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Abstract

We construct an algebraic extension F' of Q which is pseudo finite and has
the “Laurent property”. In addition, F' has an extension F* which is a
non-principal ultraproduct of distinct finite fields (so F* is pseudo finite),
F™ has the Laurent property, and F' is the algebraic part of F™*.

Introduction

It is well known that the field F := Q((t)) of Laurent series in the variable ¢
over the algebraic closure Q of Q has the property that its algebraic closure F
is the union |2, F(t'/™) [Eis95, p. 299, Cor. 13.15]. See also [CaF67, p. 32,
special case of Cor. 1].

Note that F is the quotient field of the complete discrete valuation ring Q[[t]]
with ¢ being a prime element of that ring. Hence, by Eisenstein’s criterion, X" —¢
is irreducible over F for every positive integer n [Lan93, p. 183, Thm. 3.1].

Thus, F has the Laurent Property, meaning in general, that char(F) =0
and F has an element a, such that for all n € N the polynomial X™ — q is irre-
ducible, the field F(a'/™) is Galois over F of degree n, and F = J°°_, F(a'/™).
(Note that F'(a'/™) does not depend on the choice of the nth root of a.) We
then say that a is a Laurent element of F.

The combination of Theorems 2.4 and 2.6 of Jakub Gismatullin and Katarzynall
Tarasek’s work [GiT23] provides a non-principal ultraproduct F** of distinct fi-
nite fields that has the Laurent property. Note that F* is pseudo finite, which
means that F* is perfect, F* is “PAC” (= pseudo algebraically closed), and
Gal(F*) = Z, where 7 = lim Z/nZ [FtJ08, p. 449, Lemma 20.10.1].
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To this end we recall that a field K is PAC if every geometrically integral
variety over K has a K-rational point [FrJ08| p. 192].

That non-principal ultraproducts of finite fields are pseudo finite was used by
James Ax in [Ax68] in order to prove that the elementary theory of finite fields is
decidable. Then, non-principal ultraproducts of finite fields play a central role in
the proof of the “transfer theorem” of the first author saying that the Dirichlet
density of the set of primes p for which a given elementary statement 6 holds in
the fields F, is equal to the Haar measure of o € Gal(Q) such that 6 holds in
the fixed field Q(0) of o in Q [Jar72] (see also [FrJOS, p. 447, Thm. 20.9.3]).

Here we prove the existence of an algebraic extension F' of Q which is pseudo
finite and has the Laurent property. Then we deduce the existence of a non-
principal ultraproduct F* of distinct finite fields, such that F* has the Laurent
property (as [GiT23] did) and, in addition, F*NQ = F.

On the other hand, we show that the ¢’s in Gal(Q) with the Laurent property
for Q(o) are “rare” (Theorem {.1). In particular, “most” of the fields Q(o)
with o € Gal(Q) satisfy Gal(Q(c)) = Z but do not have the Laurent property

(Example E|

1 Preparations

Essential tools in the proof of our main theorem are Lemma [[.1] and Lemma
In these results and in what follows we set F™ = {z" | x € F} for a field F
and a positive integer n.

Lemma 1.1 ([Kar89], p. 425, Thm. 1.6). Let F be a field, n a positive integer,
and a € F. Then, X™ — a is irreducible over F if and only if a ¢ F? for all
primes p dividing n and a ¢ —4F* whenever 4|n.

Corollary 1.2. The polynomial p(X) := 8X® — 1 is irreducible in Z[X].

= a?, nor there exists b € Q with
is irreducible in Q[X], so 8X8 — 1 is

Proof. There exists no a € Q with

1 = —4b*. Hence, by Lemma X8 —

irreducible in Z[X], as claimed®|

00| 00| =

Lemma 1.3 ([Lan93|, p. 289, Thm. Thm. 6.2). Let Ky be a field and n be a

positive integer prime to char(Ky). Suppose that Ky contains a primitive n-th

root of unity.

(a) Let K be a cyclic extension of a field Ky of degree n. Then, there exist
a € Ko and x € K such that K = Ko(x) and 2™ = a.

