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Abstract

Amphiphiles are molecules, which have covalently bonded hydrophilic (soluble in wa-

ter) and hydrophobic (insoluble in water) groups. In aqueous solution such molecules

self-assemble into aggregates of various shapes and sizes. Many amphiphiles (e.g., sur-

factants, block copolymers) form spherical aggregates called micelles above a certain

amphiphile concentration, known as the critical micelle concentration (cmc).

This thesis addresses current issues in the theory of micellar aggregation and aims

to give a unified theoretical description of some of the “universal” features of micellar

solutions.

Throughout this work we use a simple free-energy formalism, which views mi-

cellization as restricted nucleation. That is, the micelles are treated as nuclei of an

aggregated phase, with the difference between micellization and macroscopic phase

transition being the finite size of the micelles. Despite its simplicity our model en-

ables us to study a host of new issues related to amphiphilic aggregation in and out

of equilibrium.

The first issue we address is the phenomenon of premicellar aggregation (i.e., the

possible appearance of micelles below the cmc). This phenomenon and its features

have been a subject of dispute among scholars during the years. Sensitive spectroscopic

techniques like FCS, as well as NMR measurements, show in some cases the appearance

of micelles at concentrations as low as 3-4 times below the literature known value of the

cmc (as measured by macroscopic techniques such as conductivity and surface tension).

This effect has often been attributed to the presence of a third component in the system

(eg., a fluorescent dye), which participates in the formation of micelles and therefore

lowers the cmc. We propose a different explanation. We study micellar aggregation

using our free-energy model. It accounts for metastable states in the system, which we

identify as premicellar aggregates. We examine the characteristics of these premicellar

aggregates (aggregate size, polydisperisity, kinetic stability). We find that, for certain

realistic values of parameters and assuming strict equilibrium, there should be an
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appreciable extent of premicellar aggregation below the cmc. There is, however, a

high free energy barrier for the nucleation of such metastable aggregates. Thus, the

impurities (e.g., dyes) introduced in various experiments may act as nucleation centers,

which facilitate the kinetics rather than shift the cmc.

The second part of the thesis regards the kinetics of nucleation and growth of the

spherical micelles in different experimentally relevant scenarios (e.g., a concentration

jump). Previous theories model this problem as a step-wise chemical reaction and

contain a large number of free parameters. In this thesis we present a new approach

to the study of micellization kinetics, which is easily tractable and generalizable. We

derive kinetic equations, which describe the kinetics as various pathways along the

free-energy landscape. The kinetics of micelle formation and growth is examined in

two different scenarios, namely an open system connected to a reservoir at amphiphile

concentration above the cmc, and a closed system which undergoes a concentration

quench. The kinetics of the two scenarios are shown to be strikingly different. In

both cases separation of time scales is found, leading to distinct stages in the kinetics

(nucleation, growth and final relaxation). Our results are in qualitative agreement

with experimental evidence whenever such exists.

The thesis demonstrates the power and generality of our free-energy formalism,

which can be extended to further studies of amphiphilic aggregation in the future.
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Chapter 1

General Introduction

This chapter gives a brief overview of the amphiphilic self-assembly phenomena in

general and of the theoretical and experimental research of micellization done in the

past. It also reviews the theoretical methods to be used in the next chapters of this

thesis.

Section 1.1 deals with the driving force of amphiphilic self-assembly. Section 1.2

describes the characteristics of the phenomenon. Sections 1.3 and 1.4 give a brief

review of the study of micellar aggregation. Sections 1.5 and 1.6 provide some theo-

retical background for the following chapters, and Section 1.7 presents the contents of

this thesis.

1.1 The hydrophobic effect

The driving force for amphiphilic self-assembling systems is the so-called hydrophobic

effect. The term hydrophobic effect [1] was coined by Charles Tanford in the 1970s

to explain the tendency of non-polar molecules to form aggregates of like molecules in

water. A full understanding of this phenomenon is still lacking because of the many

intermolecular interactions involved. It is known, however, that the main reason is

entropic and is due to the unique properties of the water molecules. When a non-

polar molecule is placed in water, the water molecules around it have to create a

cavity to accommodate it. Since non-polar molecules cannot form hydrogen bonds the

creation of the cavity requires either breakage of hydrogen bonds, or rearrangement
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of the water molecules in a way that breaking of hydrogen bonds is avoided. Which

process takes place depends of course on the details of the solute molecule. The

tetrahedral shape of the water molecules allows them to arrange themselves around

most solutes without breaking hydrogen bonds but in this process the water molecules

become even more ordered than in bulk water, which is entropically unfavorable.

This is the reason why inert substances like hydrocarbons are immiscible in water.

When many such molecules are present in water the loss of entropy becomes too great

and it becomes more favorable to break hydrogen bonds and create larger cavities to

accommodate an assembly of non-polar molecules, i.e., to form aggregates of solute

molecules. This leads to an effective attraction between the non-polar molecules,

called the hydrophobic interaction. Due to the hydrophobic interaction, the non-polar

molecules have stronger mutual attraction in water than they do in free space.

The hydrophobic effect is very important in nature. It is the reason for the for-

mation of lipid membranes and affects many other biological processes, e.g., protein

folding. In soft matter it plays a role in many systems, in particular, it is the driving

force for amphiphilic self-assembly.

1.2 Amphiphilic self–assembly

Amphiphile is a general term that describes any molecule that has covalently bonded

hydrophilic and hydrophobic parts. Examples of amphiphiles are surfactants, block

copolymers, lipids, bile acids, cholesterol and many other [2, 3, 4]. In water, due to

the hydrophobic effect, amphiphiles form a variety of structures (assemblies), which

minimize the contact between the hydrophobic part of the amphiphile and the water

molecules, while optimizing the repulsion between the hydrophilic head-groups. The

type of assembly depends on the amphiphile’s structure, its concentration, tempera-

ture and pressure [2]. At very low concentration the amphiphile forms a monolayer at

the water-air interface. Above a certain concentration, called the critical aggregation

concentration (cac), it self-assembles into different structures e.g., rods, discs, spheres,

bilayers and vesicles. At concentrations much higher than the cac, amphiphiles may

form diverse liquid-crystalline phases, e.g., bilayer stacks (lamellar phase) and hexag-

onal phases [2, 3, 4, 5].
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To predict the size and shape of the structures for a given set of conditions (e.g.,

temperature, pH, concentration) simple theoretical models (e.g., [2, 6]) look at am-

phiphilic self-assembly as a process governed by two “opposing forces” [1], acting

mainly at the interface between the surfactants and water. The attractive interaction

between the monomers is due to the hydrophobic effect (Sec. 1.1), which makes the

molecules associate, and the repulsive interaction is due to electrostatic or steric re-

pulsion between the hydrophilic head groups and requires that the head groups stay

in contact with water. Thus, a balance is achieved at a certain interfacial area, a0,

per molecule exposed to the aqueous phase. Once the volume, v, of the hydrophobic

portion of the molecule and its length, lc, are known, the type of assembly can be

deduced by geometric packing considerations. It depends on the packing parameter

v
a0lc

as shown in Fig. 1.1.

The simplest type of amphiphiles are surfactants which have one hydrocarbon

chain, containing between 8 and 18 carbon atoms, for a hydrophobic part. They are

classified according to the type of hydrophilic head group as ionic, zwitterionic and

non-ionic. Above a certain concentration, called the critical micellar concentration

(cmc), these amphiphiles form spherical aggregates called micelles. Due to their sim-

plicity relative to other self-organizing systems, micelles are often used as a model

system for the study of self-assembly. Another reason for the interest in them are the

many technological applications of micellar solutions.

The applications of micelles in many fields of science and technology are numerous

[4, 7, 8]. In colloid chemistry spherical micelles are used as a model system for studying

many problems, for example the various interactions between colloid particles. In

biology they are a good system for the study of the factors involved in the hydrophobic

effect. There are biological systems, such as the bile, that directly involve micelles. In

chemistry micelles are used as catalysts and solubilizing agents in many organic and

inorganic reactions. In industry and technology most of the applications of micelles

are based on their ability to solubilize. They are used in cleansing as detergents,

in medicine for encapsulating drugs in their hydrocarbon cores, in oil recovery for

solubilizing oil droplets. Inverted micelles in non-aqueous media are used in motor oils

to solubilize oxidizing agents and thus prevent them from reacting with engine parts

[9]. Many biological and technological processes are strongly influenced by the rate
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Figure 1.1: Dependence of aggregate morphology on the packing parameter (from Ref.
[4]).

of micelle formation and growth, e.g., foaming and stabilization of microemulsions.

Apart from solubilization, there is the key role of surfactants in reducing surface

tension (e.g., in wetting and coating processes).

The understanding of self-assembly in general, the invention of new applications

of micellar solutions in technology and science, and the improvement of the existing

ones, require theoretical understanding of the system. It is one of the reasons why the

theoretical and experimental study of micellization has been done extensively in the

past. Many aspects of the system are not yet fully understood and are a subject of

debate. More is known about the thermodynamic characteristics of micellar solutions.
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The possible metastability of micellar solutions and the kinetics of micelle formation

and growth, on the other hand, are much less studied and further research in that

direction is needed.

1.3 Thermodynamics of micellar aggregation

1.3.1 Experimental observations

The critical micellar concentration (cmc)

Experimentally the cmc is measured by many microscopic and macroscopic techniques.

