Computing Zeta Functions of Curves over Finite Fields

Fré Vercauteren

Katholieke Universiteit Leuven

31 July 2008

Fré Vercauteren Computing Zeta Functions of Curves over Finite Fields

Algebraic de Rham Cohomology

Example of Punctured Affine Line

Monsky-Washnitzer Cohomology

Kedlaya's Algorithm for p > 2

Fré Vercauteren Computing Zeta Functions of Curves over Finite Fields

Algebraic de Rham Cohomology

- Let A be a ring, e.g. the coordinate ring of a curve
- The module of Käher differentials $D^1(A)$ is
- Generated over A by symbols da with $a \in A$ with rules

d(a+b) = da+db $d(a \cdot b) = adb+bda$

Elements of dA are called exact

イロト イポト イヨト イヨト

÷.

Algebraic de Rham Cohomology

• \overline{X} smooth affine curve over field \mathbb{K} with coordinate ring

 $A = \mathbb{K}[x, y] / (f(x, y))$

• Since f(x, y) = 0 get $\left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy\right) = 0$, so

$$D^{1}(A) = \frac{(A \, dx + A \, dy)}{(A(\frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy))}$$

First algebraic de Rham cohomology group is

$$H_{DR}^1(A) = \frac{D^1(A)}{dA}$$

イロト 不得 とくほ とくほ とう

= 990

M-W Cohomology of Punctured Affine Line

• Consider \overline{C} : xy - 1 = 0 with $\overline{A} = \mathbb{F}_{\rho}[x, 1/x]$, then

$$N_r = \#\overline{C}(\mathbb{F}_{p^r}) = p^r - 1$$

Construct de Rham cohomology in characteristic p?

- $\Omega^1(\overline{A}) := \overline{A} dx/(d\overline{A})$ is infinite dimensional.
- $x^k dx$ with $k \equiv -1 \pmod{p}$ cannot be integrated.
- ► First attempt: lift situation to Z_p and try again?
 - ▶ Consider two lifts to Z_p

$$A_1 = \mathbb{Z}_{\rho}[x, 1/x]$$
 and $A_2 = \mathbb{Z}_{\rho}[x, 1/(x(1 + \rho x))]$

- A₁ and A₂ are not isomorphic!
- $H^1_{DR}(A_1/\mathbb{Q}_p) = \langle \frac{dx}{x} \rangle$ and $H^1_{DR}(A_2/\mathbb{Q}_p) = \langle \frac{dx}{x}, \frac{dx}{1+px} \rangle$.

M-W Cohomology of Punctured Affine Line

Second attempt: use p-adic completion, then

$$A_1^{\infty} \cong A_2^{\infty} \cong \{ \sum_{i \in \mathbb{Z}} \alpha_i x^i \in \mathbb{Z}_p[[x, 1/x]] \mid \lim_{i \to \infty} \alpha_i = \mathbf{0} \}$$

- However: H¹_{DR}(A[∞]/ℚ_p) is again infinite dimensional!
 ∑_i pⁱx^{pⁱ⁻¹} is in A[∞] but integral ∑_i x^{pⁱ} is not.
- Third attempt: consider the dagger ring or weak completion

$$\mathbf{A}^{\dagger} = \{\sum_{i \in \mathbb{Z}} \alpha_{i} \mathbf{x}^{i} \in \mathbb{Z}_{p}[[\mathbf{x}, \mathbf{1}/\mathbf{x}]] \mid \exists \epsilon \in \mathbb{R}_{>0}, \delta \in \mathbb{R} : \mathbf{v}_{p}(\alpha_{i}) \geq \epsilon |i| + \delta \}$$

• Note: A_1^{\dagger} is isomorphic to A_2^{\dagger} , since 1 + px invertible in A_1^{\dagger} .

