Ncr ≈ uLd−2 (1)

times. For d � 3 the increase in lattice size L increases Ncr,
while a strand of RW on every single “crossing” leaves sparser
“footprints” on the lattice. (The total density of visited or
vacant sites in d � 3 remains independent of L and depends
only on u.) This makes the “thermodynamic limits” somewhat
peculiar even for d � 3 since with the increase of L the struc-
ture of the system changes, rather than having more similar
pieces being added to it.

On an infinite lattice the density of sites visited by an
N-step RW (for d � 3) within the distance visited by the
walk is N/rd ∼ 1/rd−2. On a finite lattice, the sites belonging
to different strands of RW created due to periodicity of the
lattice are almost uncorrelated. The repeated crossings only
contribute to the uncorrelated density of sites. However, the
correlation is preserved for r smaller than the lattice size for
sites situated on the same strand of the RW. Consequently,
the cumulant of the correlation (from which the overall back-
ground density has been subtracted) has the same power-law
relation. Consider a random variable v(�x) which is 1 if the
site at position �x is vacant, and zero otherwise. It is comple-
mentary to the variable representing the visited site (their sum
is 1) and, therefore, it has the same cumulant: 〈v(�x)v(�y)〉c ∼
1/|�x − �y|d−2 [30]. Thus, for correlation power b = d − 2, the
correlation length exponent ν = 2/b [24] becomes

ν = 2/(d − 2), for 3 � d � 6. (2)

The ubiquitous factor “d − 2” appearing in the above dis-
cussions, such as in Eqs. (1) and (2), or expressions for the
correlation functions, indicates that many of the arguments
presented for d � 3 will change in the two-dimensional case.
In this paper we focus on the vacant site properties in d = 2
from the point of view of percolation theory. Despite the
absence of percolation threshold, the system has many scaling
properties that resemble critical phenomena. In Sec. II we
point out the unusual features of d = 2, and begin a discussion
of two-dimensional vacant site (unvisited by a RW) percola-
tion (2DVSP) at a point where Ref. [30] left off. Furthermore,
in Sec. II we explain the main properties that set 2DVSP
apart from vacant site percolation in higher dimensions and
verify the absence of a sharp percolation threshold in d = 2.
In Sec. III we consider the mean sizes of the largest cluster and

other clusters, and demonstrate the role played by the lattice
size L in the description of the system. Our results show that
L is the main length scale of the problem, which replaces
the correlation length ξ of other percolation problems. In
particular, we show that the spanning cluster volume and the
mean volume of finite clusters both scale as L2. In Sec. IV we
focus on the geometry of the spanning cluster and demonstrate
that the large clusters in d = 2 are not fractal, contrary to the
results of the previous study [31]. Nevertheless, we show that
the boundaries of those clusters are fractal with dimension
4/3. In Sec. V we study in detail the cluster statistics in
2DVSP. We put forward a heuristic argument describing clus-
ter statistics and the effective exponents measured numerically
are close to the proposed theoretical values. We summarize
and point out directions of future research in Sec. VI.

II. HOW SPECIAL IS d = 2?

Since the fractal dimension of RW is 2, it “almost” fills
the two-dimensional embedding space: in d = 2 the number
of distinct sites visited by an N-step RW on an infinite square
lattice increases for long walks as Ndist = πN/ ln N [34], i.e.,
slightly slower than N , because the walk is recurrent and
keeps revisiting previously visited sites an ever increasing
number of times. (In contrast, at d � 3 the number of distinct
visited sites is asymptotically proportional to N [35,36] since
the number of repeated visits approaches a constant [37,38].)
The presence of the logarithmic correction in Ndist has conse-
quences for a RW of N = uL2 steps on a finite square lattice
of linear size L (0 � x1, x2 � L − 1) and volume M = L2. We
assume periodic boundary conditions in both directions, i.e.,
the coordinate xi = L coincides with xi = 0 for i = 1, 2. On
such a lattice, it has been proven [39] (see also Ref. [30]) that
the mean fraction of unvisited (vacant) sites for large L is

p = exp
(
− πu

2 ln L

)
. (3)

(For a finite square lattice of M sites, a RW needs on the
average 1

π
M ln2 M steps to visit all the sites of the lattice

[40–45]. The area of complete or nearly complete coverage
[39,46,47] of a lattice exhibits unusual effects of discreetness,
such as correlations between unvisited points, and has been
extensively studied. If one just concentrates on the density of
unvisited sites and disregards their connectivity or clusters,
it is possible to identify a fractal behavior with a power law
that depends on the extent to coverage. However, this limit
corresponds to u = ∞ in our problem, while we are concerned
only with finite us.)

In Eq. (3) the fraction p of vacant sites depends on L and
it deprives us of a simple correspondence between p and u,
which is present in d � 3, where p = exp(−Ad u) with some
constant Ad [30,42]. However, we note that for fixed u in
d = 2 in the L → ∞ limit, we have p → 1. Figure 1 depicts
RWs with the same u for three different Ls, demonstrating
the tendency of increasing p with increasing L. For very large
Ls we can treat the clusters of vacant sites as being separated
by “thin regions” of RWs. [The results in Fig. 1 as well as in
many following figures are presented for u = 1.3. They do not
differ qualitatively from any other u = O(1). The convenience
of showing the data for this particular value of u is explained
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(a) (b) (c)

FIG. 1. Examples of random walks (black) of N = uL2 steps (u = 1.3) on a periodic square lattice of size L2 for (a) L = 64, (b) 512,
and (c) 4096. Despite having the same RW length parameter u, the actual fraction of the vacant (unvisited) white sites increases with L from
(a) p = 0.60 to (b) 0.70 and to (c) 0.78.

later in this section and in Sec. IV.] Since Eq. (3) is valid
only asymptotically for large L, we measured numerically
the mean fraction of vacant sites p for fixed u = 1.3 and
increasing L. The results are depicted in the semilogarithmic
plot in Fig. 2, and at such scale Eq. (3) should be represented
by a straight line. We see that Eq. (3) is satisfied already for
L ∼ 100. However, the limit of p = 1 is approached slowly:
for large L the dependence is p ≈ 1 − πu/2 ln L + . . . . Even
for L = 512 and u = 1.3, the fraction of vacant sites p ≈ 0.72,
while for L = 106 we only have p ≈ 0.86, and the regime of
p ≈ 1 is numerically inaccessible to us.

