Computing Zeta Functions of Curves over Finite Fields

Fré Vercauteren

Katholieke Universiteit Leuven

31 July 2008

Algebraic de Rham Cohomology

Example of Punctured Affine Line

Monsky-Washnitzer Cohomology

Kedlaya's Algorithm for $p>2$

Algebraic de Rham Cohomology

- Let A be a ring, e.g. the coordinate ring of a curve
- The module of Käher differentials $D^{1}(A)$ is
- Generated over A by symbols da with $a \in A$ with rules

$$
\begin{aligned}
d(a+b) & =d a+d b \\
d(a \cdot b) & =a d b+b d a
\end{aligned}
$$

- Elements of $d A$ are called exact

Algebraic de Rham Cohomology

- \bar{X} smooth affine curve over field \mathbb{K} with coordinate ring

$$
A=\mathbb{K}[x, y] /(f(x, y))
$$

- Since $f(x, y)=0$ get $\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y\right)=0$, so

$$
D^{1}(A)=\frac{(A d x+A d y)}{\left(A\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y\right)\right)}
$$

- First algebraic de Rham cohomology group is

$$
H_{D R}^{1}(A)=\frac{D^{1}(A)}{d A}
$$

M-W Cohomology of Punctured Affine Line

- Consider $\bar{C}: x y-1=0$ with $\bar{A}=\mathbb{F}_{p}[x, 1 / x]$, then

$$
N_{r}=\# \bar{C}\left(\mathbb{F}_{p^{r}}\right)=p^{r}-1
$$

- Construct de Rham cohomology in characteristic p ?
- $\Omega^{1}(\bar{A}):=\bar{A} d x /(d \bar{A})$ is infinite dimensional.
- $x^{k} d x$ with $k \equiv-1(\bmod p)$ cannot be integrated.
- First attempt: lift situation to \mathbb{Z}_{p} and try again?
- Consider two lifts to \mathbb{Z}_{p}

$$
A_{1}=\mathbb{Z}_{p}[x, 1 / x] \quad \text { and } \quad A_{2}=\mathbb{Z}_{p}[x, 1 /(x(1+p x))]
$$

- A_{1} and A_{2} are not isomorphic!
- $H_{D R}^{1}\left(A_{1} / \mathbb{Q}_{p}\right)=\left\langle\frac{d x}{x}\right\rangle$ and $H_{D R}^{1}\left(A_{2} / \mathbb{Q}_{p}\right)=\left\langle\frac{d x}{x}, \frac{d x}{1+p x}\right\rangle$.

M-W Cohomology of Punctured Affine Line

- Second attempt: use p-adic completion, then

$$
A_{1}^{\infty} \cong A_{2}^{\infty} \cong\left\{\sum_{i \in \mathbb{Z}} \alpha_{i} x^{i} \in \mathbb{Z}_{p}[[x, 1 / x]] \mid \lim _{i \rightarrow \infty} \alpha_{i}=0\right\}
$$

- However: $H_{D R}^{1}\left(A^{\infty} / \mathbb{Q}_{p}\right)$ is again infinite dimensional!
- $\sum_{i} p^{i} x^{p^{i-1}}$ is in A^{∞} but integral $\sum_{i} x^{p^{i}}$ is not.
- Third attempt: consider the dagger ring or weak completion
$A^{\dagger}=\left\{\sum_{i \in \mathbb{Z}} \alpha_{i} x^{i} \in \mathbb{Z}_{p}[[x, 1 / x]]\left|\exists \epsilon \in \mathbb{R}_{>0}, \delta \in \mathbb{R}: v_{p}\left(\alpha_{i}\right) \geq \epsilon\right| i \mid+\delta\right\}$
- Note: A_{1}^{\dagger} is isomorphic to A_{2}^{\dagger}, since $1+p x$ invertible in A_{1}^{\dagger}.

