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Abstract

It is known that the free product of finitely many absolute Galois groups
of fields is the absolute Galois group of a field.

We give examples of free products of infinitely many nontrivial ab-
solute Galois groups of fields which are not isomorphic to the absolute
Galois group of any field.

On the other hand, we give examples of free products of infinitely
many nontrivial absolute Galois groups of fields which are the absolute
Galois group of a field.

Introduction

This note deals with free products of profinite groups as absolute Galois groups
of fields. To this end we denote the separable closure of a field K by Ksep and
call Gal(K) := Gal(Ksep/K) the absolute Galois group of K. If char(K) =

0, which is here our main concern, Ksep is the algebraic closure K̃ of K, so

Gal(K) = Gal(K̃/K). In any case, Gal(K) = lim←−Gal(L/K) is the inverse

limit over all finite Galois groups of Galois extensions L of K, so Gal(K) is a
profinite group, that is the inverse image of finite groups [FrJ23, Sec. 1.2].

Following [FrJ23, p. 6, Rem. 1.2.1(g)], we tacitly assume that every homo-
morphism φ: G→ H of profinite groups is continuous.

The free product of finitely many profinite groups G1, . . . , Gn is a
profinite group G :=

∏
∗ n
i=1 Gi satisfying the following conditions:

(a) Each Gi is a closed subgroup of G.
(b) If H is a profinite group and φi: Gi → H is a homomorphism of profinite

groups for i = 1, . . . , n, then there exists a unique homomorphism φ: G→ H
such that φ|Gi

= φi [FrJ23, p. 530, Prop. 25.5.1].
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The free product (in the sense of Binz-Neukirch-Wenzel [BNW71]) of a
set {Gi}i∈I of profinite groups for an arbitrary set I is a profinite group G :=∏
∗ i∈I Gi satisfying the following conditions: 1

(a) Every Gi is a closed subgroup of G.
(b) Every open subgroup H of G contains almost all (i.e. all but finitely many)

of the groups Gi.
(c) Given a profinite group Ḡ and a set of homomorphisms (φi: Gi → Ḡ)i∈I

such that for each open subgroup H̄ of Ḡ we have Im(φi) ≤ H̄ for almost all
i ∈ I, there exists a unique homomorphism φ: G→ Ḡ satisfying φ|Gi

= φi.

Note that this type of free product of profinite groups will be the only one
that appears in this short note.

Jochen Koenigsmann proves in [Koe02] that every free product of finitely
many absolute Galois groups is an absolute Galois group of a field. One may
find an alternative proof of Koenigsmann’s result in [HJK00].

Tamar Bar-On asked in a private communication whether every infinite free
product of absolute Galois groups of fields is an absolute Galois group of a field.

The aim of this note is to show that this is not always the case. Indeed,
by results of Emil Artin, the absolute Galois group of every real closed field, in
particular of the field R of real numbers, is isomorphic to Z/2Z. Conversely,
every field R with absolute Galois group of order 2 is real closed (Example 1.1).
However, that example shows that the free product of infinitely many copies of
Z/2Z is never an absolute Galois group of a field.

Similarly, we show in Examples 1.2 and 1.4 that for every prime number p
and every finite extension K of Qp and Q there exists no field with absolute
Galois group isomorphic to the free product of infinitely many copies of Gal(K).

But these counterexamples are not the rule for an infinite free product of
absolute Galois groups of fields to be an absolute Galois group of a field. In-
deed, Example 2.2 points out that the free profinite product of finitely many or
infinitely many projective groups is the absolute Galois group of a field.

So, we are still looking for a criterion for an infinite free product of absolute
Galois groups of fields to be the absolute Galois group of a field.

The author thanks Dan Haran for Example 1.1 and for other useful sugges-
tions. Likewise, the author thanks Aharon Razon for a careful reading of the
manuscript and the anonymous referee for useful hints.

1 Negative Examples
{EXMP}

We give three examples of arithmetical nature. Each of them shows that an
infinite free product of arbitrary absolute Galois groups of fields need not be an
absolute Galois group of a field.

The first example treats the absolute Galois group of real closed fields, with
absolute Galois group of order 2. The second one handles the absolute Galois

1The original definition of [BNW71] demands that the Gi’s are just profinite groups to-
gether with homomorphisms φi: Gi → G.
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group of a p-adic number field, i.e. a finite extension of the field Qp, where p is
a prime number. The main idea of the proof is similar to the proof in the “real
case” but uses stronger means. Finally, the third example considers number
fields.