(b) Conversely, let a € Ky and let x be a root of X™ —a. Then, Ko(x) is cyclic
over Kq of degree that divides n.

In the following lemma and beyond we consider a positive integer n, a field
M that contains all roots of unity of order n, and an element a € M. Then we

IThe authors are indebted to the anonymous referee for useful comments.
2The authors are indebted to Sigrid Boge for this short proof.
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write M(al/") for the extension of M obtained by adjoining an nth root a'/”
to M. Of course, there are n such roots, but all of the extensions M (a'/™) are
the same.

Lemma 1.4. Let M be a field of characteristic 0 that contains all roots of
unity and let a be an element of M. Suppose that for each positive integer n
the extension M (a'/™)/M is cyclic of degree n. Then, N :=J>°, M(a'/™) is a
Galois extension of M and Gal(N/M) = Z.

Proof. We use a standard inverse limit argument.
For each positive integer n let

pu: Gal(M (/) /M) > Gal(M (a™/™)/M)

be the restriction map. Then we use induction to construct a sequence of
epimorphisms m,: Z — Gal(M(a'/™)/M) such that p, o Tpy1 = T,. Since
N = 2, M(a'/™), there exists an epimorphism 7: Z — Gal(N/M) with
res, o™ = m, for each n, where res, is the restriction map Gal(N/M) —
Gal(M (a'/™)/M).

By assumption, Gal(M (a'/™)/M) = Z/n!Z, hence Ker(m,) = n!Z is the
unique open subgroup of Z of index n! [FrJO8|, p. 14, Lemma 1.4.4]. Therefore,
by [FrJO8, p. 6, Remark 1.2.1(a)], Ker(n) is the trivial subgroup of Z. We
conclude that 7 is an isomorphism, as desired. O

2 The field Q.

Next, we consider the field Q,1, obtained from @Q by adjoining all of the roots
of unity in Q. Obviously, Q. is an abelian extension of Q. Moreover, the
Kronecker-Weber theorem says that Q,p, is the maximal abelian extension of Q
[Neu99| p. 324, Thm. 1.10].

Lemma 2.1. For each positive integer n, the extension Qup(21/2")/Qap is cyclic
of degree n.

Proof. Since Q.1 contains all of the roots of unity, it follows from Lemma
b) that for each n, Q. (2" 1) is a cyclic extension of Q,, of degree dividing
2n. Thus, it suffices to prove that the polynomial X™ — /2 is irreducible in
Qab [X}

To this end we observe that v2 € Qup NR and prove that both conditions
of Lemma |1.1{ hold with (v/2,Qap) replacing (a, K).

Proof of the first condition: Let p be a prime number and assume toward
contradiction that v/2 € ng. Thus, there exists b € Q. with V2 = bP, so
b?P —2 = 0.

By Eisenstein’s criterion [Lan93, p. 183, Thm. 3.1], the polynomial X2 — 2
is irreducible in Q[X]. Since, by the preceding paragraph, one of the roots of
X?P — 2 is in Qup and since Q,p, is a Galois extension of Q, all of the roots of

{Zgag}

{Weber}

{Abel}
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X?2P — 92 are in Qup. In particular, the unique positive real root 2'/2P of X2» — 2
is in Qap. Since Gal(Q.,/Q) is abelian, Q(2'/?P) is a Galois extension of Q.
Hence, all of the roots of X?? —2 are in Q(2'/?P). One of them is (5,2'/?", with
(ap being a nonreal root of unity of order 2p. Thus, (5,2'/?P € Q(2'/??) C R.
Therefore, the nonreal complex number (5, is in R. This is a contradiction.