M-W Cohomology of Punctured Affine Line

- M-W cohomology = de Rham cohomology of $A^{\dagger} \otimes \mathbb{Q}_{p}$
- $H^{1}\left(\bar{A} / \mathbb{Q}_{p}\right)=A^{\dagger} d x /\left(d A^{\dagger}\right)$ and clearly for $k \neq-1$

$$
x^{k} d x=d\left(\frac{x^{k+1}}{k+1}\right)
$$

- Conclusion: $H^{1}\left(\bar{A} / \mathbb{Q}_{p}\right)$ has basis $\frac{d x}{x}$
- Lifting Frobenius F to A^{\dagger} : infinitely many possibilities

$$
F(x) \in x^{p}+p A^{\dagger}
$$

- Examples: $F_{1}(x)=x^{p}$ or $F_{2}(x)=x^{p}+p$

M-W Cohomology of Punctured Affine Line

- Action of F_{1} on basis $\frac{d x}{x}$ is given by

$$
F_{1}^{*}\left(\frac{d x}{x}\right)=\frac{d\left(F_{1}(x)\right)}{F_{1}(x)}=\frac{d\left(x^{p}\right)}{x^{p}}=p \frac{d x}{x}
$$

- Action of F_{2} on basis $\frac{d x}{x}$ is given by

$$
F_{2}^{*}\left(\frac{d x}{x}\right)=\frac{d\left(F_{2}(x)\right)}{F_{2}(x)}=\frac{d\left(x^{p}+p\right)}{x^{p}+p}=\frac{p x^{p-1}}{x^{p}+p} d x=\frac{p}{1+p x^{-p}} \frac{d x}{x}
$$

- Power series: $\left(1+p x^{-p}\right)^{-1}=\sum_{i=0}^{\infty}(-1)^{i} p^{i} x^{-i p} \in A^{\dagger}$

$$
F_{2}^{*}\left(\frac{d x}{x}\right)=p \frac{d x}{x}+d\left(\sum_{i=1}^{\infty} \frac{(-1)^{i+1} p^{i-1}}{i} x^{-i p}\right)
$$

M-W Cohomology of Punctured Affine Line

- Action of F_{1} and F_{2} are equal on $H^{1}\left(\bar{A} / \mathbb{Q}_{p}\right)$!

$$
F^{*}\left(\frac{d x}{x}\right)=p \frac{d x}{x} \Rightarrow F^{*-1}\left(\frac{d x}{x}\right)=\frac{1}{p} \frac{d x}{x}
$$

- Lefschetz Trace formula applied to \bar{C} gives

$$
\# \bar{C}\left(\mathbb{F}_{p^{r}}\right)=p^{r}-\operatorname{Trace}\left(\left(p F^{*-1}\right)^{r} \mid H^{1}\left(\bar{C} / \mathbb{Q}_{p}\right)\right)
$$

- Conclusion:

$$
\# \bar{C}\left(\mathbb{F}_{p^{r}}\right)=p^{r}-1
$$

Monsky-Washnitzer Cohomology

- \bar{X} smooth affine curve over field \mathbb{F}_{q} with coordinate ring

$$
\bar{A}=\mathbb{F}_{q}[x, y] /(\bar{f}(x, y))
$$

- Let f be arbitrary lift to \mathbb{Z}_{q} and let $A=\mathbb{Z}_{q}[x, y] /(f)$
- Would like to lift the Frobenius endomorphism to A, but in general this is not possible! (cfr. Satoh)
- Working with p-adic completion A^{∞} of A does admit lift, but the de Rham cohomology of A^{∞} mostly larger than of A.
- For affine line: $\sum p^{j} x^{p^{j}-1} d x=d\left(\sum x^{p^{j}}\right)$, but $\sum x^{p^{j}} \notin A^{\infty}$.
- Problem: series $\sum p^{j} x^{p^{j}-1}$ does not converge fast enough for its integral to converge as well.

Dagger rings

- Dagger ring A^{\dagger} of $A:=\mathbb{Z}_{q}[x, y] /(f)$ is

$$
A^{\dagger}:=\mathbb{Z}_{q}\langle x, y\rangle^{\dagger} /(f)
$$

- $\mathbb{Z}_{q}\langle x, y\rangle^{\dagger}$ consists of power series $\sum r_{i, j} x^{i} y^{j} \in \mathbb{Z}_{q}[[x, y]]$

$$
\exists \delta, \varepsilon \in \mathbb{R}, \varepsilon>0, \forall(i, j): \operatorname{ord}_{p} r_{i, j} \geq \varepsilon(i+j)+\delta
$$

