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Abstract

We construct an algebraic extension F of Q which is pseudo finite and has
the “Laurent property”. In addition, F has an extension F ∗ which is a
non-principal ultraproduct of distinct finite fields (so F ∗ is pseudo finite),
F ∗ has the Laurent property, and F is the algebraic part of F ∗.

Introduction

It is well known that the field F := Q̃((t)) of Laurent series in the variable t
over the algebraic closure Q̃ of Q has the property that its algebraic closure F̃
is the union

⋃∞
n=1 F (t1/n) [Eis95, p. 299, Cor. 13.15]. See also [CaF67, p. 32,

special case of Cor. 1].
Note that F is the quotient field of the complete discrete valuation ring Q̃[[t]]

with t being a prime element of that ring. Hence, by Eisenstein’s criterion, Xn−t
is irreducible over F for every positive integer n [Lan93, p. 183, Thm. 3.1].

Thus, F has the Laurent Property, meaning in general, that char(F ) = 0
and F has an element a, such that for all n ∈ N the polynomial Xn − a is irre-
ducible, the field F (a1/n) is Galois over F of degree n, and F̃ =

⋃∞
n=1 F (a1/n).

(Note that F (a1/n) does not depend on the choice of the nth root of a.) We
then say that a is a Laurent element of F .

The combination of Theorems 2.4 and 2.6 of Jakub Gismatullin and Katarzyna
Tarasek’s work [GiT23] provides a non-principal ultraproduct F ∗ of distinct fi-
nite fields that has the Laurent property. Note that F ∗ is pseudo finite, which
means that F ∗ is perfect, F ∗ is “PAC” (= pseudo algebraically closed), and

Gal(F ∗) ∼= Ẑ, where Ẑ = lim←−Z/nZ [FrJ08, p. 449, Lemma 20.10.1].
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1 PREPARATIONS 2

To this end we recall that a field K is PAC if every geometrically integral
variety over K has a K-rational point [FrJ08, p. 192].

That non-principal ultraproducts of finite fields are pseudo finite was used by
James Ax in [Ax68] in order to prove that the elementary theory of finite fields is
decidable. Then, non-principal ultraproducts of finite fields play a central role in
the proof of the “transfer theorem” of the first author saying that the Dirichlet
density of the set of primes p for which a given elementary statement θ holds in
the fields Fp is equal to the Haar measure of σ ∈ Gal(Q) such that θ holds in

the fixed field Q̃(σ) of σ in Q̃ [Jar72] (see also [FrJ08, p. 447, Thm. 20.9.3]).
Here we prove the existence of an algebraic extension F of Q which is pseudo

finite and has the Laurent property. Then we deduce the existence of a non-
principal ultraproduct F ∗ of distinct finite fields, such that F ∗ has the Laurent
property (as [GiT23] did) and, in addition, F ∗ ∩ Q̃ = F .

On the other hand, we show that the σ’s in Gal(Q) with the Laurent property
for Q̃(σ) are “rare” (Theorem 4.1). In particular, “most” of the fields Q̃(σ)

with σ ∈ Gal(Q) satisfy Gal(Q̃(σ)) ∼= Ẑ but do not have the Laurent property
(Example 4.3).1

1 Preparations

Essential tools in the proof of our main theorem are Lemma 1.1 and Lemma
1.3. In these results and in what follows we set Fn = {xn | x ∈ F} for a field F
and a positive integer n.

{Irn}
Lemma 1.1 ([Kar89], p. 425, Thm. 1.6). Let F be a field, n a positive integer,
and a ∈ F . Then, Xn − a is irreducible over F if and only if a /∈ F p for all
primes p dividing n and a /∈ −4F 4 whenever 4|n.

{Eight}
Corollary 1.2. The polynomial p(X) := 8X8 − 1 is irreducible in Z[X].

Proof. There exists no a ∈ Q with 1
8 = a2, nor there exists b ∈ Q with

1
8 = −4b4. Hence, by Lemma 1.1, X8 − 1

8 is irreducible in Q[X], so 8X8 − 1 is
irreducible in Z[X], as claimed2.

{Ccl}
Lemma 1.3 ([Lan93], p. 289, Thm. Thm. 6.2). Let K0 be a field and n be a
positive integer prime to char(K0). Suppose that K0 contains a primitive n-th
root of unity.
(a) Let K be a cyclic extension of a field K0 of degree n. Then, there exist

a ∈ K0 and x ∈ K such that K = K0(x) and xn = a.
(b) Conversely, let a ∈ K0 and let x be a root of Xn− a. Then, K0(x) is cyclic

over K0 of degree that divides n.