When Bernoulli percolation is formulated on, say, a d-
dimensional hypercubic lattice, the dimensionless percolation
threshold pc is reached when a sufficient number of sites is
added to an empty lattice or a sufficient number is removed
from a full lattice. In continuum percolation this corresponds
to a finite fraction of the system volume being occupied or
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FIG. 2. Semilogarithmic plot of numerically measured fraction
p of vacant sites for u = 1.3 as a function of 1/ ln L, for L ranging
between 4 and 4096. (Statistical errors in p calculated from 3 × 105

configurations are smaller than the symbol sizes.) Fraction p → 1 as
(1/ ln L) → 0, as predicted by Eq. (3).

removed. When a percolating situation is created by a RW
removing parts of the system, we may separately consider
the length � of the single step of the RW and the volume ad

occupied by a certain position �ri of the step of the RW. On a
lattice the “size” of the site a and the length � of the step are
both assumed to be equal to the lattice constant. Thus, at any d
a short N-step RW occupies a volume proportional to Nad on
a lattice of volume (aL)d . If the RW performs N = uLd steps,
then in d � 3 the fraction of vacant sites is p = exp(−Ad u).
This means that for d � 3 there should exist a critical value uc.
This has been proven theoretically [48–54] and demonstrated
numerically [30]. (Approaches used in some of these works
also implied the absence of threshold in d = 2.)

It has been mentioned in Sec. I that for d � 3 the increase
of L for fixed u causes the increase in lattice crossings by the
RW as expected from the L dependence of Ncr in Eq. (1). In
d = 2 the situation is very different: on one hand, the value
of u no longer solely determines the fraction of occupied or
vacant sites due to L dependence in Eq. (3). On the other
hand, the number of lattice crossings by the RW only depends
on u and not on the lattice size L. The probability of having
a spanning cluster in, say, vertical direction depends on the
ability of the RW to create a continuous path blocking ver-
tical connection and is independent of the two-dimensional
“volume” occupied by the RW. In the absence of a lattice the
presence of a “blocking path” will depend on the typical step
size � of the RW rather than volume (area) a2 occupied by
each position.

Numerically, we consider site percolation on a periodic
square lattice of L2 sites. A random walker starts at an ar-
bitrary site and performs N = uL2 steps with u = O(1). If
there is a continuous path of vacant sites (unvisited by the
RW) that connects the top and bottom boundaries x2 = 0 and
L − 1, we say that the configuration is spanning (percolating).
Figure 3 depicts the spanning probability � as a function of
u, for lattice sizes L ranging from 4 to 512. (The steps visible
on the graph for L = 4 are a result of truncating uL2 = 16u
to an integer.) We see that the graphs of �(L, u) converge as
L increases with the limit being a smooth function �(∞, u),
thus indicating that there is no percolation threshold. (The
graphs in Fig. 3 are similar to the results in Ref. [30].) This
differs from systems with a sharp percolation threshold such
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FIG. 3. Percolation probability �(L, u) for L = 4, 8, . . . , 512
(bottom left to top right). Each point is an average of 5 × 105 config-
urations and the points are separated by �u = 0.05.

as vacant site percolation in d � 3 or Bernoulli percolation,
where, for L 	 ξ , � rapidly decreases from 1 to 0 around
the percolation threshold and becomes a step function in the
L → ∞ limit.

The continuous curve in Fig. 3 demonstrates the absence
of a transition in d = 2. Due to the central limit theo-
rem, very long lattice RWs [55] can, on a coarse-grained
level, be treated as Gaussian RWs in continuous space [38]
when the probability of a particular configuration {�ri} of
step positions of an N = uL2 step walk is proportional to
exp [−∑N

i=1(�ri − �ri−1)2/�2]. (Corrections to Gaussian behav-
ior are irrelevant in the renormalization group sense and their
relative strength decays upon repeated coarse-graining [56].)
The decrease of L by, say, a factor λ, and N by a factor λ2,
is equivalent to simply integrating out λ2 − 1 out of every
λ2 variables �ri (decimation), which leads to the same func-
tional shape of the probability with a simple replacement of
� by λ� without any change of the system volume. Thus, the
Gaussian RW is exactly coarse-grained without changing the
overall distances between points. Not surprisingly, such an
operation usually does not change the spanning cluster, ex-
cept for slight coarse-graining of its boundaries. (The “exact”
nature of coarse-graining transformation applies only to the
distances, but may have nontrivial topological issues, such
as breaking apart of a spanning cluster which was weakly
connected before the transformation, or joining of two nearby
clusters and creating a spanning cluster. While such events are
unlikely, they render the entire argument inexact. An example
of topological issues of RWs can be found in the problem
of a winding number—see Ref. [57] and references therein.)
The above argument can equally well be used in the opposite
direction for fine-graining the system by a factor λ, which
involves a replacement of every bond of a Gaussian RW, by
λ2 shorter steps with � replaced by �/λ. This fine-graining
corresponds to an increase of overall system size from L to
λL. The L dependence visible in Fig. 3 for L � 100 is a con-
sequence of the transition from a RW on a discrete lattice to an

essentially continuous Gaussian RW behavior. Examination of
the L dependence of � for a fixed u shows that the curves in
Fig. 3 almost reached their asymptotic values.