- Coefficients $r_{i, j}$ get smaller linearly in the degree $i+j$
- The ring A^{\dagger} satisfies $A^{\dagger} / p A^{\dagger}=\bar{A}$
- Only depends up to \mathbb{Z}_{q}-isomorphism on \bar{A}
- Admits a lift of the Frobenius endomorphism F_{q}, since $q=p^{n}$ we have $F_{q}=F_{p}^{n}$, suffices to lift $F_{p}=: \Sigma$

p-th Power Frobenius on A^{\dagger}

- Conditions on the p-th power Frobenius Σ on A^{\dagger} are

$$
x^{\Sigma} \equiv x^{p} \bmod p \quad \text { and } \quad y^{\Sigma} \equiv y^{p} \bmod p \quad \text { and } \quad f^{\Sigma}\left(x^{\Sigma}, y^{\Sigma}\right)=0
$$

- Fixing $x^{\Sigma}=x^{p}$ also fixes y^{Σ} since $f^{\Sigma}\left(x^{p}, y^{\Sigma}\right)=0$, thus $\left(\frac{\partial f(x, y)}{\partial y}\right)^{p}$ has to be invertible in A^{\dagger}.
- Make \bar{A} larger (i.e. remove points from curve) such that $\partial f(x, y) / \partial y$ invertible in A^{\dagger}
- Choose more general lift of Frobenius on x, e.g. lift Frobenius on x and y simultaneously such that denominator in the Newton iteration is invertible in A^{\dagger}.

Monsky-Washnitzer Cohomology Groups

- Monksy-Washnitzer = de Rham cohomology of A^{\dagger}

$$
H^{1}\left(\bar{A} / \mathbb{Q}_{q}\right):=D^{1}\left(A^{\dagger}\right) / d\left(A^{\dagger}\right) \otimes_{\mathbb{Z}_{q}} \mathbb{Q}_{q}
$$

- $H^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)$ only depends on \bar{A}
- Vectorspace over \mathbb{Q}_{q} of dimension $2 g+m-1$,
- g is genus of curve
- m is the number of missing points

Lefschetz Fixed Point Theorem

- Let $F=\Sigma^{n}$ be a lift of the q-power Frobenius to A^{\dagger}
- F induces an endomorphism F^{*} on $H^{1}\left(A / \mathbb{Q}_{q}\right)$
- Lefschetz fixed point formula: the number of $\mathbb{F}_{q^{-}}$-rational points on \bar{X} equals

$$
q^{r}-\operatorname{Tr}\left(\left(q F^{*-1}\right)^{r} \mid H^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)\right) .
$$

- Note: gives number of points over all extensions!

Kedlaya's Algorithm $p>2$

- Let $y^{2}-\bar{f}(x)=0$ hyperelliptic curve \bar{C} of genus g over $\mathbb{F}_{p^{n}}$, i.e. $\bar{f}(x)$ of degree $2 g+1$ and squarefree.
- Affine curve \bar{C}^{\prime} obtained from C by deleting $y=0$, then coordinate ring $\bar{A}=\mathbb{F}_{q}\left[x, y, y^{-1}\right] /\left(y^{2}-\bar{f}(x)\right)$
- Lift \bar{C}^{\prime} to C^{\prime} over \mathbb{Z}_{q} by taking any lift $f(x) \in \mathbb{Z}_{q}[x]$ of $\bar{f}(x)$ and removing $y=0$ of curve defined by $f=0$.
- Coordinate ring of C^{\prime} is $A=\mathbb{Z}_{q}\left[x, y, y^{-1}\right] /\left(y^{2}-f(x)\right)$.
- A^{\dagger} contains series $\sum_{k=-\infty}^{+\infty}\left(S_{k}(x)+T_{k}(x) y\right) y^{2 k}$ with $\operatorname{deg} S_{k}$, deg $T_{k} \leq 2 g$ and valuation of S_{k} and T_{k} grows linearly with $|k|$.