The most common methods are conductivity (for ionic surfactants) and surface ten-

sion. Many other techniques are employed as well. Some examples are shown in Fig.

1.2. The cmc is usually determined as the point of intersection of two lines that in-

terpolate the experimental data for low and high surfactant concentrations. Other

definitions are used as well [10]. For example, the cmc is sometimes determined as the

point of maximum curvature of the plotted macroscopic property of the micellar solu-

tion (e.g., conductivity, or surface tension) as a function of surfactant concentration.

The cmc depends on the chemical structure of the surfactant and many external

factors, e.g., pH, temperature and pressure [4, 11]. For example, it decreases strongly

with increasing the hydrocarbon chain length of the surfactant. This is because the

critical chemical potential, kBT log(cmc), decreases linearly with chain length, with

each methyl group contributing about 2-3 kBT . The cmc of ionic surfactants (typically

10−3 − 10−2M) is orders of magnitude higher than the one of nonionic amphiphiles

(typically 10−5−10−4M). This is due to the smaller repulsion between the headgroups

in the nonionic case. The addition of salt decreases the cmc of ionic surfactants by

up to an order of magnitude. This effect is due to the electrostatic screening caused

by the salt ions, which reduces the repulsion between the ionic head groups. The

cmc of non-ionics is slightly affected by salt addition, which can go in both directions

(decrease or increase).
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Figure 1.2: Schematic representation of the concentration dependence of some physical
properties of micelle-forming surfactant solutions (From Ref. [9]).

The micelle size

The micelle size is characterized either by the radius of the micelle, or the number of

monomers in a micelle, called the micelle aggregation number. These can be measured

by light scattering and fluorescence quenching techniques [4, 11]. Typical values for

the aggregation number are between 10 and 100. Surfactants with longer hydrocar-

bon chain length are known to form larger micelles. The spherical micelles have small

polydispersity, which allows one to assume that they are monodisperse, thus simplify-

ing the theoretical modeling of the system. One can also assume that the surfactant

volume is conserved in the process of micelle formation, thus considering the micellar

core as an incompressible oily ”droplet”.. The same factors that affect the cmc affect

the micelle size as well. For example, the addition of electrolyte leads to the formation

of larger micelles for the ionic surfactants due to screening of inter-molecular repulsion.

1.3.2 Thermodynamic models of micellization

Since amphiphilic self-assembly involves structures of finite yet large size (micelles con-

taining tens to hundreds of molecules), a rigorous statistical-mechanical treatment of

the interactions in such a system is a formidable task. Consequently, analytical mod-

els have resorted to phenomenological approaches, trying to account for the various
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competing interactions while assuming a certain aggregate geometry [2], [6]–[16]. Of

these, the prevalent model of micellization has been that of Israelachvili, Mitchell, and

Ninham [2, 6], in which the cmc and aggregate shape and size are derived from ther-

modynamic analysis and simple geometrical arguments related to molecular packing.

(See the discussion in Sec. 1.2 and Fig. 1.1.) The system is modeled using mass-action

considerations. That is, analogy is drawn between micellization and chemical equilib-

rium among reactants. Aggregates of different sizes are treated as distinct chemical

species. From this model the fraction of molecules in aggregates of size m (i.e., made

of m molecules), xm, is given by,

xm = m{x1 exp[µ0
1 − µ0

m]}m, (1.1)

where µ0
m is the standard part of the chemical potential (in units of kBT ) of a molecule

in an aggregate of size m. For a compact (spherical) micelle, which is treated as

a “droplet”, µ0
m is related to a surface-energy penalty and, therefore, is inversely

proportional to the radius of the “droplet” (area divided by m). Thus,

xm = m{x1 exp[u(1 − 1/m1/3)]}m ≈ m[x1e
u]m, (1.2)

where u is the monomer-monomer “bond” energy in units of kBT in the aggregate

relative to isolated monomers in solution. Since xm ≤ 1 the maximum value that x1

can reach is x1 ≈ e−u. This value is inferred as the cmc in the model. Therefore, so

long as x1 < e−u, any increase in the concentration increases the number of monomers,

whereas for x1 > e−u, the fraction of monomers remains essentially fixed at the cmc

and additional molecules form micelles.

More detailed theories have been proposed in the past few decades, attempting

to phenomenologically account for various molecular effects involved in micellization

[14]–[17], or take into account the detailed configurational statistics of the hydrocarbon

tails (e.g., [18]–[20]). A host of computer models for amphiphilic self-assembly have

been presented as well (e.g., [17], [21]–[25]).
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1.4 Micellar kinetics

1.4.1 Experiments

Dynamic aspects of micellar aggregation have been extensively studied in the past as

well [11]. The efforts in this field were most numerous in the 1970s, when some kinetic

properties, like dissociation/association rates became accessible. They can be mea-

sured by techniques like temperature-jump, pressure-jump, stopped flow (concentration-

jump), ultrasonic absorption, NMR and ESR. The first three methods study the re-

laxation process of a system, which is driven out of equilibrium by a sudden perturba-

tion. The last two methods measure the spectral change caused by the change in the

monomer exchange rate between an aggregate and the bulk. These techniques and the

interpretation of their results have used the framework of first-order reaction kinetics,

where each aggregate size is treated as a distinct chemical species, and changes in size

and population — as chemical reactions (Chapter 3 of Ref. [11]). Two well separated

time scales are identified in the experiments [26]. The shorter of the two (typically

∼10−6–10−4 s) corresponds to the exchange of a single molecule between a micelle

and the monomeric solution; during this time scale the number of micelles remains

essentially fixed. The second (e.g., ∼ 10−2 s) is associated with overcoming the barrier

to the formation or disintegration of an entire micelle; during this longer time scale

the number of aggregates changes.

1.4.2 Theoretical models

A theoretical explanation of the relaxation experiments was first proposed by Anians-

son and Wall [27] and is still the prevalent theory of micellar kinetics. They model

the micellar association/dissociation as a series of step-wise chemical reactions, where

at each step only one monomer enters or leaves an aggregate of size m, Am,

A1 + Am−1

k+
m−⇀↽−

k−

m

Am, m = 2, 3, 4, ... (1.3)

k+
m and k−m are the forward and reverse rate constants for the (m− 1)th step, respec-

tively. One of the assumptions made in the theory is that in the solution there are

only free monomers and aggregates with Gaussian-distributed size with average 〈m〉
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and variance σ2. That is, there is a negligible amount of aggregates of intermediate

size 1 < m < m− σ. Therefore, after the system is perturbed the size and number of

aggregates will adjust themselves to the new equilibrium state by a quasi-steady-state

process, where the rate limiting step is the passage through the intermediate aggregate

size. The following equation for the fast relaxation time, τ1, is derived

1

τ1
=
k−

σ2

(

1 +
χσ2

〈m〉

)

, (1.4)

with χ = (C− cmc)/cmc and k−, the m-independent dissociation rate constant in the

region of the micelles, m = 〈m〉±σ. The last equation predicts a linear dependence of

1/τ1 on the total surfactant concentration, C, which is in agreement with experiments.

Under the same assumptions the slow relaxation time, τ2, is found to satisfy,

1

τ2
=

〈m〉2

cmcR

(

1 +
χσ2

〈m〉

)−1

, (1.5)

where

R =

〈m〉−σ
∑

m=2

1

k−mAm
. (1.6)

Here R is viewed as the resistance to flow through the region of intermediate sized

micelles. The dependence of 1/τ2 on concentration, temperature and other factors is

determined by their effect on R. One can also calculate the mean lifetime of a micelle,

τm, [28]

τm = τ2
〈m〉χ

(

1 + χσ2

〈m〉

) . (1.7)

For concentrations significantly higher than the cmc it is approximately equal to 〈m〉τ2.

More detailed models [30], based on the same scheme, include electrostatic effects

for ionic surfactants and the possibility of fusion/fission of two micelles. While various

extensions to the Aniansson-Wall theory have been presented over the years [28]–[36],

only a few alternative approaches have been suggested. In Ref. [37] the interesting

possibility that micellization may behave as a bistable autocatalytic reaction was ex-

plored. An idealized nucleation model for linear aggregates was suggested in Ref.

[38].

In the case of micellization of amphiphilic block copolymers more progress has been
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achieved (Chapter 4 of Ref. [11]; [39]–[46]). The kinetics of such polymeric micelles,

however, usually depend on qualitatively different effects, in particular, the high en-

tropy barrier for polymer penetration into a micelle. The kinetics of micellization was

studied also by computer simulations (e.g., Refs. [47, 48]).

The following sections of this chapter give some theoretical background for the

methods used in the next chapters of this thesis. As mentioned in the abstract mi-

cellization is treated as a process of restricted nucleation and, therefore, the methods

used in the study of phase transitions will be summarized. Since the micelles are much

larger than molecular size one needs to use an appropriate model for the calculation

of the entropy of mixing of such species.