We can interpret the spanning probability � as an average
of a random variable �′(N ) which has the value 1 when there
is a spanning cluster and zero otherwise, when an N-step
walk has been generated. For a specific realization of a RW
the variable �′ = 1 as the walk begins, and at some step
N0 the RW disconnects the spanning cluster, and the system
no longer percolates, i.e., �′ = 0 for N � N0. The “discrete
derivative” of this function is ��′

�N = −δNN0 , where δi j is the
Kronecker delta. For large L, this can be written in terms of
the continuous variable u as d�′

du = −δ(u − u0), where δ(x)
is the Dirac delta function and the percolation stops after ex-
actly u0L2 steps for that configuration. Clearly, the ensemble
averaging over all possible RWs corresponding to a given u
results in the equality | d�

du | = −〈 d�′
du 〉 = 〈δ(u − u0)〉, which is

exactly the probability distribution of the percolation stopping
times u0. Calculating | d�

du | from the data in Fig. 3, we find
that for large Ls the distribution of percolation stopping times
converges to a broad peak centered around u = u∗ = 1.3 with
half width of approximately 0.8. For every RW, one step
before the span breaking number N0 is reached, the spanning
cluster contains at least one “bottleneck” that will be pinched
off at the next step. Thus, the derivative d�/du can also be
viewed as characterizing such situations.

All the special features of the 2DVSP problem described
in this section qualify d = 2 to be called the lower critical
dimension of the vacant site percolation problem. However,
it qualitatively differs from the lower critical dimension of
Bernoulli percolation [1]. For the latter, d = 1 is the lower
critical dimension with a trivial percolation threshold (pc = 1)
and various properties that can be calculated analytically. Be-
sides being a relatively simple problem, Bernoulli percolation
for p < 1 in d = 1 has a finite correlation length ξ that simply
depends on p, and the system becomes homogeneous beyond
that length scale. We shall see that 2DVSP does not have
such a length scale, and its structure keeps changing with the
increase of the system size L.

III. MEAN CLUSTER SIZES

Most quantitative features of percolating systems are ex-
tracted from the shapes and sizes of clusters of neighboring
sites. We identify the clusters of vacant sites (unvisited by
RW) using a Hoshen-Kopelman algorithm [58], which effi-
ciently groups the sites into clusters in a single pass through
the lattice. To generate each configuration we consider a RW
meandering on a lattice of linear size L with periodic boundary
conditions in both x1 (“horizontal”) and x2 (“vertical”) direc-
tions. However, for the purpose of cluster identification, we
assume that only the x1 coordinate is periodic, i.e., the clusters
can connect through the right and left edges of the lattice,
while the x2 coordinate is not periodic and clusters cannot con-
nect through the bottom and top edges. The configurations in
our simulation are generated by RWs of length uL2. For each
u and L pair (in a broad range of values) we simulate a large
number of independent realizations, and for each realization
we identify the clusters. We note that in Bernoulli percolation
it can be shown that usually (in d � 6) the infinite cluster is
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FIG. 4. Largest cluster strength P dependence on RW length pa-
rameter u for L = 4, 8, . . . , 512 (bottom left to top right). Each point
is an average of 5 × 105 configurations and the points are separated
by �u = 0.05.

unique at the threshold, but for finite L we may accidentally
have few spanning clusters although the frequency of such
occupancies decreases as a negative power of L. In 2DVSP
each configuration is generated by a single continuous RW
which tends to create a single spanning cluster. However, the
combination of different boundary conditions for RWs and for
cluster identification, as described above, makes it possible
for finite L to have exceptional (and rare) configurations with
more than one cluster.

We denote the probability that a given site belongs to the
largest cluster in the system as the largest cluster strength
P. This is an ensemble average of the number of sites in
the largest cluster divided by L2. In Bernoulli percolation [1]
in the L → ∞ limit, below the percolation threshold P → 0
since the largest cluster is finite, while above the threshold
P is finite and represents the volume fraction of the infinite
cluster. (Therefore, P is used as an order parameter in many
percolation problems.) Moreover, in Bernoulli percolation the
concepts of infinite cluster and spanning cluster coincide. This
is not the case in our problem. Due to the absence of a perco-
lation threshold, the strength of the largest cluster P includes
both spanning and nonspanning clusters. In fact there is no
significant difference in the volumes of both types of largest
clusters and the volumes of all of them are proportional to L2

leading to a finite P. Clearly, P � p but this is a weak bound
since p → 1 as L increases. Figure 4 depicts the largest cluster
strength as a function of u for lattice sizes L ranging from 4
to 512. (As in Fig. 3, the steps for L = 4 are due to truncation
of uL2 to an integer value.) As expected, P(L, 0) = 1 since
the entire lattice is a single (largest) cluster, and the func-
tion monotonically decreases with increasing u. We observe
that the graphs in Fig. 4 converge as L → ∞ to a smooth
function P(∞, u), confirming that the volume of the largest
cluster scales as L2. This observation will play an important
role in Sec. IV. The convergence of the curves to P(∞, u) is
significantly slower than the convergence of � in Fig. 3, since

it is influenced by the slow approach of p to unity, as indicated
by Eq. (3): The analysis of the data for a single value of u = u∗
for larger Ls shows some weak (but linear) dependence of P
on 1/ ln L indicating that the asymptotic value is by some 3%
higher than the value for L = 512.

The statistics of smaller clusters are of great interest in
percolation problems. We define all the clusters except the
largest cluster as finite clusters. We denote by Ns the number
of finite clusters with volume (number of sites) s in a particular
configuration on a lattice, and define the mean normalized
cluster number ns = 〈Ns〉/L2, where 〈〉 denotes average over
realizations. The exclusion of the largest cluster from the
statistics resembles a similar definition in Bernoulli percola-
tion [1]. However, in the latter case, it serves as a technical tool
to exclude the infinite cluster above the percolation threshold,
and plays a negligible role below the threshold where the size
of the clusters is limited by ξ and for large L there are many
clusters of similar sizes. Thus, in the “thermodynamic limit”
of Bernoulli percolation the quantity ns is simply a function
describing the prevalence of finite clusters. In 2DVSP the
largest cluster always has its number of sites proportional to
L2 as do large “finite” clusters. From the definition of ns we
see that sNs = snsL2 is the total number of sites belonging to
finite clusters of size s and therefore obtain the identity

∑
s

sns = p − P. (4)

Unlike the case of Bernoulli percolation, the function ns may
depend on L and it is not evident that a limiting function exists
for large L. We thoroughly discuss this function in Sec. V.