Lifting Frobenius to Dagger Ring A^{\dagger}

Lift $\bar{\Sigma}$ to $\Sigma: A^{\dagger} \longrightarrow A^{\dagger}$ as

$$
x^{\Sigma}:=x^{p} \quad \text { and } \quad \Sigma(y) \text { satisfies }\left(y^{\Sigma}\right)^{2}=f(x)^{\Sigma}
$$

Formula for y^{Σ} as element of A^{\dagger} :

$$
\begin{aligned}
y^{\Sigma} & =\left(f(x)^{\Sigma}\right)^{1 / 2} \\
& =\left(f(x)^{\Sigma}-f(x)^{p}+f(x)^{p}\right)^{1 / 2} \\
& =f(x)^{p / 2}\left(1+\frac{f(x)^{\Sigma}-f(x)^{p}}{f(x)^{p}}\right)^{1 / 2} \\
& =y^{p} \sum_{k=0}^{\infty}\binom{1 / 2}{k} \frac{\left(f(x)^{\Sigma}-f(x)^{p}\right)^{k}}{y^{2 p k}}
\end{aligned}
$$

Lifting Frobenius to Dagger Ring A^{\dagger} : Practice

- Actually need $\left(y^{\Sigma}\right)^{-1}$, can be computed as $\left(y^{\Sigma}\right)^{-1}=y^{-p} R$
- R is a root of the equation $G(Z)=S Z^{2}-1$ with

$$
S=\left(1+\left(\left(f(x)^{\Sigma}\right)-f(x)^{p}\right) / y^{2 p}\right)
$$

- Newton iteration to compute R is given by

$$
Z \leftarrow \frac{Z\left(3-S Z^{2}\right)}{2}
$$

starting from $Z \equiv 1(\bmod p)$.

- In each step, the truncated power series should be reduced modulo f

Kedlaya's Algorithm: Differentials

- Since $y^{2}-f(x)=0$, we have $d y=\frac{f^{\prime}(x) d x}{2 y}$ and thus

$$
D^{1}\left(A^{\dagger}\right)=A^{\dagger} \frac{d x}{y}
$$

- Any differential form can thus be written as

$$
\sum_{k=-\infty}^{k=+\infty} \frac{h_{k}(x)}{y^{k}} d x
$$

with $\operatorname{deg} h_{k}<\operatorname{deg} f$

Kedlaya's Algorithm: Reduction of Differentials

- $h(x) / y^{s} d x$ with $h(x) \in \mathbb{Q}_{q}[x]$ and $s \in \mathbb{N}$ can be reduced
- Write $h(x)=U(x) f(x)+V(x) f^{\prime}(x)$, then

$$
\frac{h(x)}{y^{s}} d x=\frac{U(x) f(x)+V(x) f^{\prime}(x)}{y^{s}} d x=\frac{U(x)}{y^{s-2}} d x+\frac{V(x) f^{\prime}(x)}{y^{s}} d x
$$

- Consider exact differential

$$
d\left(V(x) / y^{s-2}\right)=\frac{V^{\prime}(x)}{y^{s-2}} d x-\frac{(s-2) V(x)}{y^{s-1}} d y \equiv 0
$$

- Finally we obtain

$$
\frac{h(x)}{y^{s}} d x \equiv\left(U(x)+\frac{2 V^{\prime}(x)}{s-2}\right) \frac{d x}{y^{s-2}}
$$

- Reduced to the case $s=2$ or $s=1$

Kedlaya's Algorithm: Reduction of Differentials

- $h(x) y^{s} d x$ with $s \in \mathbb{N}$ even is exact since $h(x) f(x)^{s / 2} d x$ is
- $h(x) y^{s} d x$ with $s \in \mathbb{N}$ for s odd is $\frac{h(x) f(x)(s+1) / 2}{y} d x$
- Differential $h(x) / y d x$ with deg $h=n \geq 2 g$ can be reduced by subtracting multiples of $d\left(x^{i-2 g} y\right)$ for $i=n, \ldots, 2 g$
- Differential $h(x) / y^{2} d x$ with deg $h \geq 2 g+1$ is equivalent to $(h(x) \bmod f(x)) / y^{2} d x$

Kedlaya's Algorithm: Basis for $H^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)$

- Have shown $H^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)=H^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)^{+} \oplus H^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)^{-}$
- $H^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)^{+}$generated by $x^{i} d x / y^{2}$ for $i=0, \ldots, 2 g$
- $H^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)^{-}$generated by $x^{i} d x / y$ for $i=0, \ldots, 2 g-1$
- The invariant part corresponds to the $2 g+1$ removed points with y-coordinate zero.
- The characteristic polynomial of F^{*} on $H^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)^{-}$equals

$$
\chi(t):=t^{2 g} P(1 / t) \text { with } Z(\bar{C} ; t)=\frac{P(t)}{(1-t)(1-q t)} .
$$