1.5 Entropy of mixing

The entropy of mixing of two species, A and B, which have different molecular size

is typically calculated using a lattice model [49]. The lattice cell volume, a3, is taken

as the smallest relevant volume in the system (for example, the volume of a solvent

molecule or a monomer in a polymer chain), and larger molecules occupy multiple

connected sites. It is assumed that there is no volume change upon mixing. The

volume fraction of species A will therefore be φA = VA/(VA + VB) and that of species

B, φB = VB/(VA + VB) = 1 − φA. A molecule of species A has a volume, vA = nAa
3,

and that of species B has a volume vB = nBa
3, where nA and nB are the number of

lattice sites occupied by species A and B, respectively. The total volume of the system

is V = VA + VB, and the total number of lattice sites is N = V/a3. The entropy, S

of the system is determined by S = kB ln Ω, where kB is the Boltzmann constant and

Ω the number of states—here the number of different translational configurations on

the lattice.

The number of states of a molecule of species A before mixing, ΩA, is equal to the

number of lattice sites occupied by species A, i.e., ΩA = NφA. Therefore, the change

of entropy per molecule of species A upon mixing is

∆SA = kB ln Ω − kB ln ΩA = −kB lnφA. (1.8)



1.5 Entropy of mixing 11

Since φA < 1, the change of entropy upon mixing is always positive. By the same argu-

ment the change of entropy per molecule on mixing of species B is ∆SB = −kB lnφB.

This gives for the total entropy of mixing,

∆Smix = NA∆SA +NB∆SB = −kB(NA lnφA +NB lnφB), (1.9)

where NA = NφA/nA and NB = NφB/nB are the number of molecules of species A

and B, respectively. We can define the entropy of mixing per lattice site, ∆S̄mix =

∆Smix/N , which is an intensive thermodynamic quantity.

For a regular solution, made of two molecular species of similar size, say, nA =

nB = 1, the entropy of mixing is larger than the one of a solution, where the solute

is a large molecule, e.g., polymer or colloid and the solvent molecular, nA = n and

nB = 1. In the latter case the entropy of mixing could be a lot smaller if n is large.

Let φA = φ be the volume fraction of the solute (nA = n) and φB = 1 − φ the

volume fraction of the solvent (nB = 1) in a binary solution. Then the free energy of

mixing per lattice site of an ideal mixture is

∆F̄mix = −T∆S̄mix = kBT

[

φ

n
lnφ+ (1 − φ) ln(1 − φ)

]

. (1.10)

In a similar way the entropy and free energy of mixing for multicomponent ideal

mixtures can be calculated. It is given by

∆F̄mix = kBT
∑

i

φi

ni
lnφi, (1.11)

where φi and ni are the volume fraction and number of lattice sites occupied by a

molecule of species i, respectively.

As mentioned earlier, in the next chapters of this thesis the framework of first-order

phase transitions will be used to study micellization. Therefore, a short overview on

this subject follows.
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1.6 First-order phase transitions

The transition of a system from one phase to another, e.g., vapor to liquid, ordered

to disordered phase, on changing some parameter of the system, e.g., temperature,

pressure, concentration of a component, is a vast field of study [50, 51, 52]. The tran-

sition occurs at a critical value of a control parameter of the system, e.g., temperature.

Phase transitions are classified by the lowest derivative of the free energy that is dis-

continuous at the transition. First-order phase transitions exhibit a discontinuity in

the first derivative of the free energy with respect to a thermodynamic variable. For

example, a gas–liquid transition is classified as first-order transition because it involves

a non-analytic change in density (which is the first derivative of the free energy with

respect to chemical potential.) Second-order phase transitions are continuous in the

first derivative but exhibit discontinuity in a second derivative of the free energy. Here

we shall concentrate on first-order phase transitions because the framework will serve

as a basis for the models to be described in Chapters 2, 3 and 4.

When a system undergoes a first-order phase transition, the dynamics can proceed

in two main pathways—nucleation and growth, or spinodal decomposition. The path-

way depends on the depth of the quench that the system has undergone, i.e., how far

from its critical value the control parameter has been set. If the quench is sufficiently

deep, leading to the formation of an unstable state, i.e., the free energy has only one

minimum, at a new equilibrium state, the phase separation will proceed via spinodal

decomposition. This process requires an arbitrarily small fluctuation of the order pa-

rameter to form the new phase. If, however, the quench brings the system into a

metastable state, an energy barrier has to be overcome to reach the new equilibrium

stable state. The process of overcoming an energy barrier requires the occurrence

of larger fluctuations in the order parameter and the phase transition proceeds via

nucleation.

1.6.1 Nucleation

The nucleation process can be simply described using the so-called “droplet model”

[52]. The phase transition starts with formation of small nuclei of the new phase,

which then grow or disappear depending on their size. It is assumed that these nuclei
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are spherical in shape and the free energy difference, ∆G, of the formation of a nucleus

with radius R, has two competing terms, which determine whether the formation of

the nucleus is energetically favorable,

∆G =
4

3
πR3∆µ+ 4πR2γ. (1.12)

The first term is proportional to the volume of the droplet and the difference in

chemical potential, ∆µ, of a molecule that changes phase and joins the droplet. It

is always negative, i.e., favors the formation of the droplet since the system is in

a metastable state (∆µ < 0). The second term is proportional to the area of the

nucleus and the surface tension coefficient, γ, between the two phases. It is positive

since the formation of an interface between the phases is energetically unfavorable.

The competition of these two terms leads to the existence of a free-energy nucleation

barrier, ∆G∗, at a critical nucleus radius, R∗. These are obtained from
(

∂∆G
∂R

)

R=R∗
= 0,

yielding

R∗ = −
2γ

∆µ
, G∗ =

16π

3

γ3

∆µ2
. (1.13)

Thus, if due to fluctuations of the order parameter a droplet with radius larger than

R∗ is formed, it will continue to grow until it reaches macroscopic size. If the radius

is smaller than R∗, it will dissociate. In Chapter 2.1, we will use a similar picture to

model the free energy of transfer of a free monomer into a micelle.

1.6.2 Steady-state nucleation rate

The rate at which new nuclei form was to first approximation estimated as proportional

to the exponential of the nucleation barrier, by analogy with the Arrhenius law in

chemical kinetics and the activation energy barrier. One of the first theories to treat

the problem in a more rigorous way, and give an estimate of the pre-exponential factor,

was due to Becker and Döring [53]. Later theories, based on the same formalism,

tried to improve the prefactor, referred to as the Zeldovich factor, using different

phenomenological expressions and taking into account heterogeneous nucleation [54].

A theory which solves the basic problem of escape of a diffusing particle from a
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Figure 1.3: Double well potential U(x) with minima at xA and xB and maximum at
xC . The particle has to overcome the energy barrier EB to reach its stable state at
xB.

potential well and is applicable to the calculation of nucleation rates, is Kramers’

theory [54, 55]. It has many similarities with the Becker–Döring theory but contains

fewer fitting parameters and can be used to calculate the escape rate for any type of

potential. The escape of a particle from a metastable to a stable state over an energy

barrier is shown in Fig. 1.3. Kramers’ theory assumes that the energy barrier, Eb, is

larger than ∼ 10kBT and that the energy difference, ∆E, between the initial and final

states is sufficiently large. The first condition leads to separation of time scales and

allows one to assume that steady-state is achieved. The second condition ensures that

there will be a negligible flux of particles from the final back to the initial well. The

following expression for the escape rate, τ−1, is found,

τ−1 =
D

4π
ω(xA)ω(xC)e−Eb, (1.14)

where D is the diffusion coefficient of the particle, ω(xA) = [U ′′(xA)]1/2 and ω(xC) =

[U ′′(xC)]1/2, are the width of the well at xA and the width of the maximum at xC ,

respectively, and Eb = U(xC) − U(xA) is the energy barrier (in units of kBT ). There-
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fore, the escape rate is exponentially proportional to the energy barrier, analogous to

Arrhenius law, but it also depends on the characteristics of the potential through the

pre-exponential factor.

1.6.3 Spinodal decomposition

For a system quenched into the unstable spinodal region, the phase transition does

not involve climbing over free-energy barriers and the process is purely dissipative. So

long as we are not too far from equilibrium, the change of the order parameter, ξ, with

time can be related to the variation of the free energy functional, F [ξ], with respect

to the order parameter. There are two types of dynamics corresponding to different

types of order parameters. If the order parameter is a non-conserved quantity, e.g.,

magnetization, the dynamics can be described by an equation of the form

dξ

dt
= −Γ

δF

δξ
. (1.15)

Here Γ is a response coefficient. Such a scheme leads, e.g., to the Allen-Cahn equation

[52]. This is a deterministic equation derived from the Langevin equation under the

assumption that the coarse-grained free energy functional has a mean-field Landau-

Ginzburg form and neglecting the random noise term. For locally conserved order-

parameter, e.g., particle concentration, one has to include conservation laws. Usually

the particle flux is assumed proportional to the gradient of the local chemical potential

difference. This leads to the Cahn-Hilliard equation [51].

In Chapter 4 we will make use of equations similar to Eq. 1.15 to study stages of

micelle growth after a nucleation stage.

1.6.4 Coarsening

In the late stages of phase separation, the droplets of the new phase undergo a pro-

cess of coarsening known as Ostwald ripening [52]. Since larger droplets are more

energetically stable (due to their smaller interfacial area-to-volume ratio) than smaller

droplets, they tend to grow on the expense of the smaller ones. This process is diffusion

controlled, i.e., the rate at which the bigger droplets grow depends on the diffusion
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rate of monomers leaving the smaller droplets and diffusing toward the bigger ones.