Proof of the second condition: Again, assume toward contradiction that V2 e
—4Q%,. Thus, there exists ¢ € Qgp, such that V2 = —4et, so ¢ = é, hence ¢
is a root of the polynomial 8X® — 1. By Corollary 8X® — 1 is irreducible
in Z[X]. Hence, since Q,}, is Galois over Q, each two of the roots of 8X® — 1
generate the same field over Q. One of these roots is the positive real 8th root
8-1/8 of %. Another one is (s81/8, with (g being a nonreal complex 8th root of
1. Hence, (38 /% € Q(8'/8) C R, so (s € R, which is a contradiction. O

Remark 2.2. Example 3 on page 270 of [Lan93] computes the structure of
the Galois group of the polynomial X* — 2 over Q. Among others, this group
turns out to be non-abelian, in particular X2 — /2 is irreducible over Q,},. The
first step in that example chooses a real root a of X* — 2 and notices that
Q(a) NQ(v/~1) = Q, because otherwise v/—1 would lie in R.

We have used an analogous argument in each of the two parts of the proof
of Lemma |

Although we are mainly interested here in fields of characteristic 0, we nev-
ertheless prove a result which holds in general. To this end we denote the
separable algebraic closure of a field K by K and let Gal(K) = Gal(Kgep/K)
be the absolute Galois group of K. We also denote the fixed field in K. of an
element o € Gal(K) by Keep(0).

Lemma 2.3. Let K be a countable Hilbertian field and let N be a Galois ex-
tension of K with Gal(N/K) = Z. Then, there exists 0 € Gal(K) such that
Gal(Ksep(0)) 2 Z, Ksep(0) is PAC, NN Keep(0) = K, and NKgep(0) = Kgep.

Proof. We list the absolutely irreducible polynomials in K[T, X] which are
separable in X as fy, f1, f2,... with fo(T,X) = X —T. Let (to,x0) = (0,0).
Inductively assume that we have constructed (to, o), ..., (tn,Tn) € K X Kgep
such that f;(¢;,z;) =0for:=0,...,n and NN K(xg,...,z,) = K. Let K,, be
the Galois hull of K (xo,...,2,)/K and set N,, = NK,,. Then,

Gal(N,,/K) = {(o,7) € Gal(N/K) x Gal(K,,/K) | resNnk, 0 = resNnk, T}

[ErJO8, p. 11, (2f)], so Gal(N,,/K) is a finitely generated profinite group. By
[ErJO8), p. 328, Lemma 16.10.2], Gal(N,,/K) is a small profinite group in the
sense of [FrJ08, p. 329]. Since f,,+1(7T, X) is absolutely irreducible, f,,+1(T, X)
is irreducible over N,,. Hence, by [FrJ08, p. 332, Prop. 16.11.1], there exists
tn+1 € K such that fi,11(tn41,X) is separable and irreducible over N,,, so also
over K(zg,...,z,). Choose 41 € Kgep With fr41(tnt1, nt1) = 0. Then,

{Lng}

{PAC}
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N, is linearly disjoint from K (zg, ..., Zpn,Zns1) over K(xg,...,2,), hence NN
K(xo,...,TnyTny1) = K(xo,...,2p), SO

NNK(xgy.. ,Tn,Tny1) = NOAN, N K (2o, ..., Tn, Trtl)
=NNK(zg,...,zn) =K.

This completes the induction.

Having completed the induction, we write K’ = K (xq, z1,x2,...). Then, K’
is linearly disjoint from N over K and every absolutely irreducible polynomial in
K|[T, X] has a zero in K'. By [FrJ08| p. 195, Thm. 11.2.3], K’ is PAC. Moreover,
the restriction map Gal(K') — Gal(IN/K) is surjective.

Since Gal(N/K) = Z, there exists 0 € Gal(K’) whose restriction to N gen-
erates Gal(N/K). Hence, N N Kyp(0) = K and Gal(N - Keep(0)/Ksep(0)) =
Z. By [FrJ08, p. 331, Cor. 16.10.8], the restriction map Gal(Kup(o)) —
Gal(N Kgep(0)/Kgep(0)) is an isomorphism, s0 N Keep(0) = Kep and Gal(Keep ()
is isomorphic to Z. Since K’ is PAC and K’ C Keep(o), [FrJO8, p. 196,
Cor. 11.2.5] implies that Ksep(0) is PAC, as claimed. O

3 Main results
{Main}

We prove the existence of pseudo finite fields with the Laurent property that

are algebraic over Q1 and use them to construct non-principal ultraproducts of

the fields F,, with pseudo finite algebraic parts that have the Laurent property.