Computing Action of Frobenius on $H^{1}(\bar{A} / K)^{-}$

- The action of Σ^{*} on a differential form $x^{k} d x / y$ is given by

$$
\Sigma^{*}\left(x^{k} d x / y\right) \equiv p x^{p k+p-1} d x / \Sigma(y)
$$

- Using the equation of the curve and subtracting suitable exact differentials we can express $\Sigma^{*}\left(x^{k} d x / y^{\prime}\right)$ again on $H^{1}(\bar{A} / K)^{-}$.
- This gives matrix M which is an approximation of the action of Σ^{*} on $H^{1}(\bar{A} / K)^{-}$.
- The polynomial $\chi(t):=t^{2 g} P(1 / t)$ can then be approximated by the characteristic polynomial of $M M^{\Sigma} \ldots M^{\Sigma^{n-1}}$.

Kedlaya's Algorithm: Example

- Let \bar{C} be hyperelliptic curve over \mathbb{F}_{3} defined by

$$
y^{2}=x^{5}+x^{4}+2 x^{3}+2 x+2 .
$$

- The Frobenius on y^{-1} modulo 3^{6} is given by $y^{-p} \cdot R$

$$
\begin{aligned}
R \equiv 1 & +\left(-363 x^{4}+96 x^{3}+144 x^{2}-6 x+207\right) \tau+\left(-123 x^{4}-153 x^{3}-21 x^{2}+351 x+210\right) \tau^{2} \\
& +\left(339 x^{4}-228 x^{3}-60 x^{2}-204 x+186\right) \tau^{3}+\left(-81 x^{4}+54 x^{3}-243 x^{2}-243 x+27\right) \tau^{4} \\
& +\left(-54 x^{4}-162 x^{3}-54 x^{2}-54 x+162\right) \tau^{5}+\left(351 x^{4}+189 x^{3}+189 x^{2}+189 x+351\right) \tau^{6} \\
& +\left(-243 x^{4}+243 x^{3}-108 x^{2}-270 x+27\right) \tau^{7}+\left(-135 x^{3}+54 x^{2}+81 x-108\right) \tau^{8} \\
& +\left(216 x^{4}+108 x^{3}-297 x^{2}+351 x-162\right) \tau^{9}+\left(-243 x^{4}-162 x^{3}-324 x^{2}+243 x\right) \tau^{10} \\
& +\left(81 x^{4}-243 x^{3}-162 x^{2}+162 x-81\right) \tau^{11}+\left(-162 x^{4}+162 x^{3}+324 x^{2}-324 x+324\right) \tau^{12}
\end{aligned}
$$

with $\tau=y^{-2}$.

Kedlaya's Algorithm: Example

- The matrix M is given by

$$
\begin{array}{r}
M=\left[\begin{array}{cccc}
27 & 39 & 30 & 108 \\
129 & 36 & 27 & 126 \\
204 & 186 & 12 & 138 \\
46 / 3 & 76 / 3 & 41 / 3 & 169
\end{array}\right] \\
-\chi(T) \equiv T^{4}+80 T^{3}+T^{2}+78 T+9\left(\bmod 3^{4}\right), \text { so } \\
Z\left(\tilde{C} / \mathbb{F}_{q} ; T\right)=\frac{9 T^{4}-3 T^{3}+T^{2}-T+1}{(1-T)(1-3 T)}
\end{array}
$$

Kedlaya's Algorithm: Final Words

- Complexity for fixed p is $\tilde{O}\left(g^{4} n^{3}\right)$
- Dependence on p is $O\left(p(\log p)^{k}\right)$, so fully exponential
- Only practical for moderately small p, e.g. $p \leq 500$
- Harvey's modification: $\tilde{O}\left(p^{1 / 2} g^{5.5} n^{3.5}+g^{8} n^{5} \log p\right)$
- Characteristic 2 version is more subtle, need special lift of equation of the curve
- Extension to very general class of non-degenerate curves