▲御♪ ▲ほ♪ ▲ほ♪ … ほ

M-W Cohomology of Punctured Affine Line

M-W cohomology = de Rham cohomology of A[†] ⊗ Q_p
 H¹(Ā/Q_p) = A[†]dx/(dA[†]) and clearly for k ≠ −1

$$x^k dx = d(\frac{x^{k+1}}{k+1})$$

- Conclusion: $H^1(\overline{A}/\mathbb{Q}_p)$ has basis $\frac{dx}{x}$
- Lifting Frobenius F to A[†]: infinitely many possibilities

$$F(x) \in x^{p} + pA^{\dagger}$$

• Examples: $F_1(x) = x^p$ or $F_2(x) = x^p + p$

ヘロト 人間 ト ヘヨト ヘヨト

M-W Cohomology of Punctured Affine Line

• Action of F_1 on basis $\frac{dx}{x}$ is given by

$$F_1^*\left(\frac{dx}{x}\right) = \frac{d(F_1(x))}{F_1(x)} = \frac{d(x^p)}{x^p} = p\frac{dx}{x}$$

• Action of F_2 on basis $\frac{dx}{x}$ is given by

$$F_{2}^{*}\left(\frac{dx}{x}\right) = \frac{d(F_{2}(x))}{F_{2}(x)} = \frac{d(x^{p} + p)}{x^{p} + p} = \frac{px^{p-1}}{x^{p} + p}dx = \frac{p}{1 + px^{-p}}\frac{dx}{x}$$

• Power series: $(1 + px^{-p})^{-1} = \sum_{i=0}^{\infty} (-1)^i p^i x^{-ip} \in A^{\dagger}$

$$F_{2}^{*}\left(\frac{dx}{x}\right) = p\frac{dx}{x} + d\left(\sum_{i=1}^{\infty} \frac{(-1)^{i+1}p^{i-1}}{i}x^{-ip}\right)$$

イロト 不得 とくほと くほとう

э.

M-W Cohomology of Punctured Affine Line

• Action of F_1 and F_2 are equal on $H^1(\overline{A}/\mathbb{Q}_p)!$

$$F^*(\frac{dx}{x}) = p\frac{dx}{x} \Rightarrow F^{*-1}\left(\frac{dx}{x}\right) = \frac{1}{p}\frac{dx}{x}$$

Lefschetz Trace formula applied to C gives

$$\#\overline{C}(\mathbb{F}_{p^r}) = p^r - \operatorname{Trace}\left((pF^{*-1})^r | H^1(\overline{C}/\mathbb{Q}_p)\right)$$

Conclusion:

$$\#\overline{C}(\mathbb{F}_{p^r})=p^r-1$$

< □ > < 同 > < 回 > < 回

Monsky-Washnitzer Cohomology

▶ \overline{X} smooth affine curve over field \mathbb{F}_q with coordinate ring

$$\overline{A} = \mathbb{F}_q[x, y] / (\overline{f}(x, y))$$

- Let *f* be arbitrary lift to \mathbb{Z}_q and let $A = \mathbb{Z}_q[x, y]/(f)$
- Would like to lift the Frobenius endomorphism to A, but in general this is not possible! (cfr. Satoh)
- ► Working with *p*-adic completion A[∞] of A does admit lift, but the de Rham cohomology of A[∞] mostly larger than of A.
- ► For affine line: $\sum p^j x^{p^j-1} dx = d(\sum x^{p^j})$, but $\sum x^{p^j} \notin A^{\infty}$.
- ► Problem: series ∑ p^jx^{p^j-1} does not converge fast enough for its integral to converge as well.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Dagger rings

• Dagger ring A^{\dagger} of $A := \mathbb{Z}_q[x, y]/(f)$ is

$$A^{\dagger} := \mathbb{Z}_q \langle x, y \rangle^{\dagger} / (f) \,,$$

• $\mathbb{Z}_q \langle x, y \rangle^{\dagger}$ consists of power series $\sum r_{i,j} x^j y^j \in \mathbb{Z}_q[[x, y]]$

$$\exists \, \delta, \varepsilon \in \mathbb{R}, \varepsilon > \mathbf{0}, \forall (i,j) : \text{ ord}_{\rho} \, \mathbf{r}_{i,j} \geq \varepsilon(i+j) + \delta.$$