Sigma

Theorem 3.1. There exists o € Gal(Qap) such that Q(o) is pseudo finite and (sigma)
has the Laurent property.

Proof. By Lemma for each positive integer n the extension Qap(2'/2")/Qapl}
is cyclic of degree n. Therefore, by Lemma N =2, Qup(2'/2") is a Ga-
lois extension of Qup, with Galois group Z.

Since Q is countable, so is Q.. By Kuyk’s theorem, Q,;, is Hilbertian
[FrJO8|, p. 333, Thm. 16.11.3]. Thus, taking into account that every subfield of
Qis perfect, Lemma supplie§ o € Gal(Qap) such that Q(J) is pseudo finite,
NNQ(c) = Qap, and NQ(c) = Q. Hence, Q = [J2, Q(0)((v/2)}/™). Moreover,
for each n the polynomial X" — v/2 is irreducible over Q(c) of degree n. We
conclude that @(J) has the Laurent property, as desired. O

Theorem leads to a partially explicit version of the Gismatullin-Tarasek
theorem mentioned in the Introduction.
Given a field F' of characteristic 0 we write Fyjgz = QN F for the algebraic
part of F'. Note that the right hand side of the latter equality depends, up to
isomorphism, on an embedding of Qin F.
{U1ltPro}
Theorem 3.2. There exists a non-principal ultraproduct F* of the fields T,

where p ranges over all prime numbers, with the following properties:
(a) F* is pseudo finite,
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(b) F is pseudo finite,

) F,
(c) Q U, alg((\f)l/") and X™ — /2 is irreducible over Fy, for eachn,
(d) F* =2, F*((V2)Y/™) and X™ — /2 is irreducible over F* for each n, so
(e) F,

o

e g and F* have the Laurent property.

Proof. Theorem provides an element o € Gal(Qup) such that Q(o) is
pseudo finite, so Gal(Q(0)) = Z. Moreover, Gal(Q(c)((v/2)!/™)) is the unique
extension of @(0) of degree n and the union of these extensions is Q, so @(0)
has the Laurent property.

By [ErJ08, p. 451, Thm. 20.10.8(d)], there exists a non-principal ultraproduct

of the fields IF,,, where p ranges over all prime numbers, such that F:lg =

QN F* = Q(0). Together with the previous paragraph, this gives (b) and (c).
Moreover, the restriction map p: Gal(F™*) — Gal(Q(0)) is surjective. By [FrJ08|
p. 451, Thm. 20.10.8(a)], F™* is pseudo finite (as stated in (a)), in particular
Gal(F*) = Z. Hence, by [FrJ0OS, p. 331, Cor. 16.10.8], p is an isomorphism.
Therefore, F* = Us2, F*((v/2)Y/™). Moreover, for each n the polynomial X" —
V/2 is irreducible over F'* of degree n, as stated in (d). O

F*

4 Concluding Remarks

We notice that the set of all o € Gal(Q) such that Q(o) is a Laurent field has
Haar measure 0. Then we consider the set Q of all non-principal ultraproducts
of finite fields, finitely many in each characteristic, and prove that it is “rare”
for a field F' € Q to be a Laurent field.

Finally, we consider the set P of all non-principal ultraproducts of the fields
F, and prove, under the continuum hypothesis, that if F,F’ € P and F’ is
elementarily equivalent to F', then F’ = F. Thus, since F has a Laurent element,
so does F”.

For a field K we let ux be the unique Haar measure of Gal(K) with
px(Gal(K)) =1 [FrJ08, p. 366, Prop. 18.2.1].

Theorem 4.1. Let K be a countable field of characteristic 0. Then the set of
all o € Gal(K) such that K (o) has the Laurent property has jix -measure zero.

Proof. Suppose that K (o) with o € Gal(K) has the Laurent property. In
particular, the field K (o) has an element a such that [K(c)(a'/?) : K(o)] = p
for each prime number p.