The function ns can be used to determine the mean size of
finite clusters: the total number of lattice sites which belong
to an s cluster is sNs, and the total number of vacant sites is
pL2, then the probability that a randomly selected vacant site
belongs to a finite s cluster is sns/p, and the mean finite cluster
size S̃ is

S̃ =
∑

s s2ns

p
. (5)

This definition of the mean cluster size differs from a similar
definition in Ref. [1] only by the exclusion of the largest
cluster in each configuration in the definition of ns.

In regular percolation the mean size of finite clusters is
controlled by the correlation length ξ , which increases as the
percolation threshold is approached. However, for L 	 ξ the
distribution ns becomes independent of L. In our problem S̃ ∼
L2, and therefore Fig. 5 depicts the ratio S̃/L2 as a function of
u for lattice sizes L ranging from 4 to 512. (As in the previous
figures, the steps in the L = 4 graph are due to truncation to
integer N .) The curves vanish for u = 0 since the entire system
is a single largest cluster which is excluded in the calculation
of ns. The values of S̃ increase with increasing u until u ∼ 2
and then decrease when the RW occupies most of the space
for larger u. The ratio S̃/L2 seems to converge as L → ∞,
confirming that even the mean finite cluster size scales as
L2. However, even here the numerical test of convergence
of the function for a single u = u∗ indicates that there is a
residual dependence on 1/ ln L leading to a slightly larger
(up to 3%) limiting value of S̃/L2. From our data it is not
possible to determine whether the maximum of the curves
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FIG. 5. Ratio of the mean finite cluster size S̃ and system size
L2 as a function of RW length parameter u, for L = 4, 8, . . . , 512
(bottom to top). Each point is an average of 5 × 105 configurations
and the points are separated by �u = 0.05.

keeps shifting with increasing L. Note that the mean size of
the finite clusters at its maximum is only ≈0.02L2 which is
rather small compared to P.

IV. GEOMETRY AND FRACTALITY OF THE LARGEST
CLUSTER

In this section we take a closer look at the geometry of
the largest cluster. Figure 6 depicts four 2DVSP realizations
for L = 512 and u = u∗ = 1.3. This particular value u = u∗
was selected because it maximizes | d�

du |, and we expect to see
clusters that are close to the transition between spanning and
nonspanning state, where diverse and ramified configurations
can be observed. At u = u∗ close to half of configurations
percolate, but the peak in | d�

du | is very broad and most of the
configurations are not very close to the transition point.

A casual visual inspection of the configurations in Fig. 6
indicates that the largest clusters have rather “compact” two-
dimensional interiors and very jagged boundaries. (Similar
statements can be made about the clusters of intermediate
sizes.) We also note that the linear dimensions of large clusters
are of the order of L. Below we quantify these observations.

In most percolation problems the system is homogeneous
beyond the correlation length ξ [1]. However, close to the
percolation transition the correlation length ξ , which is the
typical linear size of finite clusters, is much larger than the
lattice constant a. In the broad range of distances a � r � ξ ,
fractal behavior can be observed: e.g., the mass of a cluster
within some distance r from one of its sites increases as rd f ,
where d f is the fractal dimension of the cluster. Alternatively,
the probability to find a site belonging to the cluster at the
distance r from another site of the same cluster decreases
as 1/rdco , where the fractal codimension dco = d − d f [59].
(The relation between d f and dco is obtained by integrating
the density to find the mass within the radius r.) Thus, the
fractal dimension can be measured either by examining total
cluster mass within some distance r or by examining two-

point correlation functions. The presence of fractal behavior is
not always easy to ascertain: e.g., for Bernoulli percolation in
d = 2 the fractal dimension d f = 91

48 ≈ 1.9 [1,60] is not very
different from the embedding dimension.

In the presence of a percolation threshold, the “cluster mass
versus radius” method for measuring the fractal dimension
can be reduced to a measurement (at the threshold) of the
mass PLd of the spanning cluster (part of the incipient infinite
cluster) as a function of L and equating it to Ld f . Thus, the
L dependence of P contains the information about d f . In our
problem the threshold is absent, while P is independent of L,
indicating the absence of fractal behavior, and confirming the
impressions of Fig. 6. However, in 1985 Banavar et al. [31]
examined two-point correlation functions of clusters of vacant
sites left by a meandering RW at the percolation point in both
d = 2 and 3 and reached the conclusion that these clusters
exhibit fractal behavior. In d = 3 their conclusion should not
be surprising since the system has a percolation threshold
and such behavior is expected. However, in d = 2 they also
found that d f = 1.75. Closely following their approach (see
also [1]), we define the two-point correlation function for the
spanning cluster as

C(�r) = 1

s

∑
�r ′

ρ(�r ′)ρ(�r + �r ′), (6)

where the density ρ(�r) equals 1 for sites belonging to the
spanning cluster (up to a lattice vector due to periodicity) and
zero otherwise, and �r ′ is summed over all s sites of the cluster.

Figure 7 depicts the azimuthal average of the correlation
function C for lattice sizes L ranging from 48 to 768. All the
graphs intersect at r = 0 since by definition C(0) = 1. The
data for this figure were simulated using a different ensemble
from the rest of our results: instead of a fixed u, the RW
continues until the spanning cluster disconnects, and then we
take the configuration of the lattice before the last step. This
method creates an “almost disconnected” spanning cluster,
and is similar to the methods used in Ref. [31]. (We note that,
while the length of the RWs in this ensemble is not fixed,
the typical value of u is u ∼ u∗, consistently with Sec. III.)
In Fig. 7(a) we see that for smaller fixed r, the correlation C
approaches a constant value independent of r as L increases.
For larger r, the correlation function C decays exhibiting finite
size effects. E.g., the value of r at which C drops to, say,
0.6, doubles every time L is doubled. This is confirmed by
the overlapping graphs in Fig. 7(b), where C is displayed as a
function of the scaled variable r/L.