In the following lemma and beyond we consider a positive integer n, a field
M that contains all roots of unity of order n, and an element a ∈M . Then we

1The authors are indebted to the anonymous referee for useful comments.
2The authors are indebted to Sigrid Böge for this short proof.
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write M(a1/n) for the extension of M obtained by adjoining an nth root a1/n

to M . Of course, there are n such roots, but all of the extensions M(a1/n) are
the same.

{Zgag}
Lemma 1.4. Let M be a field of characteristic 0 that contains all roots of
unity and let a be an element of M . Suppose that for each positive integer n
the extension M(a1/n)/M is cyclic of degree n. Then, N :=

⋃∞
n=1M(a1/n) is a

Galois extension of M and Gal(N/M) ∼= Ẑ.

Proof. We use a standard inverse limit argument.
For each positive integer n let

ρn: Gal(M(a1/(n+1)!)/M)→ Gal(M(a1/n!)/M)

be the restriction map. Then we use induction to construct a sequence of
epimorphisms πn: Ẑ → Gal(M(a1/n!)/M) such that ρn ◦ πn+1 = πn. Since

N =
⋃∞

n=1M(a1/n!), there exists an epimorphism π: Ẑ → Gal(N/M) with
resn ◦ π = πn for each n, where resn is the restriction map Gal(N/M) →
Gal(M(a1/n!)/M).

By assumption, Gal(M(a1/n!)/M) ∼= Z/n!Z, hence Ker(πn) = n!Ẑ is the

unique open subgroup of Ẑ of index n! [FrJ08, p. 14, Lemma 1.4.4]. Therefore,

by [FrJ08, p. 6, Remark 1.2.1(a)], Ker(π) is the trivial subgroup of Ẑ. We
conclude that π is an isomorphism, as desired. �

2 The field Qab
{Weber}

Next, we consider the field Qab obtained from Q by adjoining all of the roots
of unity in Q̃. Obviously, Qab is an abelian extension of Q. Moreover, the
Kronecker-Weber theorem says that Qab is the maximal abelian extension of Q
[Neu99, p. 324, Thm. 1.10].

{Abel}
Lemma 2.1. For each positive integer n, the extension Qab(21/2n)/Qab is cyclic
of degree n.

Proof. Since Qab contains all of the roots of unity, it follows from Lemma
1.3(b) that for each n, Qab(21/2n) is a cyclic extension of Qab of degree dividing
2n. Thus, it suffices to prove that the polynomial Xn −

√
2 is irreducible in

Qab[X].
To this end we observe that

√
2 ∈ Qab ∩ R and prove that both conditions

of Lemma 1.1 hold with (
√

2,Qab) replacing (a,K).

Proof of the first condition: Let p be a prime number and assume toward
contradiction that

√
2 ∈ Qp

ab. Thus, there exists b ∈ Qab with
√

2 = bp, so
b2p − 2 = 0.

By Eisenstein’s criterion [Lan93, p. 183, Thm. 3.1], the polynomial X2p − 2
is irreducible in Q[X]. Since, by the preceding paragraph, one of the roots of
X2p − 2 is in Qab and since Qab is a Galois extension of Q, all of the roots of
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X2p− 2 are in Qab. In particular, the unique positive real root 21/2p of X2p− 2
is in Qab. Since Gal(Qab/Q) is abelian, Q(21/2p) is a Galois extension of Q.
Hence, all of the roots of X2p− 2 are in Q(21/2p). One of them is ζ2p21/2p, with
ζ2p being a nonreal root of unity of order 2p. Thus, ζ2p21/2p ∈ Q(21/2p) ⊆ R.
Therefore, the nonreal complex number ζ2p is in R. This is a contradiction.

Proof of the second condition: Again, assume toward contradiction that
√

2 ∈
−4Q4

ab. Thus, there exists c ∈ Qab such that
√

2 = −4c4, so c8 = 1
8 , hence c

is a root of the polynomial 8X8 − 1. By Corollary 1.2, 8X8 − 1 is irreducible
in Z[X]. Hence, since Qab is Galois over Q, each two of the roots of 8X8 − 1
generate the same field over Q. One of these roots is the positive real 8th root
8−1/8 of 1

8 . Another one is ζ88−1/8, with ζ8 being a nonreal complex 8th root of

1. Hence, ζ88−1/8 ∈ Q(8−1/8) ⊆ R, so ζ8 ∈ R, which is a contradiction. �

{Lng}
Remark 2.2. Example 3 on page 270 of [Lan93] computes the structure of
the Galois group of the polynomial X4 − 2 over Q. Among others, this group
turns out to be non-abelian, in particular X2−

√
2 is irreducible over Qab. The

first step in that example chooses a real root α of X4 − 2 and notices that
Q(α) ∩Q(

√
−1) = Q, because otherwise

√
−1 would lie in R.