In micellar solutions, where the equilibrium size of the aggregates is finite, the

positive-feedback mechanism underlying Ostwald ripening is absent. One can then

imagine different types of coarsening processes, for example, fusion of two micelles to

form a larger one, or fission of one micelle into two smaller aggregates. Computer

simulation studies, e.g., [24], observe these phenomena under certain conditions.

1.7 Thesis overview

To conclude this introductory chapter we briefly describe the thesis structure. The

work is based on a free-energy formalism which is presented in Chapter 2. In the

following Chapters, 3 and 4, we develop various applications of the formalism. The

first application is for the study of premicellar aggregation, which is presented in

Chapter 3. In Chapter 4 we derive kinetic equations and study the nucleation and

growth of micelles in systems out of equilibrium. In Chapter 5 we summarize the main

results of this work and put emphasis on their possible experimental implications.



Chapter 2

Free Energy of a Solution of

Amphiphilic Molecules

This chapter presents a new simple thermodynamic model of micellar aggregation. Its

main advantage over the previous approaches presented in Sec. 1.3.2 is that it can be

easily extended to treat more complicated issues, such as metastable states and various

kinetic pathways. Indeed, the free energy function derived in this chapter serves as the

starting point for the investigations presented in the following chapters. The model is

based on the framework of first-order phase transitions, where the solution can be in

one of two states — a monomeric state or an aggregated state, which contains both

monomers and aggregates. The micelles themselves are treated as “droplets” (see Sec.

1.6.1), yet, due to the structure of the amphiphiles (Sec. 1.2), they cannot grow to

infinite size, unlike nuclei of a macroscopic phase.

In Sec. 2.1 we derive an expression for the free energy of an amphiphilic solution. In

Sec. 2.2 we obtain equations for the stationary points of the free energy and examine

the free energy landscape and its consequences. In Sec. 2.3 we show how the free

energy can be used to address properties of a single aggregate. 1

1The material presented in this chapter was published in Ref. [56].
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2.1 Derivation of the free energy

We use a two-state model, i.e., assume that the solution can contain only two species

— free monomers and micelles of m > 1 monomers. We thus neglect effects of poly-

dispersity. (This crude approximation is justified, at least qualitatively, in the case of

aggregation into sufficiently large (m > 20, say) globular micelles, where polydisper-

sity is small [2].) We shall return to the issue of polydispersity in Sec. 3.4. Nonetheless,

unlike earlier mass-action approaches [2, 9], we do not predefine an aggregated state

of fixed size but rather treat m as a degree of freedom.

We define the model within the canonical ensemble, i.e., fixing the temperature

T , volume V , and total number of amphiphiles N . The number of free monomers is

denoted by N1, and the number of micelles by Nm, such that N1 + mNm = N . We

use a Flory-Huggins lattice scheme [49] (see Sec. 1.5) with a lattice constant a, where

each monomer occupies n lattice cells, i.e., a volume v1 = na3. Micelle formation is

assumed to conserve the amphiphile volume, i.e., the volume of a micelle is vm = mv1.

Hence, the volume fraction of free amphiphiles and those participating in micelles are,

respectively, φ1 = N1v1/V and φm = Nmvm/V , such that the total volume fraction of

amphiphiles, φ = φ1 + φm = Nv1/V is fixed.

Using these definitions, we write the free energy in units of the thermal energy

kBT as

Ftot = N1F1 +NmFm + Fw, (2.1)

F1 = lnφ1,

Fm = lnφm −mu(m),

Fw =
V

a3
(1 − φ) ln(1 − φ).

In Eq. 2.1 F1 is the free energy of a monomer, assuming ideal entropy of mixing. The

free energy of a micelle of size m, Fm, contains a similar contribution from translational

entropy, while all other contributions to the free energy of transfer of a monomer from

solution to an aggregate of size m are lumped into a single phenomenological function,

u(m). (A positive u(m) corresponds to favorable aggregation.) The last term in Eq.

2.1, Fw, describes the entropy of mixing of the water molecules, whose volume fraction
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is (1 − φ). Expressing all of the variables in Ftot in terms of φ and φ1, and dividing

by V/a3, we get the free energy density (per lattice site),

F (φ1, m, φ) =
a3

V
Ftot =

1

n

(

φ1 lnφ1 +
φ− φ1

m
[ln(φ− φ1) −mu(m)]

)

+(1−φ) ln(1−φ).

(2.2)

Equation 2.2 serves as our main tool throughout this work. The partition of am-

phiphiles between monomers and aggregates (i.e., φ1 and φm = φ−φ1), as well as the

aggregation number m, are treated as degrees of freedom to be determined at equilib-

rium by minimization of F . The resulting equations are similar (yet not identical) to

those obtained in Ref. [57].

This model has a single input in the form of the free energy of transfer, u(m).

Previous micellization theories derived the free energy of transfer based on detailed

molecular arguments (e.g., Refs. [13]–[16],[19]). In the current work we prefer to remain

on a more general level. The specific choice of u(m) is not crucial for our qualitative

results, as long as this function has a single maximum at a certain aggregation number.

However, for the sake of concrete numerical examples, to be given later on, we shall

use the following expression (already proposed in Ref. [57]):

u(m) = u0 − σm−1/3 − κm2/3. (2.3)

The first term in Eq. 2.3 represents a size-independent attraction among amphiphiles,

where u0 > 0 is the energy of this attraction in units of kBT . Since the attraction arises

from the hydrophobic effect, u0 is roughly proportional to the number of hydrocarbon

groups in the amphiphile, u0 ∼ n [1]. The second term accounts for the surface

energy of the aggregate, where σ ∼ n2/3a2γ/kBT , γ being the surface tension between

water and the micellar hydrophobic core. (Typically a2γ/kBT is of order unity.) Since

the aggregate area scales as m2/3, this contribution (per molecule) is proportional to

m−1/3. With the first two terms only, u(m) is an increasing function of m, and the

model yields a macroscopic condensation.2 The third term in Eq. 2.3 is therefore

introduced to produce finite aggregation numbers. This stabilizing term is assumed

quadratic in the strained length of the amphiphile in the aggregate, i.e., it is quadratic

2Note the analogy to Eq. 1.12 in Sec. 1.6.1
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in the aggregate radius, which scales as m1/3. For example, if the hydrocarbon tail

of the amphiphile is taken as a Gaussian chain, one expects κ ∼ n−1. Thus, there is

actually little freedom in choosing values for the three parameters of u(m) apart from

changing n. Requiring the cmc and aggregation number to be of the right orders of

magnitude further constrains these parameters.

2.2 Free energy landscape

Setting to zero the derivative of F in Eq. 2.2 with respect to φ1 at fixed m leads to

the following equation:3

φm
1 e

mu(m)+m−1 = φ− φ1, (2.4)

whose solution is denoted φmin
1 (m,φ). Equation 2.4 has a unique solution which, for

any m and φ, is a minimum of F along the φ1 axis and is never larger than the total

volume fraction φ, as required.4 Setting to zero the derivative of F in Eq. 2.2 with

respect to m at fixed φ1 results in

m2 = −ln(φ− φ1)/u
′(m), (2.5)

where a prime denotes a derivative with respect to m. Combining Eqs. 2.4 and 2.5

yields the following equations for the stationary (minimum or saddle) points of the

free energy:

m2 = − ln[φ− e−u(m)−mu′(m)−1+1/m]/u′(m), (2.6)

φ1 = e−u(m)−mu′(m)−1+1/m. (2.7)

Given a certain function u(m) for the free energy of transfer (e.g., Eq. 2.3), we find the

stationary points by first solving Eq. 2.6 for m(φ) and then substituting the solution

in Eq. 2.7 to obtain φ1(φ). As the total amphiphile volume fraction φ is increased, the

3A similar equation is obtained from mass-action considerations [2, 57]. An extra factor of
m−1em−1 appears in Eq. 2.4, however, which originates from a more careful treatment of the mixing
entropy in the Flory-Huggins analysis. Nonetheless, the dominant (exponential) part of this factor
can be absorbed into u0, and, therefore, the difference between the two approaches is minor.

4Note that for m = 1 one gets from Eq. 2.4 φmin
1 smaller rather than equal to φ; this is an artifact

of our two-state model, which distinguishes between monomers and “monomeric micelles” of m = 1.
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free-energy landscape F (φ1, m) qualitatively changes. Five distinct regimes are found,

as described below. (See also Fig. 2.1.)

For sufficiently low volume fraction, φ < ϕ1, F has no stationary point, and its

global minimum is given by the monomeric state, m = 1 (Fig. 2.1A). For φ > ϕ1 two

stationary points appear (Fig. 2.1B) — a saddle point at (φmin
1 (mmax, φ), mmax) and a

local minimum at (φmin
1 (mmin, φ), mmin). Thus, ϕ1 is a spinodal-like concentration, at

which a metastable aggregated state first appears.5 The equation for ϕ1 is

ϕ1 = e−m2u′(m) + e−u(m)−mu′(m)−1+1/m, (2.8)

where m is the solution of the equation

m3u′′(m) + 2m2u′(m) + 1 = 0. (2.9)

(In deriving Eq. 2.9 we have assumed that at ϕ1 the volume fraction of amphiphiles

in micelles is much lower than that of the monomers, ϕ1 − φ1 ≪ φ1.) For the specific

choice of u(m) as given by Eq. 2.3, Eq. 2.9 becomes

10κm5/3 − 2σm2/3 − 9 = 0. (2.10)

The appearance of the second free-energy minimum for φ > ϕ1 may cause parts

of the solution to be trapped for some time in this metastable state. This possibility

and its consequences will be studied in detail in Chapter 3. Here we will only point

out that the occupancy of the metastable state close to ϕ1 is very small and becomes

appreciable only above a higher concentration ϕ2 > ϕ1 (Fig. 2.1C).