Since the absolute value of the slope of each graph in
Fig. 7 first increases for small r and then decreases when r
approaches L, there is an intermediate regime on the logarith-
mic scale (less than 1/3 of a decade) where the slope is almost
constant, leading to an apparent power law corresponding to
codimension dco = 0.35 (indicated by the dashed line). This
behavior, although with a codimension dco = 0.25 instead,
prompted the authors of Ref. [31] to suggest that the spanning
cluster is a fractal with dimension d f = 1.75 [31]. Their data
correspond to L = 96, which is the second leftmost graph in
Fig. 7(a). However, in the fractal regime, we would expect the
C(r) graphs corresponding to ever increasing Ls to be linear
continuations (on the logarithmic scale) of each other with
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(a) (b)

(c) (d)

FIG. 6. Examples of configurations on a 512 × 512 lattice with u = 1.3. The sites visited by the random walk are colored black. The
clusters of vacant sites are colored according to their volume: the largest cluster is colored red, and the rest of the clusters are colored from the
second largest to the smallest according to a periodic color scheme of orange, yellow, green, blue, and violet. (In grayscale format these appear
as different shades of gray with red → intermediate gray, blue → very dark gray, violet → dark gray, orange → light gray, green → very
light gray, yellow → white.) The clusters can connect sites through the left and right edges of the lattice but not through the top and bottom
edges. The examples include (a) a single large percolating cluster, (b) a nonpercolating system with three large clusters, (c) a very large and
convoluted percolating cluster, and (d) a large percolating cluster with a narrow bottleneck.

their cutoffs ever increasing with L. Instead we see in Fig. 7(a)
graphs that keep shifting to the right, clearly exhibiting a
finite size (L-dependent) effect. We examined this for both
the fixed u and the “almost disconnected cluster” ensembles,
and found no appreciable difference between the overall be-
havior of the correlation function. (It should be noted that
when Ref. [31] was written, the absence of a critical point
of 2DVSP was not clearly recognized.) These observations
convince us that in d = 2 the spanning cluster is indeed com-
pact and its linear size is proportional to L, while its mass

is proportional to L2, consistently with the visual inspection
of Fig. 6.

The linear size of a cluster can be quantified by its radius
of gyration Rg, defined as [1,31]

R2
g = 1

s

s∑
i=1

(�ri − �rcm )2, (7)

where s is the number of sites in the cluster, �ri are the cluster
sites, and �rcm is the position of the center of mass of the
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FIG. 7. Logarithmic plot of the azimuthally averaged two-point correlation C of the largest cluster (see text), averaged over 103 samples,
as a function of (a) distance between the points r, or (b) scaled distance r/L, for L ranging from 48 to 768 [left to right in (a) and bottom to
top in (b) with leftmost points of the graphs from left to right]. The dashed line indicates slope −0.35.

cluster. It should be noted that due to the periodic boundary
conditions in the horizontal direction both the positions of
steps {�ri} and the position of center of mass �rcm are not always
uniquely defined. The proper choices are made to minimize
the resulting Rg. In regular percolation problems, the mean Rg

of the clusters as well as Rg of typical large clusters scale as
the correlation length ξ .

We examined the relation between Rg of various clusters
and their mass for clusters in the entire range of sizes s. The
particular values of the linear extent Rg of various clusters with
a given specific mass s are broadly scattered, but the average
values of R2

g(s) are proportional to s, leading to the conclusion
that the clusters are not fractal, similarly to the largest cluster.
Figure 8 depicts Rg of the largest cluster as a function of L,

0 100 200 300 400 500
0

50

100

150

200

FIG. 8. Radius of gyration Rg of the largest cluster as a function
of L for L = 4, 8, . . . , 512, and for u = 0.4, 0.7, . . . , 1.9 (top left to
bottom right). Each point is an average of 3 × 105 configurations.

for L ranging from 4 to 512 and for u = 0.4, 0.7, . . . , 1.9. We
see that Rg clearly displays the expected linear scaling with L,
although the slope of linear curves in Fig. 8 slowly decreases
with increasing u.

The jagged boundary of the clusters seen in Fig. 6 is formed
by segments of a RW. We define the cluster hull perimeter H
as the total mass of cluster sites bordering the sites visited by
the random walk. We considered the hull perimeter only for
the largest cluster. For fixed L we may expect the numerical
value of the perimeter to decrease as u → 0 since the spanning
cluster will essentially have no boundaries, and on the other
hand for u 	 1 the perimeter will again be small due to a
decrease in the typical size of the largest cluster. Somewhere
at the intermediate values of u, possibly around u∗, we will
see large hull perimeters. Unlike Bernoulli percolation, our
clusters do not have internal boundaries due to holes inside
a cluster, and therefore their entire perimeter belongs to the
hull. For Bernoulli site percolation at d = 2 and p = pc, both
the mass and the hull of the spanning cluster are fractal, and
the hull scales as H ∼ LDH with fractal dimension DH = 1.74
[61,62].

Figure 9 depicts the hull perimeter H of the largest cluster
of our problem as a function of L, for L ranging from 4 to
512 and for u = 0.4, 0.7, . . . , 1.9 on a logarithmic scale. For a
fixed large L the hull perimeter H slightly depends on u reach-
ing a maximum close to u = 1.0 (see inset in the figure). With
increasing L all of the graphs approach straight lines with
slopes corresponding to a power DH = 1.33 ± 0.01, where
the size of the error provides a subjective estimate of uncer-
tainty in extrapolation as well as slight differences between
different values of u. The dashed line in Fig. 9 has a slope
of 4/3 and provides a guide to the eye. (The statistical errors
are negligible.) The measured exponent of 4/3 coincides with
the well-known theoretical result proven by Lawler et al.
[63] (and conjectured by Mandelbrot [33]) that the fractal
dimension of the frontier of a Brownian motion in d = 2 is
4/3.
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FIG. 9. Logarithmic plot of the hull perimeter H of the largest
cluster as a function of L for L = 4, 8, . . . , 512, and for u =
0.4, 0.7, . . . , 1.9 with leftmost points of the graphs from top to
bottom. Some of the lines intersect, and the rightmost points (shown
enlarged in the inset) are ordered from top to bottom in order
u = 1.0, 1.3, 0.7, 1.6, 1.9, 0.4, i.e., for larger Ls the hull perimeter
slightly increases as u increases from 0.4 to 1.0 and then decreases.
Each point is an average of 3 × 105 configurations. The dashed line
indicates slope 4/3.

