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Fré Vercauteren

Katholieke Universiteit Leuven

31 July 2008
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Algebraic de Rham Cohomology

I Let A be a ring, e.g. the coordinate ring of a curve
I The module of Käher differentials D1(A) is
I Generated over A by symbols da with a ∈ A with rules

d(a + b) = da + db
d(a · b) = adb + bda

I Elements of dA are called exact
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Algebraic de Rham Cohomology

I X smooth affine curve over field K with coordinate ring

A = K[x , y ]/(f (x , y))

I Since f (x , y) = 0 get ( ∂f
∂x dx + ∂f

∂y dy) = 0, so

D1(A) =
(A dx + A dy)

(A( ∂f
∂x dx + ∂f

∂y dy))

I First algebraic de Rham cohomology group is

H1
DR(A) =

D1(A)

dA
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M-W Cohomology of Punctured Affine Line

I Consider C : xy − 1 = 0 with A = Fp[x ,1/x ], then

Nr = #C(Fpr ) = pr − 1

I Construct de Rham cohomology in characteristic p?
I Ω1(A) := A dx/(d A) is infinite dimensional.
I xk dx with k ≡ −1 (mod p) cannot be integrated.

I First attempt: lift situation to Zp and try again?
I Consider two lifts to Zp

A1 = Zp[x ,1/x ] and A2 = Zp[x ,1/(x(1 + px))]

I A1 and A2 are not isomorphic!
I H1

DR(A1/Qp) = 〈 dx
x 〉 and H1

DR(A2/Qp) = 〈 dx
x ,

dx
1+px 〉.
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M-W Cohomology of Punctured Affine Line

I Second attempt: use p-adic completion, then

A∞1 ∼= A∞2 ∼= {
∑
i∈Z

αix i ∈ Zp[[x ,1/x ]] | lim
i→∞

αi = 0}

I However: H1
DR(A∞/Qp) is again infinite dimensional!

I
∑

i pixpi−1
is in A∞ but integral

∑
i xpi

is not.
I Third attempt: consider the dagger ring or weak completion

A† = {
∑
i∈Z

αix i ∈ Zp[[x ,1/x ]] | ∃ε ∈ R>0, δ ∈ R : vp(αi) ≥ ε|i |+ δ}

I Note: A†1 is isomorphic to A†2, since 1 + px invertible in A†1.
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M-W Cohomology of Punctured Affine Line

I M-W cohomology = de Rham cohomology of A† ⊗Qp

I H1(A/Qp) = A†dx/(dA†) and clearly for k 6= −1

xkdx = d(
xk+1

k + 1
)

I Conclusion: H1(A/Qp) has basis dx
x

I Lifting Frobenius F to A†: infinitely many possibilities

F (x) ∈ xp + pA†

I Examples: F1(x) = xp or F2(x) = xp + p
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M-W Cohomology of Punctured Affine Line
I Action of F1 on basis dx

x is given by

F1
∗
(

dx
x

)
=

d(F1(x))

F1(x)
=

d(xp)

xp = p
dx
x

I Action of F2 on basis dx
x is given by

F2
∗
(

dx
x

)
=

d(F2(x))

F2(x)
=

d(xp + p)

xp + p
=

pxp−1

xp + p
dx =

p
1 + px−p

dx
x

I Power series: (1 + px−p)−1 =
∑∞

i=0(−1)ipix−ip ∈ A†

F2
∗
(

dx
x

)
= p

dx
x

+ d

( ∞∑
i=1

(−1)i+1pi−1

i
x−ip

)
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M-W Cohomology of Punctured Affine Line

I Action of F1 and F2 are equal on H1(A/Qp)!

F ∗(
dx
x

) = p
dx
x
⇒ F ∗−1

(
dx
x

)
=

1
p

dx
x

I Lefschetz Trace formula applied to C gives

#C(Fpr ) = pr − Trace
(

(pF ∗−1)r |H1(C/Qp)
)

I Conclusion:

#C(Fpr ) = pr − 1
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Monsky-Washnitzer Cohomology

I X smooth affine curve over field Fq with coordinate ring

A = Fq[x , y ]/(f (x , y))

I Let f be arbitrary lift to Zq and let A = Zq[x , y ]/(f )

I Would like to lift the Frobenius endomorphism to A, but in
general this is not possible! (cfr. Satoh)

I Working with p-adic completion A∞ of A does admit lift, but
the de Rham cohomology of A∞ mostly larger than of A.

I For affine line:
∑

pjxpj−1dx = d(
∑

xpj
), but

∑
xpj 6∈ A∞.