Above another, higher, value of the volume fraction, ϕ3 > ϕ2, the free energy

difference between the two states reverses sign, and the aggregated state (containing

both monomers and aggregates) becomes the global minimum (Fig. 2.1D). Thus, ϕ3

is a binodal-like point, above which the state with aggregates is favorable whereas the

pure monomeric state becomes metastable.

5Note that, since φ1 and m are free thermodynamic variables, the appearance of a second free-
energy minimum does not correspond to equilibrium coexistence between the two states. The pure
monomeric state, which is the global minimum of F , remains the stable one. The aggregated state,
which in itself consists of coexisting monomers and aggregates, is metastable.
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The two stable/metastable states are separated by a saddle point of F

at [φmin
1 (mmax), mmax]. For any reasonable form of u(m), the aggregate size at the

saddle point, mmax, (i.e., the critical nucleus) decreases with φ and at a certain am-

phiphile volume fraction, ϕ4 > ϕ3, it becomes equal to 1. Thus, ϕ4 represents a

second spinodal-like point, above which the metastable monomeric state becomes un-

stable and the aggregated state remains the sole free-energy minimum (Fig. 2.1E).

Figure 2.1 shows cuts of the free-energy landscape along the φmin
1 (m) line as a

function of aggregation number m in the five regimes. The values of parameters used

in the figure characterize a representative surfactant, which will serve as a consistent

example throughout the various parts of the thesis. (See Tables 3.1 and 4.1 later on.)

To summarize, the free energy derived in Sec. 2.1 yields a sequence of four well

separated values of volume fraction, ϕ1 < ϕ2 < ϕ3 < ϕ4, corresponding to points

of qualitative changes in the thermodynamic behavior of the surfactant solution. Of

these four values, as we shall see in the next chapter, ϕ3 is the one corresponding to

the commonly defined cmc.

2.3 Treating single-aggregate properties

Since our model does not explicitly consider single micelles but macrostates containing

both micelles and monomers, a certain volume of solution needs to be specified to allow

the calculation of various properties of a single aggregate. The relevant sub-volume,

Vs, is the one that contains (on average) one aggregate of size m. The volume of the

aggregate itself is na3m, and the volume fraction of aggregates is φ− φ1. Hence, the

relevant subsystem volume is

Vs(m,φ) =
na3m

φ− φmin
1 (m)

. (2.11)

Since φ− φ1 in a micellar solution is typically very small, Vs is far from being micro-

scopic, and we may apply our coarse-grained description to the subsystem. In other

words, instead of treating a single aggregate, we treat a subsystem of volume Vs, which
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is in the aggregated state. The free energy to be treated is, therefore,

Fs(φ1, m, φ) =
Vs

a3
F. (2.12)
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Figure 2.1: Free energy per amphiphile along the φmin
1 (m) line as a function of ag-

gregation number for φ = 0.0005 < ϕ1 (panel A), ϕ1 < φ = 0.0007 < ϕ2 (panel B),
ϕ2 < φ = 0.0015 < ϕ3 (panel C), ϕ3 < φ = 0.0025 < ϕ4 (panel D), and φ = 0.11 > ϕ4

(panel E). The parameters of F are shown in Table 3.1 (Amphiphile A).



Chapter 3

Premicellar Aggregation of

Amphiphilic Molecules

In this chapter we apply the free energy formalism derived in Chapter 2 to the study

of premicellar (metastable) aggregation in amphiphilic solutions. 1.

3.1 Introduction

The question of how critical the cmc is has been a long-standing controversy in the

field. During the years there were several experimental indications (e.g., [59, 60]), as

well as theoretical ones (e.g., [61]), for the appearance of aggregates at concentrations

well below the cmc — a phenomenon referred to as premicellar aggregation — yet

the overall results remained inconclusive. In a recent experiment Zettl et al. applied

fluorescence correlation spectroscopy (FCS) for the first time to study self-assembly

in surfactant solutions [62]. Their measurements indicated the existence of micelles

at surfactant concentrations down to four times lower than the macroscopically deter-

mined cmc. They also inferred that the aggregates had roughly the same size below

and above the cmc. Recent NMR experiments on surfactant solutions (Refs. [63] and

[64]) observed premicellar aggregation as well.

The model presented in Chapter 2, despite its apparent simplicity, allows us for the

first time to address metastable aggregates in detail and thus examine the extent of

1The material presented in this chapter was published in Refs. [56] and [58]
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premicellar aggregation. In the following sections of this chapter we will give a defini-

tion of the cmc similar to the experimental one and examine the extent of premicellar

aggregation using numerical examples.

3.2 Thermodynamics of premicellar aggregation

The equilibrium properties of a solution of amphiphilic molecules are determined by

minimization of the free energy, Eq. 2.2.

3.2.1 Fixed aggregation number

Before proceeding to the full examination of the free energy landscape presented in

Chapter 2, it is instructive to examine the behavior in the case of aggregates of fixed

size. This simpler situation is equivalent to the one described by a two-state mass-

action model [9]; 2 the only freedom left is the partition of the amphiphiles between

two fixed states.

If m is taken as a fixed parameter, F is a function of φ1 alone, and the free energy

of transfer is a constant, u(m) = u. The global minimum of F is then at φmin
1 < φ, as

given by Eq. 2.4. Thus, in this case aggregates exist at any amphiphile concentration.

We characterize the extent of aggregation by the fraction of molecules participating

in micelles, x ≡ (φ − φ1)/φ, which can be found as a function of φ by substituting

the solution for φmin
1 . An example is given in Fig. 3.1, where x(φ) as well as the

monomer volume fraction, φ1 = (1 − x)φ, are presented. Although in this case x > 0

for any φ, there is a well defined value of φ = φcmc above which aggregation becomes

appreciable. In accord with the experimental determination of the cmc described in

Sec. 1.3.1, we define this cmc as the point of maximum curvature (“knee”) of (1−x)φ

as a function of φ, i.e., as the solution of the equation ∂3φmin
1 /∂φ3 = 0 (dotted line

in Fig. 3.1). The fraction of amphiphiles participating in micelles just below the

cmc, xcmc(m) = x(φcmc(m)), can be used to characterize the extent of premicellar

2See, for example, the treatment of Ref. [6] for the case of the reaction mA1

k
+

−−⇀↽−−
k−

Am.
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aggregation. Using Eq. 2.4 and the above definition of the cmc, we find

fixed m: xcmc(m) =
m− 2

2(m2 − 1)
, (3.1)

i.e., xcmc ∼ 1/m for realistic aggregation numbers, m≫ 1.
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Figure 3.1: Monomer volume fraction as a function of total volume fraction for fixed
m = 60 and u0 = 10, κ = 0.08, σ = 11. The inset shows the fraction of amphiphiles
participating in micelles.

In the special asymptotic case of m→ ∞ (while requiring that u(m) remain finite),

the results above reduce, as expected, to a discontinuous, macroscopic phase transition:

for φ < φc = e−u−1 the global minimum of F is at φ1 = φ, i.e., the system is in a pure

monomeric state, whereas for φ > φc the monomer volume fraction remains fixed at

φc, and any additional amphiphiles go into the macroscopic aggregate. The “knee”

defining the cmc in Fig. 3.1 turns into a singular “corner”, and xcmc vanishes. From

this perspective the picture obtained above for a finite, fixed aggregation number (the

existence of aggregates at any φ, the non-zero premicellar aggregation x ∼ 1/m) is

merely a manifestation of a phase transition smoothed by finite-size effects (finite m)

[65]. As will be shown in the next section, this picture significantly changes when the

aggregation number is free to vary with amphiphile concentration.
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3.2.2 Variable aggregation number

We now proceed to the more realistic scenario where the aggregation number is a degree

of freedom. Throughout this section we shall demonstrate the resulting aggregation

behavior using two numerical examples, corresponding to two choices of parameters

for u(m) of Eq. 2.3 (see Table 3.1). (The parameter values have been chosen to mimic

two amphiphiles differing in their hydrocarbon tail length n by a factor of about 3/2,

using the qualitative dependencies on n discussed in Sec. 2.1.)

Table 3.1: Parameters and equilibrium properties of exemplary amphiphiles. n —
number of groups in hydrocarbon tail; u0, σ, κ — parameters of u(m); ϕ1 — first
spinodal-like point; ϕ2, ϕ3 — volume-fraction bounds of the premicellar regime; ω(ϕ2),
ω(ϕ3) — relative width of micelle size distribution at these boundaries.