We have used an analogous argument in each of the two parts of the proof
of Lemma 2.1.

Although we are mainly interested here in fields of characteristic 0, we nev-
ertheless prove a result which holds in general. To this end we denote the
separable algebraic closure of a field K by Ksep and let Gal(K) = Gal(Ksep/K)
be the absolute Galois group of K. We also denote the fixed field in Ksep of an
element σ ∈ Gal(K) by Ksep(σ).

Lemma 2.3. Let K be a countable Hilbertian field and let N be a Galois ex-
tension of K with Gal(N/K) ∼= Ẑ. Then, there exists σ ∈ Gal(K) such that

Gal(Ksep(σ)) ∼= Ẑ, Ksep(σ) is PAC, N ∩Ksep(σ) = K, and NKsep(σ) = Ksep. {PAC}
Proof. We list the absolutely irreducible polynomials in K[T,X] which are
separable in X as f0, f1, f2, . . . with f0(T,X) = X − T . Let (t0, x0) = (0, 0).
Inductively assume that we have constructed (t0, x0), . . . , (tn, xn) ∈ K × Ksep

such that fi(ti, xi) = 0 for i = 0, . . . , n and N ∩K(x0, . . . , xn) = K. Let Kn be
the Galois hull of K(x0, . . . , xn)/K and set Nn = NKn. Then,

Gal(Nn/K) ∼= {(σ, τ) ∈ Gal(N/K)×Gal(Kn/K) | resN∩Knσ = resN∩Knτ}

[FrJ08, p. 11, (2f)], so Gal(Nn/K) is a finitely generated profinite group. By
[FrJ08, p. 328, Lemma 16.10.2], Gal(Nn/K) is a small profinite group in the
sense of [FrJ08, p. 329]. Since fn+1(T,X) is absolutely irreducible, fn+1(T,X)
is irreducible over Nn. Hence, by [FrJ08, p. 332, Prop. 16.11.1], there exists
tn+1 ∈ K such that fn+1(tn+1, X) is separable and irreducible over Nn, so also
over K(x0, . . . , xn). Choose xn+1 ∈ Ksep with fn+1(tn+1, xn+1) = 0. Then,
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Nn is linearly disjoint from K(x0, . . . , xn, xn+1) over K(x0, . . . , xn), hence Nn∩
K(x0, . . . , xn, xn+1) = K(x0, . . . , xn), so

N ∩K(x0, . . . , xn, xn+1) = N ∩Nn ∩K(x0, . . . , xn, xn+1)

= N ∩K(x0, . . . , xn) = K.

This completes the induction.
Having completed the induction, we write K ′ = K(x0, x1, x2, . . .). Then, K ′

is linearly disjoint from N over K and every absolutely irreducible polynomial in
K[T,X] has a zero in K ′. By [FrJ08, p. 195, Thm. 11.2.3], K ′ is PAC. Moreover,
the restriction map Gal(K ′)→ Gal(N/K) is surjective.

Since Gal(N/K) ∼= Ẑ, there exists σ ∈ Gal(K ′) whose restriction to N gen-
erates Gal(N/K). Hence, N ∩ Ksep(σ) = K and Gal(N · Ksep(σ)/Ksep(σ)) ∼=
Ẑ. By [FrJ08, p. 331, Cor. 16.10.8], the restriction map Gal(Ksep(σ)) →
Gal(NKsep(σ)/Ksep(σ)) is an isomorphism, soNKsep(σ) = Ksep and Gal(Ksep(σ))

is isomorphic to Ẑ. Since K ′ is PAC and K ′ ⊆ Ksep(σ), [FrJ08, p. 196,
Cor. 11.2.5] implies that Ksep(σ) is PAC, as claimed. �

3 Main results
{Main}

We prove the existence of pseudo finite fields with the Laurent property that
are algebraic over Qab and use them to construct non-principal ultraproducts of
the fields Fp with pseudo finite algebraic parts that have the Laurent property.