In particular, M := K(a) contains a but M(a'/?) ¢ K(o). Hence, by
Lemma [M(a'/?): M] = p and

o ¢ Gal(M(al/P)). (1)

Let Sk.q,p be the set of all o € Gal(M) that satisfy (1), that is Sk, =
Gal(M) ~ Gal(M(a'/?)). By [FrJO08, p. 364, Lemma 18.1.1(a)], tar(Sk.ap) =
1-— %. By [Fr.JOS, p. 374, Example 18.3.8], the profinite groups Gal(M (a'/?)) =

{CNRM}

{ZERO}

{rari1}
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Gal(M) ™ Sk a,p, with p ranging over all prime numbers are pp-independent.
Therefore, by [FrJ08, p. 372, Lemma 18.3.4 and Example 18.3.3], the set Sk, :=
M, SK.a,p satisfies

i (Sica) = [ [ ae(Skap) =[] (1= =) =0. (2)

p p

Therefore, by [FrJO8| p. 370, Prop. 18.2.4], ux (Sk.a) = ﬁuM(SK’a) =0.

Let S := U, Sk,a, where a ranges over the countably many elements in K
that satisfy [K(a)(a'/?) : K(a)] = p for each prime number p. Then, S contains
the set of all ¢ € Gal(K) such that K (o) has the Laurent property. Since K is
countable, we have by the sentence following that pi(S) = 0. Hence, the
Haar measure of all ¢ € Gal(K) such that K (o) has the Laurent property is 0.
|

Remark 4.2. Let F be a field of characteristic 0 that has the Laurent property
with a Laurent element a.

Suppose that Gal(F) = Z. In particular, F' has for each n € N a unique
extension F,, of degree n [FrJO8| p. 14, Lemma 1.4.4], F,/F is Galois, and
Gal(F,/F) = Z/nZ. By definition, [F(a'/") : F] = n, so F, = F(a'/™).

In particular, for every prime number p and with ¢, being the primitive root
of 1 of order p, we have (,a/? € F(a'/P), s0(, € F(a'/?). Since [F(¢,) : F]lp—1,
we conclude that ¢, € F. It follows that the compositum L of all fields Q((,)
with p ranging over all prime numbers is contained in F'. Note that L is an
infinite algebraic extension of Q. ]

Example 4.3. Every non-principal ultraproduct F' of distinct finite fields is
psuedo finite [FrJO8, p. 449, Lemma. 20.10.1]. Moreover, if F' =[] .o Fy/D,
where Q is the set of all prime powers and {¢ € Q| p|q} is finite for every prime
number p, and where D is a non-principal ultrafilter on Q, then char(F') = 0,
so FNQ = Q(o) for some o € Gal(Q). Hence, by Remark F' does not have
the Laurent property, unless the field L introduced in Remark is contained
in F. Since [L : Q] = oo, it is “rare” for F to have the Laurent property.
In particular, the example of Gismatullin and Tarasek for an ultraproduct of
finite fields having the Laurent property mentioned in the Introduction is “rare”.
|

We end our note with a discussion of the Laurent property among the set P
of all non-principal ultraproducts of the fields IF,, with p ranging on all prime
numbers.

Remark 4.4. Suppose that F' and F’ are elementarily equivalent fields in the
language of rings with F' being a Laurent field. Then, it is not clear whether F”
is also a Laurent field.

However, if F, F’ € P, then by [ErJ08| p. 143, Lemma 7.7.4], both F and F’
are Ni-saturated. In addition, their cardinality is 2%0. Assuming the continuum

{rar2}

{RARE}

{ULPR}

{SATR}
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hypothesis 2% = R;, we may conclude from [Pil02] p. 39, Prop. 4.5] that ' = F".
Alternatively, we may apply [Mar02] p. 144, Thm. 4.3.20] to the complete theory
T := Th(F) = Th(F’) to achieve the same conclusion.

Since F has a Laurent element, so does F’. Hence, F’ has the Laurent

propery. | |
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