- ► Coefficients r_{i,j} get smaller linearly in the degree i + j
- The ring A^{\dagger} satisfies $A^{\dagger}/pA^{\dagger} = \overline{A}$
- Only depends up to Z_q-isomorphism on A
- Admits a lift of the Frobenius endomorphism *F_q*, since *q* = *pⁿ* we have *F_q* = *Fⁿ_p*, suffices to lift *F_p* =: Σ

・ロト ・ 理 ト ・ ヨ ト ・

э

p-th Power Frobenius on *A*[†]

Conditions on the *p*-th power Frobenius Σ on A[†] are

$$x^{\Sigma} \equiv x^{p} \mod p$$
 and $y^{\Sigma} \equiv y^{p} \mod p$ and $f^{\Sigma}(x^{\Sigma}, y^{\Sigma}) = 0$

- ► Fixing $x^{\Sigma} = x^{p}$ also fixes y^{Σ} since $f^{\Sigma}(x^{p}, y^{\Sigma}) = 0$, thus $\left(\frac{\partial f(x,y)}{\partial y}\right)^{p}$ has to be invertible in A^{\dagger} .
 - ► Make A larger (i.e. remove points from curve) such that ∂f(x, y)/∂y invertible in A[†]
 - Choose more general lift of Frobenius on x, e.g. lift Frobenius on x and y simultaneously such that denominator in the Newton iteration is invertible in A[†].

ヘロト 人間 ト ヘヨト ヘヨト

Monsky-Washnitzer Cohomology Groups

Monksy-Washnitzer = de Rham cohomology of A[†]

$$H^1(\overline{A}/\mathbb{Q}_q) := D^1(A^\dagger)/d(A^\dagger) \otimes_{\mathbb{Z}_q} \mathbb{Q}_q$$

- $H^1(\overline{A}/\mathbb{Q}_q)$ only depends on \overline{A}
- ▶ Vectorspace over \mathbb{Q}_q of dimension 2g + m 1,
 - ▶ g is genus of curve
 - *m* is the number of missing points

Lefschetz Fixed Point Theorem

- Let $F = \Sigma^n$ be a lift of the *q*-power Frobenius to A^{\dagger}
- F induces an endomorphism F^* on $H^1(A/\mathbb{Q}_q)$
- ► Lefschetz fixed point formula: the number of F_q-rational points on X equals

$$q^r - \operatorname{Tr}\left((qF^{*-1})^r | H^1(\overline{A}/\mathbb{Q}_q)\right).$$

Note: gives number of points over all extensions!

Kedlaya's Algorithm p > 2

- ► Let $y^2 \overline{f}(x) = 0$ hyperelliptic curve \overline{C} of genus g over \mathbb{F}_{p^n} , i.e. $\overline{f}(x)$ of degree 2g + 1 and squarefree.
- Affine curve C
 ['] obtained from C by deleting y = 0, then coordinate ring A
 [−] = F_q[x, y, y⁻¹]/(y² − f(x))
- ▶ Lift \overline{C}' to C' over \mathbb{Z}_q by taking any lift $f(x) \in \mathbb{Z}_q[x]$ of $\overline{f}(x)$ and removing y = 0 of curve defined by f = 0.
- Coordinate ring of C' is $A = \mathbb{Z}_q[x, y, y^{-1}]/(y^2 f(x))$.
- A[†] contains series ∑^{+∞}_{k=-∞} (S_k(x) + T_k(x)y)y^{2k} with deg S_k, deg T_k ≤ 2g and valuation of S_k and T_k grows linearly with |k|.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Lifting Frobenius to Dagger Ring A^{\dagger} Lift $\overline{\Sigma}$ to $\Sigma : A^{\dagger} \longrightarrow A^{\dagger}$ as

 $x^{\Sigma} := x^{p}$ and $\Sigma(y)$ satisfies $(y^{\Sigma})^{2} = f(x)^{\Sigma}$.