Amphiphile n u0 σ κ ϕ1 ϕ2 ϕ3 ω(ϕ2) ω(ϕ3)
A 13 10 11 0.08 6.6 × 10−4 8.0 × 10−4 2.0 × 10−3 0.18 0.15
B 20 14 14 0.05 1.2 × 10−5 1.6 × 10−5 6.7 × 10−5 0.11 0.10

As noted in Chapter 2 the appearance of the second free-energy minimum for

φ > ϕ1 may cause parts of the solution to be trapped for some time in the metastable

aggregated state. At equilibrium the number of metastable aggregates will depend on

the free energy difference between the two minima at m = mmin and at m = 1, 3

∆F (φ) = F [φmin
1 (mmin), mmin, φ] − F [φmin

1 (m = 1), m = 1, φ]. (3.2)

The free energy difference per amphiphile is n∆F/φ. As seen in Fig. 3.2 for our two

characteristic examples, it is comparable to or smaller than kBT . For other choices

of parameters it may reach larger values, yet not exceeding a few kBT . (Examination

of the equations reveals that this energy scale relates to the value of u(m) at small

aggregation number.) These low values of n∆F/φ imply that significant occupancy of

the metastable state (i.e., premicellar aggregation) may be obtained at full equilibrium.

To check the extent of this effect, we calculate the fraction x of amphiphiles par-

ticipating in metastable micelles. The occupancy probability of the “excited” state is

3The second term in Eq. 3.2 is not strictly equal to the free energy of the monomeric state,
F (φ1 = φ), due to the artifact mentioned in Sec. 2.2 (footnote 4). This slight difference, however,
does not affect the results.
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Figure 3.2: Free energy difference per amphiphile (in kBT units) between the
monomeric and aggregated states as a function of total amphiphile volume fraction
for the numerical examples of Table 3.1. These two examples mimic two amphiphiles
differing in their tail length, n, by a factor of 3/2, (B) being the more hydrophobic
one. (See text in Sec. 2.1).

exp(−n∆F/φ)/[1 + exp(−n∆F/φ)], leading to

x(φ) =











0, φ < ϕ1

φ−φmin
1

(mmin)

φ
exp(−n∆F/φ)

1+exp(−n∆F/φ)
, φ > ϕ1.

(3.3)

The results for x(φ) are shown in Fig. 3.3. Over a concentration range above ϕ1 x

remains negligible (insets of Fig. 3.3). Comparing with Fig. 3.2, we see that in this

range the free energy difference between the states hardly changes. Figure 3.4 presents

the change in the favorable aggregation number as a function of φ, demonstrating that

this region of negligible aggregation is characterized by a rapid increase in mmin.

At a well defined volume fraction, φ = ϕ2, x starts to increase significantly, i.e.,

an appreciable amount of metastable, premicellar aggregates forms (Fig. 3.3). Thus,

ϕ2 marks the onset of premicellar aggregation. In Fig. 3.4 we see that in this region

the aggregation number crosses over to a much weaker dependence on φ. Premicellar

aggregation occurs, therefore, when the favorable aggregation number stops increasing

significantly. We define ϕ2 accordingly as the volume fraction at which d3mmin/dφ3 = 0

(dashed vertical lines in the figures).

Equation 3.3 for x remains correct in the region above ϕ3 (the binodal-like point)
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Figure 3.3: Fraction of amphiphiles in micelles as a function of total volume fraction
for the examples of Table 3.1.

as well (Sec. 2.2). Combining Eqs. 2.4, 2.6, 2.7, and 3.2, we calculate ϕ3 by setting

∆F (ϕ3) = 0 (dash-dotted vertical lines in the figures). In our examples the concen-

tration at which metastable aggregates begin to form (ϕ2) is about 2–4 times lower

than the one at which they become favorable (ϕ3).
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Figure 3.4: Aggregation number as a function of total volume fraction for the examples
of Table 3.1.

The volume fraction of monomers in the solution, φ1 = (1 − x)φ, obtained using

Eq. 3.3, is of experimental interest since, e.g., it is directly related to the commonly

measured conductivity in ionic surfactant solutions. Figure 3.5 shows the plots of φ1

as a function of φ. For φ < ϕ2 there are essentially no aggregates, and the volume

fraction of monomers is equal to the total one (insets). The slight change in curvature
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at φ = ϕ2 indicates the beginning of premicellar aggregation. Experimentally the cmc

is usually extracted from such curves by interpolating the behaviors at low and high

concentrations (Sec. 1.3.1), i.e., it corresponds to the “knee” in the curves of Fig. 3.5.

As can be seen in the figure, when a sufficiently wide range of φ is examined, the cmc

so determined is close to ϕ3, our binodal-like point. Note that just below the cmc the

fraction of amphiphiles participating in (metastable) micelles (Fig. 3.3) has already

reached tens percent. This extent of premicellar aggregation (Fig. 3.3A) is 1–2 orders

of magnitude larger than the one obtained in Sec. 3.2.1 for the same m and u(m) while

assuming a fixed aggregation number (Eq. 3.1 and Fig. 3.1).
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Figure 3.5: Monomer volume fraction as a function of total volume fraction for the
examples of Table 3.1.

Thus, provided that the solution reaches full equilibrium, we find that in the range

ϕ2 < φ < ϕ3 it should contain an appreciable amount of premicelles. However, there

are three issues that might affect the experimental relevance of premicellar aggregates:

(a) the aggregation may be kinetically hindered by high nucleation barriers; (b) the

distribution of premicellar sizes may be much broader than that of regular micelles;

(c) the lifetime of premicelles may be too short. These issues are addressed in the

following three sections.
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3.3 Kinetic barriers to premicellar aggregation

Our treatment of the metastable aggregates so far has been an equilibrium one, involv-

ing the free energy difference between the stable and metastable states. In reality the

extent of such premicellar aggregation may be affected by kinetic limitations arising

from the free energy (nucleation) barrier between the two states. As described earlier,

the nucleation barrier can be obtained from the current model as well; it is given by

the other stationary (saddle) point of F , as found from Eqs. 2.6 and 2.7 for φ > ϕ1.

(See Fig. 2.1C.)

To calculate the nucleation barrier per aggregate, i.e., the free energy (in units of

kBT ) required to form a nucleus of size mmax , we employ the approach presented

in Sec. 2.3, resulting in Eq. 2.11. for the volume per aggregate, Vs. The nucleation

barrier is given then by

∆F nuc(φ) =
Vs(m

max, φ)

a3
[F (φmin

1 (mmax), mmax, φ) − F (φmin
1 (m = 1), m = 1, φ)], (3.4)

with the saddle point (φmin
1 , mmax) found from Eqs. 2.6 and 2.7. The results for our

two examples are shown in Figs. 3.6 and 3.7. As can be seen in Fig. 3.7 the nucleation

barriers in both examples are very high, implying that homogeneous nucleation of pre-

micellar aggregates is kinetically hindered. The consequences of this for premicellar

aggregation, as well as for regular micellization, will be further discussed in Sec. 3.6.

The large nucleation barriers for both examples stem from the low concentration of

critical nuclei, Vs(m
max, φ)−1 (Eqs. 2.11 and 3.4). ∆F nuc decreases rapidly with φ due

to the increase of critical nuclei concentration, and also because of the decrease in the

critical-nucleus size, mmax (Fig. 3.6). The example in Fig. 3.7B, for which the aggrega-

tion numbers are roughly double, exhibits a much higher (physically insurmountable)

barrier than the one of Fig. 3.7A. As the amphiphile volume fraction is increased, both

mmax and ∆F nuc decrease monotonously. Hence, at a sufficiently large φ > ϕ4 (not

shown in the graphs), the energy barrier disappears, indicating a second spinodal-like

point, where the aggregated state is the only stable one.

Comparison between our two selected examples (panels A and B in Figs. 3.2–3.7)

reveals that the more hydrophobic amphiphile (larger n, panels B) exhibits the follow-
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Figure 3.6: Critical nucleus size as a function of total volume fraction for the examples
of Table 3.1.

ing: (i) larger aggregation number; (ii) lower cmc, ϕ3; and (iii) larger critical nucleus,

mmax, and nucleation barrier, ∆F nuc. These are the expected trends for amphiphilic

self-assembly. In addition, we note that the relative width of the premicellar region,

(ϕ3 − ϕ2)/ϕ3, is comparable for the two examples.
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Figure 3.7: Nucleation barrier (in kBT units) as a function of total volume fraction
for the examples of Table 3.1.

3.4 Polydispersity of premicellar aggregates

Although the mean size of premicellar aggregates (once they somehow manage to

form, e.g., via heterogeneous nucleation) has been found to be similar to that of the



3.4 Polydispersity of premicellar aggregates 34

micelles above the cmc, the size distribution in the former case might be broader.

Evidently, this could jeopardize the experimental and technological relevance of pre-

micellar aggregation. We should therefore examine the aggregate size fluctuations in

the premicellar regime.