V. CLUSTER STATISTICS

The mean number of clusters of size s per lattice site ns

as defined in Sec. III is one of the most revealing features of
a percolating system. Despite the differences between 2DVSP
and the usual Bernoulli percolation we will attempt to follow a
similar logic while pointing out important differences between
the systems. If a system lacks a length or mass scale, then
we expect the functions characterizing the system to be power
laws. In particular, one might expect ns = As−τ , where τ is
called a Fisher exponent [1], while A is a constant, possi-
bly dependent on some microscopic properties and details.
In Bernoulli percolation such dependence is valid on scales
r much larger than the lattice constant a but smaller than
the correlation length ξ , i.e., for cluster masses satisfying
1 � s � sc, where sc is a typical mass of a cluster of linear
size ξ . (Typically, there is a power-law dependence between
sc and ξ .) At length scales r ∼ ξ the power law is corrected
by some cutoff function Fc, which is ≈1 for s � sc and drops
to zero as sc is exceeded. The overall shape of the dependence
is

ns = As−τ Fc. (8)

It is frequently assumed in Bernoulli percolation that the
cutoff function depends only on the ratio s/sc, although
away from the threshold a more complicated dependence
on p might appear [64]. At the percolation threshold (ξ =
∞) the cutoff is absent, and therefore Eq. (4) dictates that
an infinite sum

∑
s sns ≈ ∑

s As1−τ converges, and therefore
τ > 2. Indeed for two-dimensional Bernoulli percolation τ =
197/81 ≈ 2.05 [1].

100 102 104 106

10-10

10-5
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FIG. 10. Logarithmic plot of ns, averaged over 7 × 105 sam-
ples, as a function of the cluster mass s, for u = 1.3 and for L =
4, 8, . . . , 4096 (left to right). [Curves for L � 1024 are truncated for
large s (see text).] The dashed and dotted lines indicate slopes −1.85
and 2, respectively.

In the 2DVSP problem the function ns plays a somewhat
different role. In percolation problems with a threshold, there
is some correlation length ξ and therefore a very large sys-
tem of linear size L can be treated as a collection of (L/ξ )d

independent systems. Consequently, even a single very large
realization of the system assures that most cluster sizes s will
be present and ns can be naturally treated as a continuous
function representing the frequency of clusters of size s. In the
2DVSP, there is no correlation length and L is the only large
length scale. In a single sample there are only a few large clus-
ters of size s ∼ L2 and, consequently, if we avoid averaging
over samples for most large s, we will have vanishing ns and
only a few particular values of s will produce ns = 1/L2. An
increase of L will not improve that situation. Only averaging
over the ensemble will produce a continuous function ns of
s. Nevertheless, we expect to have a large range of scale-free
behavior, and, as in the case of regular percolation, we hope
that the ensemble averaged ns has a shape given by Eq. (8).

Figure 10 depicts a logarithmic plot of the cluster number
per site ns for L ranging from 4 to 4096 and u = 1.3. All the
graphs consist of a relatively straight region for s � L2 and
a cutoff around 0.3L2. Close to the cutoff, the curves exhibit
somewhat unusual behavior described in the next paragraph.
We excluded the area close to the cutoff from our analysis
of scaling behavior. While we used rather large statistical
samples, the frequencies of finding a cluster of some partic-
ular (large) s for large Ls become very low and the resulting
curves are very “noisy.” The curves presented in Fig. 10 are
“smoothed” by averaging the results for a particular s over a
range ≈ √

s. This procedure has almost no effect for moderate
Ls, but distorts the “tails” of the curves on large lattices: for
L � 512, when ns drops below a certain (small) value, where
in the entire ensemble of 7 × 105 samples there is about one
cluster of each size s, the averaging procedure distorts the
curve, because it is just an averaging of zeros and ones. We
therefore truncate the curves when this value is reached. For
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L = 512 the truncation appears when the cutoff is reached,
while for larger Ls the graphs are truncated even before reach-
ing the cutoff.

All the curves for L < 512 in Fig. 10 exhibit a sharp cutoff
and the position of that cutoff increases by a factor of 4 every
time L doubles. Such L dependence is consistent with the
results that we had in Sec. III. Therefore, the cutoff function
depends of s/sc, with sc ∼ L2 and with some dependence on u.
Near the cutoff position the function Fc has some structure: in
Fig. 10 instead of being just a simple monotonic drop from
1 to 0, it actually increases above 1 before the drop, thus
moderating the decay of ns close to sc. The behavior close
to the cutoff depends on u: for smaller us the “bump” in Fc

becomes even more pronounced. Such nontrivial shape of Fc

apparently reflects the fact that the large-s part of ns attempts
to depict a few very large clusters by using a smooth function
of s.

Before the cutoff, the curves in Fig. 10 are fairly straight
and approximately follow a slope the absolute value of which
very slowly increases and reaches the value of τ ≈ 1.83 (or
slightly larger) for the largest Ls. The dashed line in Fig. 10
indicates a slope of −1.85. Such behavior is a significant
deviation from the expectation that τ should exceed 2. If
this represents an asymptotic trend, then the requirement for∑

s sns to be finite for ever increasing L, i.e., with the power-
law cutoff increasing as L2, would require the prefactor of
the power law in Eq. (8) to decrease: A ∼ L2(τ−2). While the
vertical position of the curves in Fig. 10 slightly decreases
with increasing L it is extremely weak, possibly dependent on
1/ ln L. Strong L dependence of A would also cast doubt on
our assumption of scale independence of the results on the
intermediate scales. The results described in this paragraph,
namely, τ < 2 and A almost independent of L, are not mutu-
ally consistent.