Example 1.1. Real closed fields (Dan Haran). Assume toward contradiction {RELL}
that I is an infinite set and the absolute Galois group Gal(K) of a field K is a
free product

∏
∗ i∈I Gal(Ri) of absolute Galois groups Gal(Ri) of fields with 2 ≤

card(Gal(Ri)) <∞ for each i ∈ I. By [Lan97, p. 299, Cor. 9.3], card(Gal(Ri)) =

2, and R̃i = Ri(
√
−1). Hence, by [Lan97, p. 452, Prop. 2.4], each of the Ri’s is

a real closed field.
Next consider the quadratic extension L := K(

√
−1) of K. Its absolute

Galois group Gal(L) is an open subgroup of Gal(K). By definition, almost all
of the groups Gal(Ri) are contained in Gal(L). Since I is infinite, there exists
i ∈ I such that Gal(Ri) ⊆ Gal(L), so L ⊆ Ri. Thus,

√
−1 ∈ Ri, hence Ri is

not real closed [Lan97, p. 451, Sect. 2]. This contradicts the conclusion of the
preceding paragraph.

The method applied in Example 1.1 also works for fields whose absolute
Galois groups are isomorphic to Gal(M), where M is a finite extension of Qp

for some prime number p.

Example 1.2. p-adic fields. Let p be a prime number and let M be a finite {mADC}
extension of Qp. Assume toward contradiction that I is an infinite set and that
there exists a fieldK such that Gal(K) ∼=

∏
∗ i∈I Gal(Mi) and Gal(Mi) ∼= Gal(M)

for each i ∈ I.
We choose a prime number q ̸= 2, p such that q ∤ [M : Qp]. Let vp be the

standard discrete valuation of Qp satisying vp(p) = 1, let vM be the unique
normalized valuation of M that extends vp [CaF67, p. 56, Thm.], let e be the
ramification index of vM/vp, and let f := [M̄vM : Fp] be its residue degree.
Then, [FrJ23, p. 27, (2.10)] gives

ef = [M : Qp]. (1) {efp}{efp}

Claim: Xq − p has no roots in M . Indeed, assume by contradiction that there
exists x ∈ M such that xq = p. Then, qvM (x) = vM (p) = evp(p) = e. Hence,
by (1), q divides [M : Qp], in contrast to the choice of q.

Following the Claim, we choose a q-th root p1/q of p and note that p1/q /∈M .
By assumption, Gal(Mi) ∼= Gal(M) for each i. Hence, by [Koe95, p. 179,

Cor. 7.2], each of the fields Mi is elementarily equivalent to M in the lan-
guage of fields [FrJ23, p. 145]. Therefore, since p1/q /∈M , it does not belong to
any of the fields Mi.

On the other hand, Gal(K(p1/q)) is an open subgroup of Gal(K). Hence,
by the definition of the infinite free product of profinite groups, Gal(Mi) ⊆
Gal(K(p1/q)) for all but finitely many i’s. Since I is infinite, there exists i ∈ I
with p1/q ∈Mi. This contradicts the preceding paragraph.
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{pACF}
Remark 1.3. Let K be a field of characteristic 0. Following Ido Efrat [Efr06,
p. 167, Exm. 18.3.4(2)] we write Kalg := Q̃ ∩ K for the algebraic part of K.
Of course, Kalg is defined only up to isomorphism. So, in order to make Kalg

unique, we assume that all fields in this note are contained in a fixed universal
field Ω (as is done in the classical algebraic geometry [Lan64, p. 21, Chap. II1]).

As a consequence of Krasner’s Lemma, Ido Efrat notes that Q̃p = Q̃Qp

[Efr06, p. 172, Exm. 18.5.4(1)]. By definition, Qp∩Q̃ = Qp,alg and the restriction
map res: Gal(Qp)→ Gal(Qp,alg) is an isomorphism.

{GLFd}
Example 1.4. Number fields. Consider a number field K and a free product∏
∗ i∈I Gal(Ki) where I is an infinite set and Gal(Ki) ∼= Gal(K) for each i ∈ I.
Assume toward contradiction that

∏
∗ i∈I Gal(Ki) ∼= Gal(F ) for some field F .