For a given amphiphile volume fraction in the premicellar regime, ϕ2 < φ < ϕ3,

the aggregation number of the metastable aggregates, mmin(φ), is given by the local

minimum of the free energy F . To examine the polydispersity of the aggregates we

calculate the fluctuations of m around mmin for a single aggregate. We calculate the

free energy of the aggregate using Eqs. 2.11 and 2.12 while neglecting changes in the

volume per aggregate, Vs(m,φ) ≃ Vs(m
min, φ). The free energy of the subsystem is,

therefore,

Fs(φ,m) =
Vs(m

min, φ)

a3
F (φmin

1 (m), m, φ). (3.5)

The equilibrium distribution of m in that subsystem can be assumed proportional

to the Boltzmann factor, e−Fs(m). Since the biggest contributions to the micelle size

distribution come from values close to mmin, we can expand Fs(m) around mmin. The

resulting normalized equilibrium distribution of m around mmin is given by

f(m) ≃
[

F ′′
s (mmin)/(2π)

]1/2
e−

1

2
F ′′

s (mmin)(m−mmin)2 , (3.6)

where a prime denotes a derivative with respect to m. Thus, we readily get for the

mean-square size fluctuation,

〈δm2〉 = 1/F ′′
s (mmin). (3.7)

The relative width of the size distribution,

w =
〈δm2〉1/2

〈m〉
=

1

mmin[F ′′
s (mmin)]1/2

, (3.8)

provides a convenient measure of the polydispersity.

Figure 3.8 shows the mean-square fluctuation of the aggregation number for am-

phiphile A (Table 3.1) as a function of volume fraction. The corresponding relative

width of the aggregate size distribution is presented in the inset. The polydisper-
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sity weakly decreases with concentration, i.e., the premicellar aggregates are nearly

as monodisperse as the micelles above the cmc. In Table 3.1 we see that the same

conclusions hold for amphiphile B. The small polydispersity (around 10%), as well

as the slightly increased value for the less hydrophobic amphiphile (A), are in agree-

ment with the well known trends for spherical micelles above the cmc, as established

experimentally [11] and theoretically [2].
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Figure 3.8: Mean-square fluctuation of aggregation number for amphiphile A as a
function of amphiphile volume fraction. The volume fraction is scaled by ϕ2, the onset
of premicellar aggregation. The cmc (ϕ3) is indicated by an arrow. The inset shows
the relative width of the aggregate size distribution, w = 〈δm2〉1/2/〈m〉. Parameters
of amphiphile A are given in Table 3.1.

3.5 Lifetime of the premicellar aggregates

The third issue, pertaining to the experimental relevance of premicelles, concerns their

lifetime, assuming that the solution has fully equilibrated and premicellar aggregates

have formed. While the metastable premicellar state may be appreciably occupied at

equilibrium (Sec. 3.2), the aggregates might be short-lived.

As mentioned in Sec. 1.4, two disparate time scales are involved in the dynamics of

micelles, corresponding to the exchange of individual monomers between the micelle

and the solution and the much slower process of micelle formation and breakup. Being



3.5 Lifetime of the premicellar aggregates 36

interested in aggregate stability, we focus here on the latter. We use the free energy

landscape, as obtained from the thermodynamic model (Chapter 2), within Kramers’

rate theory [54, 55] (Sec. 1.6.2) to study the lifetime of premicellar aggregates.

The following analysis relies on two basic assumptions. First, we assume that

overcoming the barrier at the saddle point [φmin
1 (mmax), mmax] is the rate-limiting pro-

cess in aggregate dissociation, whereas diffusion is much faster. Hence, the dynamics

depend on m alone, advancing at all times t along the path [φmin
1 (m(t)), m(t)]. The

second assumption arises from the necessity to relate our coarse-grained model with

single-aggregate properties (see Sec. 2.3). We calculate the free energy of a premi-

cellar aggregate using Eqs. 2.11 and 2.12, under the assumption that the volume per

aggregate stays equal to Vs(m
min, φ) throughout the process. The free energy of the

subsystem becomes

Fs(φ1, m, φ) =
Vs(m

min(φ), φ)

a3
F, (3.9)

where F is given by Eq. 2.2. Thus, the dissociation of a single premicellar aggregate is

treated as the transition of a mesoscopic subsystem from a metastable state, containing

monomers and (on average) one aggregate, to the stable, purely monomeric state. For

brevity the free energy of the subsystem along the dissociation path [φmin
1 (m(t)), m(t)]

is hereafter referred to simply as Fs(m).

3.5.1 Model

We follow the lines of Kramers’ theory [54, 55] (Sec. 1.6.2) while adapting it to the case

of premicellar aggregates. The main assumptions of this approach are as follows. (i)

The energy barrier between the two states is sufficiently high, leading to separation of

time scales between the fast monomer exchange process and the much slower aggregate

dissociation. (ii) The free energy of the final (monomeric) state is much lower than

that of the initial (aggregated) one, ensuring a practically unidirectional probability

current from the aggregated to the monomeric state. The first assumption breaks

down when φ is too small, i.e., as it gets too close to ϕ1; in the examples of Sec.

3.5.2 it becomes invalid already for φ ≃ ϕ2. The second assumption fails when φ gets

close to ϕ3. Thus, the following calculation is strictly valid only for ϕ2 ≪ φ ≪ ϕ3.

(The behavior outside this domain of validity will be commented on separately in Sec.
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3.6.) In addition, we assume that the aggregation number is large, m ≫ 1, so that

the discrete changes in m can be replaced to a good approximation by continuous,

infinitesimal ones.

We begin with the master equation for the probability density function, f(m, t),

of finding the subsystem around the state [φmin
1 (m), m] at time t,

∂f(m, t)

∂t
=

∫

dkW (m− k, k)f(m− k, t) −

∫

dkW (m, k)f(m, t)dk, (3.10)

where W (m, k) is the transition probability per unit time for the aggregation number

to change from m to m + k. Assuming that large jumps in aggregation number are

improbable, we expand the first integral in Eq. 3.10 to second order in small k and

get the Fokker-Planck equation,

∂f

∂t
= −

∂j

∂m
, j(m, t) = A(m)f(m, t) −

∂

∂m
[D(m)f(m, t)]. (3.11)

The first term in the probability current density j describes a drift along the aggregation-

number axis, with velocity A(m) =
∫

dkkW (m, k). The second term represents diffu-

sion along that axis, with a diffusion coefficient

D(m) =
1

2

∫

dkk2W (m, k). (3.12)

Demanding that f reduce at equilibrium (i.e., when j = 0) to the Boltzmann

distribution, feq(m) ∼ e−Fs(m), one gets from Eq. 3.11 a generalized Einstein relation

between A and D,

A(m) = −D(m)F ′
s(m) +D′(m), (3.13)

where a prime denotes a derivative with respect to m. Substituting this relation back

in Eq. 3.11, we rewrite the probability current density as

j = −D(m)e−Fs(m)[f(m, t)eFs(m)]′. (3.14)

Thanks to the assumed high free-energy barrier, and the resulting separation of time

scales, steady state can be assumed practically throughout the entire dissociation
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process. Thus, ∂f/∂t = ∂j/∂m = 0, i.e., j = jss independent of m. Equation 3.14

can then be integrated over m,

jss

∫ mmin

1

dm
eFs

D
= −feFs

∣

∣

∣

∣

∣

mmin

1

. (3.15)

The second assumption, of a large free-energy difference between the two states,

implies that the right-hand side (rhs) of Eq. 3.15 is dominated by its value at mmin.

In addition, we assume that the subsystem is still mostly in the aggregated state near

mmin, at quasi-equilibrium, and, hence, f(m, t) ∼ e−Fs(m). Expanding about mmin we

obtain for the normalized probability density,

f(m) ≃
[

F ′′
s (mmin)/(2π)

]1/2
e−

1

2
F ′′

s (mmin)(m−mmin)2 . (3.16)

as already obtained in Sec. 3.4 (Eq. 3.6). The rhs of Eq. 3.15 is given, therefore, by

−[F ′′
s (mmin)/(2π)]1/2eFs(mmin).

Treating the left-hand side (lhs) of Eq. 3.15 requires an estimate for the aggregation-

number diffusion coefficient, D(m). We use the definition of this coefficient, Eq. 3.12,

together with Langer’s formula for the transition probability [66],

W (m, k) ∼ τ−1
0 e−k2/(2∆)e−

1

2
[Fs(m+k)−Fs(m)], (3.17)

where τ0 is a molecular time scale, and ∆ is used to suppress large jumps in the

aggregation number. Assuming that jumps much larger than unity are improbable,

we set ∆ = 1. We then expand Fs(m + k) − Fs(m) in Eq. 3.17 to second order in k,

normalize the transition probability, and substitute it in Eq. 3.12 to obtain

D(m) =
1

2τ0

4 + F ′2
s + 2F ′′

s

(2 + F ′′
s )2

. (3.18)

Analysis of Eqs. 2.2, 2.3, 2.11, 3.9 and 3.18 shows that for realistic aggregation num-

bers, m≫ 1, one has |Fs| ≫ | lnD|. Hence, the integral on the lhs of Eq. 3.15 is dom-

inated by a small region around the maximum of Fs. We expand Fs(m) about mmax,

integrate, and get for the lhs of Eq. 3.15, jss[2π/|F
′′
s (mmax)|]1/2eFs(mmax)/D(mmax).
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Substituting all these results in Eq. 3.15, we finally obtain for the micelle lifetime 4,

τm = |jss|
−1 =

4πτ0

(1 + F ′′
s (mmax)/2) |F ′′

s (mmin)F ′′
s (mmax)|1/2

eFb , (3.19)

where Fb = Fs(m
max) − Fs(m

min) is the height of the free-energy barrier between the

aggregated and monomeric states. Equation 3.19, combined with Eqs. 2.2, 2.3, 2.11 ,

yields the aggregate lifetime in the metastable, premicellar regime.