I Problem: series
∑

pjxpj−1 does not converge fast enough
for its integral to converge as well.
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Dagger rings

I Dagger ring A† of A := Zq[x , y ]/(f ) is

A† := Zq〈x , y〉†/(f ) ,

I Zq〈x , y〉† consists of power series
∑

ri,jx iy j ∈ Zq[[x , y ]]

∃ δ, ε ∈ R, ε > 0,∀(i , j) : ordp ri,j ≥ ε(i + j) + δ.

I Coefficients ri,j get smaller linearly in the degree i + j
I The ring A† satisfies A†/pA† = A
I Only depends up to Zq-isomorphism on A
I Admits a lift of the Frobenius endomorphism Fq, since

q = pn we have Fq = F n
p , suffices to lift Fp =: Σ
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p-th Power Frobenius on A†

I Conditions on the p-th power Frobenius Σ on A† are

xΣ ≡ xp mod p and yΣ ≡ yp mod p and f Σ(xΣ, yΣ) = 0

I Fixing xΣ = xp also fixes yΣ since f Σ(xp, yΣ) = 0, thus(
∂f (x ,y)

∂y

)p
has to be invertible in A†.

I Make A larger (i.e. remove points from curve) such that
∂f (x , y)/∂y invertible in A†

I Choose more general lift of Frobenius on x , e.g. lift
Frobenius on x and y simultaneously such that
denominator in the Newton iteration is invertible in A†.
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Monsky-Washnitzer Cohomology Groups

I Monksy-Washnitzer = de Rham cohomology of A†

H1(A/Qq) := D1(A†)/d(A†)⊗Zq Qq

I H1(A/Qq) only depends on A
I Vectorspace over Qq of dimension 2g + m − 1,

I g is genus of curve
I m is the number of missing points
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Lefschetz Fixed Point Theorem

I Let F = Σn be a lift of the q-power Frobenius to A†

I F induces an endomorphism F ∗ on H1(A/Qq)

I Lefschetz fixed point formula: the number of Fqr -rational
points on X equals

qr − Tr
(

(qF ∗−1)r |H1(A/Qq)
)
.

I Note: gives number of points over all extensions!
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Kedlaya’s Algorithm p > 2

I Let y2 − f (x) = 0 hyperelliptic curve C of genus g over Fpn ,
i.e. f (x) of degree 2g + 1 and squarefree.

I Affine curve C
′
obtained from C by deleting y = 0, then

coordinate ring A = Fq[x , y , y−1]/(y2 − f (x))

I Lift C
′
to C′ over Zq by taking any lift f (x) ∈ Zq[x ] of f (x)

and removing y = 0 of curve defined by f = 0.
I Coordinate ring of C′ is A = Zq[x , y , y−1]/(y2 − f (x)).
I A† contains series

∑+∞
k=−∞(Sk (x) + Tk (x)y)y2k with

deg Sk ,deg Tk ≤ 2g and valuation of Sk and Tk grows
linearly with |k |.
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Lifting Frobenius to Dagger Ring A†

Lift Σ to Σ : A† −→ A† as

xΣ := xp and Σ(y) satisfies (yΣ)2 = f (x)Σ.

Formula for yΣ as element of A†:

yΣ = (f (x)Σ)1/2

= (f (x)Σ − f (x)p + f (x)p)1/2

= f (x)p/2(1 +
f (x)Σ − f (x)p

f (x)p )1/2

= yp
∞∑

k=0

(
1/2
k

)(
f (x)Σ − f (x)p)k

y2pk
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Lifting Frobenius to Dagger Ring A†: Practice

I Actually need (yΣ)−1, can be computed as (yΣ)−1 = y−pR
I R is a root of the equation G(Z ) = SZ 2 − 1 with

S =
(
1 +

((
f (x)Σ

)
− f (x)p)/y2p)

I Newton iteration to compute R is given by

Z ← Z (3− SZ 2)

2

starting from Z ≡ 1 (mod p).
I In each step, the truncated power series should be

reduced modulo f
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Kedlaya’s Algorithm: Differentials