To this end let N be a finite Galois extension of Q that contains K. We will
apply the Chebotarev density theorem to choose a prime number p that totally
splits in N .

Indeed, let S be the set of all prime numbers p which are unramified in N

and for which the Artin symbol
(N/Q

p

)
[FrJ23, p. 123] is the conjugacy class of

Gal(N/Q) consisting of the unit element. Then, the Dirichlet density of S is
1

[N :Q] [FrJ23, p. 124, Thm. 7.3.1], so that density is positive, hence S is an infinite

set [FrJ23, p. 124, lines 6–7]. By definition, each p ∈ S totally splits in N , so
Gal(Qp,alg) and all of its conjugates in Gal(Q) are contained in Gal(N), hence
also in Gal(K), so Gal(Qp,alg) ≤ Gal(Ki) for each i ∈ I, Hence, by Remark 1.3,
Gal(Qp) is isomorphic to a closed subgroup of Gal(Ki) for each i ∈ I.

Thus,
∏
∗ i∈I Gal(Qp) is isomorphic to a closed subgroup of

∏
∗ i∈I Gal(Ki) and

therefore also of Gal(F ). Hence
∏
∗ i∈I Gal(Qp) ∼= Gal(E) for some algebraic

extension E of F . This contradicts Example 1.2.

We call the counterexamples given in the present section “arithmetic”.

2 Positive Examples
{PSX}

In contrast to the arithmetic examples given in the first section, we give here
“positive profinite groups examples” showing that infinite free products of profi-
nite groups may well be absolute Galois groups of fields.

Specifically, those groups will be “projective”. To this end we say that
a profinite group G is projective if for given epimorphisms α: B → A and
φ: G→ A of profinite groups there exists a homomorphism γ: G→ B such that
α ◦ γ = φ [FrJ23, p. 528, 1st paragraph].

Here is a classical example of an absolute Galois group G of a field such that
G is projective.

{SHFr}
Example 2.1. The absolute Galois group of the maximal abelian extension
Qab of Q is projective. See [Jar11, p. 90, Exm. 5.10.5].
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{PRJ}
Example 2.2. Let K be a field and let G1, G2, G3, . . . be a sequence of pro-
jective groups and set G =

∏
∗∞

i=1 Gi for their free product in the sense of Binz–
Neukirch-Wenzel.

We prove that G is isomorphic to the absolute Galois group of a perfect
PAC field M that contains K. Thus, every geometrically irreducible variety
over M has an M -rational point [FrJ23, p. 203].

Claim: G is a projective group. Consider a finite embedding problem

(φ: G→ A,α: B → A), (2) {phl}{phl}

such that both A and B are finite groups and both α and φ are epimorphisms
[FrJ23, p. 525, Def. 25.3.1]. By definition of the free product, there exists a
positive integer n such that φ(Gi) = 1A for all i > n. By [FrJ23, p. 530,
Prop. 25.5.1(c)], the closed subgroup

∏
∗ n
i=1 Gi of G is a projective group. Let

φn:
∏
∗ n
i=1 Gi → A be the restriction of φ to

∏
∗ n
i=1 Gi. Then, there exists a

homomorphism γ0:
∏
∗ n
i=1 Gi → B such that φn = α ◦ γ0. By definition (see the

Introduction), γ0 extends to a homomorphism γ: G→ B such that γ(Gi) = 1B

for each i > n. Then, α ◦ γ = φ, so γ is a weak solution [FrJ23, p. 525] of the
embedding problem (2). By [FrJ23, p. 525, Lemma 25.3.2], G is projective, as
claimed.

End of proof: Since G is projective, it follows from a theorem of Alexander
Lubotzky and Lou van der Dries [FrJ23, p. 570, Cor. 26.1.2] that G is isomorphic
to the absolute Galois of a perfect PAC field that contains K, as desired.

{FP}
Example 2.3. Let G =

∏
∗∞
i=1 Gi be the free product of free profinite groups and

let K be a field. Then, by [FrJ23, p. 529, Cor. 25.4.5], each Gi is a projective
group. Hence, by Example 2.2, G is the absolute Galois group of a perfect PAC
field L that contains K.

Moreover, each Gi is a closed subgroup of G, so the fixed field Li of Gi in
L̃ is an algebraic extension of L. Hence, by a theorem of James Ax and Peter
Roquette [FrJ23, p. 207, Cor. 12.2.5], each of the fields Li is perfect and PAC.
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