{Sigma}
Theorem 3.1. There exists σ ∈ Gal(Qab) such that Q̃(σ) is pseudo finite and
has the Laurent property.

Proof. By Lemma 2.1, for each positive integer n the extension Qab(21/2n)/Qab

is cyclic of degree n. Therefore, by Lemma 1.4, N :=
⋃∞

n=1 Qab(21/2n) is a Ga-

lois extension of Qab with Galois group Ẑ.
Since Q is countable, so is Qab. By Kuyk’s theorem, Qab is Hilbertian

[FrJ08, p. 333, Thm. 16.11.3]. Thus, taking into account that every subfield of
Q̃ is perfect, Lemma 2.3 supplies σ ∈ Gal(Qab) such that Q̃(σ) is pseudo finite,
N∩Q̃(σ) = Qab, and NQ̃(σ) = Q̃. Hence, Q̃ =

⋃∞
n=1 Q̃(σ)((

√
2)1/n). Moreover,

for each n the polynomial Xn −
√

2 is irreducible over Q̃(σ) of degree n. We
conclude that Q̃(σ) has the Laurent property, as desired. �

Theorem 3.1 leads to a partially explicit version of the Gismatullin-Tarasek
theorem mentioned in the Introduction.

Given a field F of characteristic 0 we write Falg = Q̃ ∩ F for the algebraic
part of F . Note that the right hand side of the latter equality depends, up to
isomorphism, on an embedding of Q̃ in F̃ .

{UltPro}
Theorem 3.2. There exists a non-principal ultraproduct F ∗ of the fields Fp,
where p ranges over all prime numbers, with the following properties:
(a) F ∗ is pseudo finite,
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(b) F ∗alg is pseudo finite,

(c) Q̃ =
⋃∞

n=1 F
∗
alg((
√

2)1/n) and Xn −
√

2 is irreducible over F ∗alg for each n,

(d) F̃ ∗ =
⋃∞

n=1 F
∗((
√

2)1/n) and Xn−
√

2 is irreducible over F ∗ for each n, so
(e) F ∗alg and F ∗ have the Laurent property.

Proof. Theorem 3.1 provides an element σ ∈ Gal(Qab) such that Q̃(σ) is

pseudo finite, so Gal(Q̃(σ)) ∼= Ẑ. Moreover, Gal(Q̃(σ)((
√

2)1/n)) is the unique
extension of Q̃(σ) of degree n and the union of these extensions is Q̃, so Q̃(σ)
has the Laurent property.

By [FrJ08, p. 451, Thm. 20.10.8(d)], there exists a non-principal ultraproduct
F ∗ of the fields Fp, where p ranges over all prime numbers, such that F ∗alg =

Q̃ ∩ F ∗ = Q̃(σ). Together with the previous paragraph, this gives (b) and (c).
Moreover, the restriction map ρ: Gal(F ∗)→ Gal(Q̃(σ)) is surjective. By [FrJ08,
p. 451, Thm. 20.10.8(a)], F ∗ is pseudo finite (as stated in (a)), in particular

Gal(F ∗) ∼= Ẑ. Hence, by [FrJ08, p. 331, Cor. 16.10.8], ρ is an isomorphism.

Therefore, F̃ ∗ =
⋃∞

n=1 F
∗((
√

2)1/n). Moreover, for each n the polynomial Xn−√
2 is irreducible over F ∗ of degree n, as stated in (d). �

4 Concluding Remarks
{CNRM}

We notice that the set of all σ ∈ Gal(Q) such that Q̃(σ) is a Laurent field has
Haar measure 0. Then we consider the set Q of all non-principal ultraproducts
of finite fields, finitely many in each characteristic, and prove that it is “rare”
for a field F ∈ Q to be a Laurent field.

Finally, we consider the set P of all non-principal ultraproducts of the fields
Fp and prove, under the continuum hypothesis, that if F, F ′ ∈ P and F ′ is
elementarily equivalent to F , then F ′ ∼= F . Thus, since F has a Laurent element,
so does F ′.

For a field K we let µK be the unique Haar measure of Gal(K) with
µK(Gal(K)) = 1 [FrJ08, p. 366, Prop. 18.2.1].

{ZERO}
Theorem 4.1. Let K be a countable field of characteristic 0. Then the set of
all σ ∈ Gal(K) such that K̃(σ) has the Laurent property has µK-measure zero.