Formula for y^{Σ} as element of A^{\dagger} :

$$y^{\Sigma} = (f(x)^{\Sigma})^{1/2}$$

= $(f(x)^{\Sigma} - f(x)^{p} + f(x)^{p})^{1/2}$
= $f(x)^{p/2} (1 + \frac{f(x)^{\Sigma} - f(x)^{p}}{f(x)^{p}})^{1/2}$
= $y^{p} \sum_{k=0}^{\infty} {\binom{1/2}{k}} \frac{(f(x)^{\Sigma} - f(x)^{p})^{k}}{y^{2pk}}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Lifting Frobenius to Dagger Ring A^{\dagger} : Practice

- ► Actually need $(y^{\Sigma})^{-1}$, can be computed as $(y^{\Sigma})^{-1} = y^{-p}R$
- *R* is a root of the equation $G(Z) = SZ^2 1$ with

$$S = \left(1 + \left(\left(f(x)^{\Sigma}\right) - f(x)^{p}\right)/y^{2p}\right)$$

Newton iteration to compute R is given by

$$Z \leftarrow \frac{Z(3-SZ^2)}{2}$$

starting from $Z \equiv 1 \pmod{p}$.

In each step, the truncated power series should be reduced modulo f

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Kedlaya's Algorithm: Differentials

Since
$$y^2 - f(x) = 0$$
, we have $dy = \frac{f'(x)dx}{2y}$ and thus
 $D^1(A^{\dagger}) = A^{\dagger} \frac{dx}{y}$

Any differential form can thus be written as

$$\sum_{k=-\infty}^{k=+\infty} \frac{h_k(x)}{y^k} dx$$

with deg $h_k < \deg f$

ヘロト 人間 ト ヘヨト ヘヨト

æ

Kedlaya's Algorithm: Reduction of Differentials

- ▶ $h(x)/y^s dx$ with $h(x) \in \mathbb{Q}_q[x]$ and $s \in \mathbb{N}$ can be reduced
- Write h(x) = U(x)f(x) + V(x)f'(x), then

$$\frac{h(x)}{y^{s}}dx = \frac{U(x)f(x) + V(x)f'(x)}{y^{s}}dx = \frac{U(x)}{y^{s-2}}dx + \frac{V(x)f'(x)}{y^{s}}dx$$

Consider exact differential

$$d(V(x)/y^{s-2}) = \frac{V'(x)}{y^{s-2}} dx - \frac{(s-2)V(x)}{y^{s-1}} dy \equiv 0$$

Finally we obtain

$$\frac{h(x)}{y^s} dx \equiv \left(U(x) + \frac{2V'(x)}{s-2} \right) \frac{dx}{y^{s-2}}$$

Reduced to the case s = 2 or s = 1

A D b 4 A b

Kedlaya's Algorithm: Reduction of Differentials

- ▶ $h(x)y^s dx$ with $s \in \mathbb{N}$ even is exact since $h(x)f(x)^{s/2} dx$ is
- $h(x)y^s dx$ with $s \in \mathbb{N}$ for s odd is $\frac{h(x)f(x)^{(s+1)/2}}{y} dx$
- ▶ Differential h(x)/y dx with deg h = n ≥ 2g can be reduced by subtracting multiples of d(x^{i-2g}y) for i = n,...,2g
- Differential h(x)/y² dx with deg h ≥ 2g + 1 is equivalent to (h(x) mod f(x))/y² dx

ヘロン 人間 とくほ とくほ とう

э.