Special properties of Gaussian RWs in d = 2 can be used
to advance a theoretical heuristic argument that the theoretical
value of τ should be τth = 2. Long RWs on a lattice can
be treated as Gaussian RWs in a continuum. As has been
mentioned in Sec. II, a Gaussian RW can be coarse-grained
or fine-grained exactly: The increase of lattice size from L to
λL and number of steps N from uL2 to uλ2L2 is equivalent
to keeping the system size unchanged, while increasing N by
a factor λ2 and decreasing the step size � by factor λ. Posi-
tions of every λ2rd step of this new fine-grained configuration
will be distributed exactly as the positions of the original
Gaussian RW before it was fine-grained. Thus, the process
of fine-graining replaces each step of the RW by λ2 smaller
steps but does not change the paths of RWs on larger scales.
We saw in Sec. IV that the clusters have compact interiors,
and therefore their volume will not change, except for being
measured in smaller units, i.e., a cluster of s sites will become
a cluster of λ2s sites, of the same shape, although with more
jagged boundaries. This argument, as mentioned in in Sec. II,
assumes that the slight changes in the fine-grained boundaries
created by the RW do not break up fragile clusters that have
bottlenecks or join clusters which were “almost connected” in
the original geometry, or at least such changes are very rare
and do not modify the distributions. The change of scale will
certainly have effect on creation or elimination of the smallest
clusters. Thus by assuming that nothing changed in the overall

10-4 10-3 10-2 10-1 100
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FIG. 11. Logarithmic plot of L4ns, averaged over 7 × 105 sam-
ples, as a function of the scaled cluster mass s/L2, for u = 1.3 and
for L = 4, 8, . . . , 4096 (bottom to top, which is left to right at the
right ends of the graphs). [Curves for L � 1024 are truncated for
large s (see text).] This is a scaled version of the data in Fig. 10. The
dashed line indicates slope −1.85.

geometry we find that the number of clusters in a certain range
Ns(L)�s remains unchanged in the new units, i.e., it is equal to
Nλ2s(λL)�(λ2s). This equality is valid only for large enough s,
far from the smallest s where the cluster number is dependent
on the resolution and graining. By dividing both terms by L2

and eliminating �s we find that

ns(L) = λ4nλ2s(λL). (9)

The argument presented above assumed λ > 1 and resulted in
fine-graining of the system. We could use λ < 1 and coarse-
grain the system. The resulting relation is valid for arbitrary λ,
and, in particular, by taking λ = 1/L we observe that L4ns(L)
becomes a function of only of s/L2. Figure 11 depicts the
scaled number of clusters as a function of the scaled cluster
mass, and the graphs for various Ls almost (but not com-
pletely) collapse. Furthermore, the scaled cutoffs are very
similar and appear at about sc/L2 ≈ 0.3, yet again confirming
relation sc ∼ L2.

The left hand side of Eq. (9) is independent of λ, and the
equation must be valid for an arbitrary λ in the power-law
regime that is only possible when ns = As−2, leading to the
“theoretical” value of the Fisher exponent τth = 2. A slope of
−2 is indicated by the dotted line in Fig. 10, and seems to be
slightly larger than the approximate slope of −1.83 seen in
the graph. Later we will explore the possibility that our results
did not yet converge to their asymptotic values. If the Fisher
exponent is 2, then the coefficient A cannot be constant: to
maintain a finite

∑
s sns, it must decrease as 1/ ln L. Indeed, A

slowly decreases with increasing L. Our heuristic argument is
not accurate enough to determine the logarithmic terms either
in the prefactor or even in the s dependence of ns.

In Sec. III we discussed the possibility of extremely slow
convergence of the numerical results when the L dependence
may be as slow as 1/ ln L. We attempted to study the ap-
parent discrepancy between the heuristic result τth = 2 and
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FIG. 12. Plot of the effective exponents τ defined in Eq. (8), as
a function of 1/ ln L, for u = 0.7, 1.0, . . . , 2.8 (top to bottom) and
L = 64, 128, 256, 512. For u = 1.3 the range of Ls was extended
to L = 1024, 2048, 4096. The exponents are extracted from linear
fits (on logarithmic scale) in the range 1 � s � 0.01L2 (see text).
Estimated systematic errors in vertical positions of data points are as
large as 0.05. The arrow near the vertical axis indicates the expected
theoretical value τth = 2, rather than a value extrapolated from data.

the measured τ ≈ 1.83. We measured the weak dependence
on L of the effective exponent τ . The exponent has been
extracted from a linear fit on a logarithmic scale in the range
1 � s � 0.01L2, which avoids the very peculiar behavior of
the curves near the cutoff. The data points for τ in Fig. 12
are arithmetic means of the slopes in the two halves of the
range, 1 < s < 0.1L and 0.1L < s < 0.01L2. Figure 12 de-
picts τ as a function of 1/ ln L for L = 64, 128, 256, 512 and
for u = 0.7, 1.0, . . . , 2.8. For u = 1.3 the simulations have
been extended to L = 1024, 2048, 4096. Slightly nonlinear
behavior (on the logarithmic scale) of the graphs in Fig. 10
introduces possible systematic errors as large as 0.05. Such
errors, combined with extremely slow L dependence, pre-
vent a reliable extrapolation to L → ∞. Nevertheless, Fig. 12
demonstrates the plausibility of the asymptotic value τth = 2
that is indicated by an arrow.

Usage of the continuous (ensemble averaged) function ns

obscures the fact that there are only a few large clusters, and
therefore in each sample there are no clusters for most large
values of s. It is therefore beneficial to examine these statistics
from a different point of view. We denote by Pk the mass (vol-
ume) of the kth largest cluster, divided by the lattice volume
L2, and averaged over realizations. In particular, the largest
cluster strength P equals P1, and the identity

∑
k Pk = p is

trivial. By construction Pk is monotonous and should exhibit a
more “continuous” behavior than ns because for large clusters
(small k) Pk should converge in the L → ∞ limit just as P
does, and for smaller clusters the differences between cluster
sizes are small and there are many of them.