I Since y2 − f (x) = 0, we have dy = f ′(x)dx
2y and thus

D1(A†) = A†
dx
y

I Any differential form can thus be written as

k=+∞∑
k=−∞

hk (x)

yk dx

with deg hk < deg f
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Kedlaya’s Algorithm: Reduction of Differentials
I h(x)/ysdx with h(x) ∈ Qq[x ] and s ∈ N can be reduced
I Write h(x) = U(x)f (x) + V (x)f ′(x), then

h(x)

ys dx =
U(x)f (x) + V (x)f ′(x)

ys dx =
U(x)

ys−2 dx+
V (x)f ′(x)

ys dx

I Consider exact differential

d(V (x)/ys−2) =
V ′(x)

ys−2 dx − (s − 2)V (x)

ys−1 dy ≡ 0

I Finally we obtain

h(x)

ys dx ≡
(

U(x) +
2V ′(x)

s − 2

)
dx

ys−2

I Reduced to the case s = 2 or s = 1
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Kedlaya’s Algorithm: Reduction of Differentials

I h(x)ysdx with s ∈ N even is exact since h(x)f (x)s/2dx is

I h(x)ysdx with s ∈ N for s odd is h(x)f (x)(s+1)/2

y dx
I Differential h(x)/y dx with deg h = n ≥ 2g can be reduced

by subtracting multiples of d(x i−2gy) for i = n, . . . ,2g
I Differential h(x)/y2 dx with deg h ≥ 2g + 1 is equivalent to

(h(x) mod f (x))/y2dx
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Kedlaya’s Algorithm: Basis for H1(A/Qq)

I Have shown H1(A/Qq) = H1(A/Qq)+ ⊕ H1(A/Qq)−

I H1(A/Qq)+ generated by x idx/y2 for i = 0, . . . ,2g
I H1(A/Qq)− generated by x idx/y for i = 0, . . . ,2g − 1

I The invariant part corresponds to the 2g + 1 removed
points with y -coordinate zero.

I The characteristic polynomial of F ∗ on H1(A/Qq)− equals

χ(t) := t2gP(1/t) with Z (C; t) =
P(t)

(1− t)(1− qt)
.

Fré Vercauteren Computing Zeta Functions of Curves over Finite Fields



Algebraic de Rham Cohomology
Example of Punctured Affine Line
Monsky-Washnitzer Cohomology

Kedlaya’s Algorithm for p > 2

Computing Action of Frobenius on H1(A/K )−

I The action of Σ∗ on a differential form xkdx/y is given by

Σ∗(xkdx/y) ≡ pxpk+p−1dx/Σ(y).

I Using the equation of the curve and subtracting suitable
exact differentials we can express Σ∗(xkdx/y l) again on
H1(A/K )−.

I This gives matrix M which is an approximation of the action
of Σ∗ on H1(A/K )−.

I The polynomial χ(t) := t2gP(1/t) can then be
approximated by the characteristic polynomial of
MMΣ · · ·MΣn−1

.
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Kedlaya’s Algorithm: Example

I Let C be hyperelliptic curve over F3 defined by

y2 = x5 + x4 + 2x3 + 2x + 2.

I The Frobenius on y−1 modulo 36 is given by y−p · R

R ≡ 1 + (−363x4 + 96x3 + 144x2 − 6x + 207)τ + (−123x4 − 153x3 − 21x2 + 351x + 210)τ2

+ (339x4 − 228x3 − 60x2 − 204x + 186)τ3 + (−81x4 + 54x3 − 243x2 − 243x + 27)τ4

+ (−54x4 − 162x3 − 54x2 − 54x + 162)τ5 + (351x4 + 189x3 + 189x2 + 189x + 351)τ6

+ (−243x4 + 243x3 − 108x2 − 270x + 27)τ7 + (−135x3 + 54x2 + 81x − 108)τ8

+ (216x4 + 108x3 − 297x2 + 351x − 162)τ9 + (−243x4 − 162x3 − 324x2 + 243x)τ10

+ (81x4 − 243x3 − 162x2 + 162x − 81)τ11 + (−162x4 + 162x3 + 324x2 − 324x + 324)τ12

with τ = y−2.
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Kedlaya’s Algorithm: Example

I The matrix M is given by

M =


27 39 30 108

129 36 27 126
204 186 12 138
46/3 76/3 41/3 169


I χ(T ) ≡ T 4 + 80T 3 + T 2 + 78T + 9 (mod 34), so

Z (C̃/Fq; T ) =
9T 4 − 3T 3 + T 2 − T + 1

(1− T )(1− 3T )
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Kedlaya’s Algorithm: Final Words

I Complexity for fixed p is Õ(g4n3)

I Dependence on p is O(p(log p)k ), so fully exponential
I Only practical for moderately small p, e.g. p ≤ 500
I Harvey’s modification: Õ(p1/2g5.5n3.5 + g8n5 log p)

I Characteristic 2 version is more subtle, need special lift of
equation of the curve

I Extension to very general class of non-degenerate curves
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