Kedlaya's Algorithm: Basis for $H^1(\overline{A}/\mathbb{Q}_q)$

- Have shown $H^1(\overline{A}/\mathbb{Q}_q) = H^1(\overline{A}/\mathbb{Q}_q)^+ \oplus H^1(\overline{A}/\mathbb{Q}_q)^-$
 - $H^1(\overline{A}/\mathbb{Q}_q)^+$ generated by $x^i dx/y^2$ for i = 0, ..., 2g
 - $H^1(\overline{A}/\mathbb{Q}_q)^-$ generated by $x^i dx/y$ for i = 0, ..., 2g 1
- The invariant part corresponds to the 2g + 1 removed points with y-coordinate zero.
- ▶ The characteristic polynomial of F^* on $H^1(\overline{A}/\mathbb{Q}_q)^-$ equals

$$\chi(t) := t^{2g} P(1/t) \text{ with } Z(\overline{C}; t) = \frac{P(t)}{(1-t)(1-qt)}.$$

ヘロン 人間 とくほ とくほ とう

1

Computing Action of Frobenius on $H^1(\overline{A}/K)^-$

• The action of Σ^* on a differential form $x^k dx/y$ is given by

$$\Sigma^*(x^k dx/y) \equiv p x^{pk+p-1} dx/\Sigma(y).$$

- Using the equation of the curve and subtracting suitable exact differentials we can express Σ*(x^k dx/y^l) again on H¹(A/K)[−].
- This gives matrix *M* which is an approximation of the action of Σ^{*} on H¹(A/K)[−].
- The polynomial χ(t) := t^{2g}P(1/t) can then be approximated by the characteristic polynomial of MM^Σ · · · M^{Σⁿ⁻¹}.

イロト 不得 とくほと くほとう

1

Kedlaya's Algorithm: Example

• Let \overline{C} be hyperelliptic curve over \mathbb{F}_3 defined by

$$y^2 = x^5 + x^4 + 2x^3 + 2x + 2$$

• The Frobenius on y^{-1} modulo 3^6 is given by $y^{-p} \cdot R$

$$\begin{split} R &\equiv 1 + (-363x^4 + 96x^3 + 144x^2 - 6x + 207)\tau + (-123x^4 - 153x^3 - 21x^2 + 351x + 210)\tau^2 \\ &+ (339x^4 - 228x^3 - 60x^2 - 204x + 186)\tau^3 + (-81x^4 + 54x^3 - 243x^2 - 243x + 27)\tau^4 \\ &+ (-54x^4 - 162x^3 - 54x^2 - 54x + 162)\tau^5 + (351x^4 + 189x^3 + 189x^2 + 189x + 351)\tau^6 \\ &+ (-243x^4 + 243x^3 - 108x^2 - 270x + 27)\tau^7 + (-135x^3 + 54x^2 + 81x - 108)\tau^8 \\ &+ (216x^4 + 108x^3 - 297x^2 + 351x - 162)\tau^9 + (-243x^4 - 162x^3 - 324x^2 + 243x)\tau^{10} \\ &+ (81x^4 - 243x^3 - 162x^2 + 162x - 81)\tau^{11} + (-162x^4 + 162x^3 + 324x^2 - 324x + 324)\tau^{12} \end{split}$$

with $\tau = y^{-2}$.

イロト イポト イヨト イヨト

1

Kedlaya's Algorithm: Example

The matrix M is given by

$$M = \begin{bmatrix} 27 & 39 & 30 & 108 \\ 129 & 36 & 27 & 126 \\ 204 & 186 & 12 & 138 \\ 46/3 & 76/3 & 41/3 & 169 \end{bmatrix}$$

• $\chi(T) \equiv T^4 + 80T^3 + T^2 + 78T + 9 \pmod{3^4}$, so

$$Z(\tilde{C}/\mathbb{F}_q;T) = \frac{9T^4 - 3T^3 + T^2 - T + 1}{(1-T)(1-3T)}$$

イロト イポト イヨト イヨト

э.

Kedlaya's Algorithm: Final Words

- Complexity for fixed p is $\tilde{O}(g^4n^3)$
- Dependence on p is $O(p(\log p)^k)$, so fully exponential
- Only practical for moderately small p, e.g. $p \le 500$
- Harvey's modification: $\tilde{O}(p^{1/2}g^{5.5}n^{3.5} + g^8n^5\log p)$
- Characteristic 2 version is more subtle, need special lift of equation of the curve
- Extension to very general class of non-degenerate curves