Proof. Suppose that K̃(σ) with σ ∈ Gal(K) has the Laurent property. In
particular, the field K̃(σ) has an element a such that [K̃(σ)(a1/p) : K̃(σ)] = p
for each prime number p.

In particular, M := K(a) contains a but M(a1/p) 6⊆ K̃(σ). Hence, by
Lemma 1.1, [M(a1/p) : M ] = p and

σ /∈ Gal(M(a1/p)). (1) {rar1}

Let SK,a,p be the set of all σ ∈ Gal(M) that satisfy (1), that is SK,a,p =
Gal(M)rGal(M(a1/p)). By [FrJ08, p. 364, Lemma 18.1.1(a)], µM (SK,a,p) =
1− 1

p . By [FrJ08, p. 374, Example 18.3.8], the profinite groups Gal(M(a1/p)) =
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Gal(M)rSK,a,p, with p ranging over all prime numbers are µM -independent.
Therefore, by [FrJ08, p. 372, Lemma 18.3.4 and Example 18.3.3], the set SK,a :=⋂

p SK,a,p satisfies

µM (SK,a) =
∏
p

µM (SK,a,p) =
∏
p

(
1− 1

p

)
= 0. (2) {rar2}

Therefore, by [FrJ08, p. 370, Prop. 18.2.4], µK(SK,a) = 1
[M :K]µM (SK,a) = 0.

Let S :=
⋃

a SK,a, where a ranges over the countably many elements in K̃
that satisfy [K(a)(a1/p) : K(a)] = p for each prime number p. Then, S contains
the set of all σ ∈ Gal(K) such that K̃(σ) has the Laurent property. Since K is
countable, we have by the sentence following (2) that µK(S) = 0. Hence, the
Haar measure of all σ ∈ Gal(K) such that K̃(σ) has the Laurent property is 0.

{RARE}
Remark 4.2. Let F be a field of characteristic 0 that has the Laurent property
with a Laurent element a.

Suppose that Gal(F ) ∼= Ẑ. In particular, F has for each n ∈ N a unique
extension Fn of degree n [FrJ08, p. 14, Lemma 1.4.4], Fn/F is Galois, and
Gal(Fn/F ) ∼= Z/nZ. By definition, [F (a1/n) : F ] = n, so Fn = F (a1/n).

In particular, for every prime number p and with ζp being the primitive root
of 1 of order p, we have ζpa

1/p ∈ F (a1/p), so ζp ∈ F (a1/p). Since [F (ζp) : F ]|p−1,
we conclude that ζp ∈ F . It follows that the compositum L of all fields Q(ζp)
with p ranging over all prime numbers is contained in F . Note that L is an
infinite algebraic extension of Q.

{ULPR}
Example 4.3. Every non-principal ultraproduct F of distinct finite fields is
psuedo finite [FrJ08, p. 449, Lemma. 20.10.1]. Moreover, if F =

∏
q∈Q Fq/D,

where Q is the set of all prime powers and {q ∈ Q | p|q} is finite for every prime
number p, and where D is a non-principal ultrafilter on Q, then char(F ) = 0,
so F ∩ Q̃ = Q̃(σ) for some σ ∈ Gal(Q). Hence, by Remark 4.2, F does not have
the Laurent property, unless the field L introduced in Remark 4.2 is contained
in F . Since [L : Q] = ∞, it is “rare” for F to have the Laurent property.
In particular, the example of Gismatullin and Tarasek for an ultraproduct of
finite fields having the Laurent property mentioned in the Introduction is “rare”.

We end our note with a discussion of the Laurent property among the set P
of all non-principal ultraproducts of the fields Fp, with p ranging on all prime
numbers.

{SATR}
Remark 4.4. Suppose that F and F ′ are elementarily equivalent fields in the
language of rings with F being a Laurent field. Then, it is not clear whether F ′

is also a Laurent field.
However, if F, F ′ ∈ P, then by [FrJ08, p. 143, Lemma 7.7.4], both F and F ′

are ℵ1-saturated. In addition, their cardinality is 2ℵ0 . Assuming the continuum
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hypothesis 2ℵ0 = ℵ1, we may conclude from [Pil02, p. 39, Prop. 4.5] that F ∼= F ′.
Alternatively, we may apply [Mar02, p. 144, Thm. 4.3.20] to the complete theory
T := Th(F ) = Th(F ′) to achieve the same conclusion.

Since F has a Laurent element, so does F ′. Hence, F ′ has the Laurent
propery.
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