Figure 13 depicts Pk as a function of the cluster mass index
k, for L ranging from 4 to 4096 and u = 1.3. The graphs are
obtained from the average of Pk over many configurations, in
the same manner as the graphs of ns in Fig. 10. For k > 10 the
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FIG. 13. Logarithmic plot of Pk , averaged over 7 × 105 samples,
as a function of the cluster mass index k, for u = 1.3 and for L =
4, 8, . . . , 4096 (left to right). The dashed line indicates slope −1.20.

graphs appear to roughly converge to a straight line represent-
ing a power law Bk−q, up to a sharp cutoff kc which increases
with increasing L. The effective exponent q slightly decreases
with increasing L and reaches q = 1.20 for the largest sample.
(The estimated systematic errors of the effective exponents
are smaller than 0.05.) The prefactor B is almost independent
of L. We note that most of the mass of the vacant clusters is
contained in three or four largest clusters, while the remain-
der contains a small fraction of vacant sites. Since large k
corresponds to small clusters, the value of kc is not evident.
Clearly, the total number of clusters is significantly smaller
than the number of sites, and therefore kc � L2. Even a tighter
bound can be obtained by demanding the cutoff appears when
the cluster sizes reach a single site, i.e., kc ≈ L2/qB1/q. The
changing shape of the cutoff does not permit exact evaluation
of its power dependence on L but it seems to increase slightly
slower than L2.

Both Pk and ns describe the same cluster statistics from
slightly different points of view. Assuming that they both are
power laws, it should be possible to relate them. The cluster
size s for a specific fixed index k fluctuates, but it is possible
to treat the mean of s as a function of k. Similarly, for a
specific s we can define the mean value of k. Both of these
s-k relations are expected to be the same power laws. As
long as the fluctuations of s for fixed k or, alternatively, the
fluctuations of k for fixed s are small, we can proceed with our
derivation by assuming an approximate deterministic relation
s(k). (For power-law distributions such a relation can be used
even when the fluctuations are large: one gets correct relations
between the exponents.) We will extract this relation from
the mass of the kth cluster L2Pk = L2Bk−q = s. If there are
Ns clusters of size s, the change of an s cluster’s mass by a
unit advances its cluster index k by Ns. Therefore, we expect
dk
ds = −Ns, or

dk

d (L2Bk−q )
= −L2As−τ = −L2A(L2Bk−q)−τ , (10)
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which relates the exponents q and τ by

q = 1

τ − 1
. (11)

The slope of the graphs in Fig. 13 indicates that q ≈ 1.20,
and this corresponds due to Eq. (11) to τ ≈ 1.83. The latter
value is the same as the (approximate) measured value of τ

in the graphs of Fig. 10. It is interesting to note that that
our heuristic estimate τth = 2 corresponds to the exponent
q = qth = 1. By examining the dependence of the effective
exponent q on 1/ ln L we note that 1 is the likely asymptotic
value of q for L → ∞, although large error bars prevent
exact extrapolation. Further examination of the coefficients
in Eq. (10) shows that the product of the prefactors AB1−τ ∼
L2(τ−2). Since neither A nor B shows significant L dependence,
the anticipated asymptotic value τ = τth = 2 seems to be con-
sistent with our results.

VI. CONCLUSIONS AND DISCUSSION

The study of RWs in d = 2 is a very old and well explored
subject. We concentrated on percolation aspects of sites not
visited by the random walk on a periodic lattice both be-
cause this is the lower critical dimension of a slightly more
conventional percolation problem of vacant sites in d � 3,
and because this problem exhibits features that are absent in
“typical” lower critical dimension problems. As far as it was
possible, we used the tools of percolation theory to analyze the
problem, although certain features were very different from
regular percolation, and even different from the behavior of
Bernoulli percolation at its lower critical dimension.

Our paper was motivated by d = 2 being the lower critical
dimension of a practically more important problem of gel
degradation problem in d = 3. However, cross-linked mem-
branes are ubiquitous in biology and medicine, and their
degradation, artificial or natural, plays an important role
warranting the consideration of degradation by an enzyme.
Two-dimensional processes with RW-controlled connectivity
are also related to certain models of photosynthetic bacteria
colonies or photosynthetic membranes in which the energy
of light is transmitted to neighboring areas via excitons, thus
creating correlations (see Ref. [65] and references therein).
However, such correlations are short-lived and the problem
crosses over to Bernoulli percolation behavior [66].

We have demonstrated that, contrary to older results, the
cluster interiors are not fractal, although their boundaries are.
The only macroscopic scale of the 2DVSP problem is the
lattice size L and at shorter distances the behavior is scale free
and can be described using power laws. The 2DVSP problem
converges very slowly to the “large L limit.” Our results in-
dicate that the approach to asymptotic behavior is as slow as
the decay to zero of 1/ ln L. Consequently, all measurements
even at large L correspond to intermediate effective behavior.
We suggested a heuristic argument setting the values of the
exponents τ and q describing the cluster size distribution.
Measured values of the exponents are distinct but seem to
move towards the theoretical values with increasing L.

For u � 1 the problem of cluster size distribution can be
described on an infinite lattice without the need to introduce
periodic boundary conditions. For u 	 1 the spanning clus-
ters are virtually nonexistent and one needs to understand
clusters created by Ncr 	 1 almost independent pieces of the
RW. Most of our measurements were performed for u = O(1),
where the situation is most diverse, and might be different
from the behavior at very small or very large us. Our pa-
per does not resolve this problem. Moreover, the approach
to the limit of p → 1 is much slower for larger u values,
and therefore various parts of the curves, such as shown in
Figs. 3–5, converge at different rates to their asymptotic val-
ues. Therefore the shape of the curves may keep changing
with increasing L.

The graphs in Fig. 13 have a rather distinct behavior for
k � 4 as opposed to larger ks. Such a separation into “large”
clusters (small k), and “small” clusters (larger k) provides
possible clues into the u dependence of the features. By ex-
amining similar graphs for different values of u we observed
that increasing u decreases the sizes of the large clusters, but
increases the sizes of the clusters with larger k towards the
larger cluster sizes. The u dependence of all the properties
requires a more systematic study.

Our theoretical arguments did not go beyond an ap-
proximate “heuristic” approach. However, a RW is a rather
well-understood object, and it is conceivable that more accu-
rate predictions can be made analytically.
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