3.5.2 Results

We now demonstrate the results of the model for the numerical examples given in

Table 3.1. It lists for these examples the volume-fraction bounds of the premicellar

regime, ϕ2 and ϕ3. The aggregation numbers at these points, as obtained in Sec. 3.2,

are given in Table 3.2.

In Table 3.2 we also give the values of the free-energy barrier for aggregate dissoci-

ation at the lower and upper bounds of the premicellar regime, as calculated from Eqs.

2.2, 2.3, 2.11 using the parameters of Table 3.1. At φ = ϕ2 the barrier is negligible,

of order kBT , yet, as φ increases through the premicellar regime, it becomes much

larger than kBT . The resulting lifetimes, as calculated from Eq. 3.19, are given in Ta-

ble 3.2. As an estimate for the molecular time scale we have used for both amphiphiles

τ0 = 10 ns. (This is the diffusion time of a molecule, having a diffusion coefficient of

10−6 cm2/s, as it diffuses along a distance of 1 nm.) Corresponding to the increase in

the free-energy barrier, the aggregate lifetime increases from milliseconds at the lower

bound of the premicellar region to practically indefinite time. As already noted in Sec.

3.5.1, our lifetime analysis is strictly valid only for ϕ2 ≪ φ ≪ ϕ3, and, hence, these

values should be regarded merely as rough estimates.

The premicellar aggregate lifetime for amphiphile A, scaled by the molecular time

τ0, is depicted as a function of amphiphile volume fraction in Fig. 3.9. The roughly

exponential increase of lifetime with concentration stems from the exponential de-

4 For F ′′

s
(mmax) ≤ −2 this result evidently breaks down. In the representative examples of Sec.

3.5.2 we have |F ′′

s
(mmax)| < 0.1. One can find examples where |F ′′

s
| approaches 2, yet this occurs

only close to ϕ3, the upper edge of the metastable region, where the Kramers-like approach becomes
inappropriate. Technically, the divergence can anyway be avoided by reducing the value of the
parameter ∆ in Eq. 3.17.
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Table 3.2: Properties of premicellar aggregates. mmin—aggregation number; Fb —
free-energy barrier for dissociation; τm — aggregate lifetime; ϕ2, ϕ3—lower and upper
bounds of the premicellar regime. A value of τ0 = 10 ns has been used for the molecular
time scale.

mmin(ϕ2) mmin(ϕ3) Fb(ϕ2) Fb(ϕ3) τm(ϕ2) τm(ϕ3)
Amphiphile (kBT ) (kBT ) (s) (s)

A 53 60 1.3 30.4 2.0 × 10−4 1.3 × 109

B 118 128 0.5 112.5 4.3 × 10−2 1.8 × 1043

pendence of τm on the barrier height (Eq. 3.19), which is the main source of con-

centration dependence. Two additional contributions to the dependence of τm on

φ are included in the prefactor of Eq. 3.19. The first, (1 + F ′′
s (mmax)/2)−1, comes

from the aggregation-number diffusion coefficient, D(m). This factor is practically

concentration-independent, since in our examples the curvature of the saddle point

is small, |F ′′
s (mmax)| < 0.1, and thus D(mmax) ≃ (2τ0)

−1 = const. The second pre-

exponential factor in Eq. 3.19, |F ′′
s (mmin)F ′′

s (mmax)|−1/2, depends on concentration

primarily through |F ′′
s (mmax)|, which is an increasing function of φ. This factor causes

the slightly weaker increase of lifetime with φ at small concentration (Fig. 3.9).

In Fig. 3.9 we see that in the case of amphiphile A, assuming τ0 ∼ 10 ns, the

aggregate lifetime reaches the order of 1 s for φ ≃ 1.4ϕ2, whereas the cmc is at

ϕ3 ≃ 2.75ϕ2. Thus, the premicellar aggregates remain stable for a macroscopic time

over a significant part of the premicellar regime. In the case of amphiphile B we find

τm ∼ 1 s for φ ≃ 1.05ϕ2 while ϕ3 ≃ 4.2ϕ2, i.e., the aggregates are kinetically stable

over a much larger portion (practically all) of the premicellar concentration range, as

expected for a much more hydrophobic amphiphile.

3.6 Discussion

Since micellization is evidently not a macroscopic phase separation, one should not

expect the cmc to be a transition point [65]. Hence, existence of micelles at concen-

trations below the cmc, whatever the experimental definition of the cmc may be, is to

be expected. The key question, therefore, relates to the extent and features of such

premicellar aggregation. The formation of aggregates at φ < φcmc, as arising from the
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Figure 3.9: Lifetime of premicellar aggregates of amphiphile A as a function of am-
phiphile volume fraction. The lifetime is scaled by the molecular time scale τ0 (of
typical order of 10 ns), and the volume fraction by ϕ2, the onset of premicellar aggre-
gation. The volume fraction corresponding to the cmc (ϕ3) is indicated by an arrow.
Parameters of amphiphile A are given in Table 3.1.

mere fact that the aggregation number m is finite, is captured by earlier mass-action

models (e.g., [9, 61]), as well as our simple analysis in the case of fixed m (Sec. 3.2.1).

We find, indeed, continuous micelle formation at all concentrations, yet the fraction of

amphiphiles participating in micelles in the fixed-m case remains very small (smaller

than 1/m) below the cmc.

When the aggregation number is properly treated as a degree of freedom, we find

a concentration range below the (commonly defined) cmc, in which the fraction of

amphiphiles in aggregates may reach tens percent at equilibrium. This surprising

extent of premicellar aggregation, which is much larger than the one expected from

mere finite-size effects (i.e., much larger than 1/m), is one of our main results. It

evidently depends on the fact that the system is free to choose the micelle size. We have

shown that this freedom leads to a metastable aggregated state, containing monomers

and aggregates, whose free energy per molecule differs little (in terms of kBT ) from

that of the pure monomeric state (see Fig. 3.2), and is thus significantly occupied

at equilibrium. In addition, we have found that the favorable aggregate size changes

only slightly in the premicellar as well as the micellar regions. The large extent of
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premicellar aggregation and the concentration-insensitive micelle size are in qualitative

agreement with the experiment of Ref. [62].

The model yields a discontinuous transition at very low concentration, φ = ϕ1,

below which there are no aggregates. This is most probably a consequence of our two-

state simplification, and we expect the transition to disappear when micellar polydis-

persity at low concentrations is properly taken into account. Our focus in the current

work, however, is not on this low concentration regime, φ < ϕ2, where the extent of

aggregation is negligible and the aggregation number significantly changes with φ, but

rather on the region of potentially appreciable premicellar aggregation, ϕ2 < φ < ϕ3.

We have found narrow size distributions of premicellar aggregates, i.e., micelles be-

low the cmc should be only slightly more polydisperse than their counterparts above

the cmc. (See Fig. 3.8.) This agrees with the monodispersity observed in the ex-

periment [62]. Thus, polydispersity does not pose a problem for the applicability of

premicellar aggregation.

It has been shown in Sec. 3.5.2 that considerations of aggregate lifetime can re-

duce the concentration range in which premicellar aggregates may be experimentally

observable and technologically relevant, compared to the range determined from equi-

librium considerations alone. In other words, the apparent concentration, above which

an appreciable amount of metastable and long-lived micelles appears, may be higher

than ϕ2. We have demonstrated, nonetheless, that kinetic stability (i.e., macroscopic

lifetime) still exists in most of the premicellar region. The range of stability is wider

the more hydrophobic the surfactant. These conclusions are in line with results pre-

sented in Ref. [36]. Although that study does not deal with premicellar aggregation, it

has shown that the dissociation time of (block copolymer) micelles remains very large

even below the cmc.

Our Kramers-like approach, as already mentioned in Sec. 3.5.1, relies on two as-

sumptions, which are violated near the edges of the premicellar region. The first

assumption, of a high free-energy barrier between the metastable and stable states,

is valid in almost the entire region except close to the lower edge, ϕ2, where the bar-

rier may become of order kBT only. (See Table 3.2.) The resulting short lifetimes,

though not accurately accounted for by the theory, are of little interest. The second

assumption, of a large free-energy difference between the two states, holds in nearly
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the entire range as well, except very close to the upper edge, ϕ3, where, by defini-

tion, the free-energy difference vanishes. The free-energy difference, in units of kBT ,

becomes large quickly as φ gets smaller than ϕ3, since the considered mesoscopic sub-

system of volume Vs contains a large number of molecules (mostly monomers). In

addition, correction of the theory near ϕ3 by considering a probability backflow from

the monomeric to the aggregated state will only increase the stability of the latter.

Therefore, the deficiencies of the theory at the edges of the premicellar region do not

affect our main results.

The results just summarized concerning premicellar aggregation, nevertheless, should

be affected in practice by kinetic barriers, as demonstrated in Sec. 3.3. In our typical

examples the nucleation barrier for premicellar aggregation is much larger than kBT .

This, assuming a pure solution undergoing homogeneous nucleation, should lead to

inability to observe premicellar aggregation within the experimental time limits. As

the favorable aggregate size increases, so do the critical nucleus and nucleation barrier

for aggregate formation (Figs. 3.6 and 3.7). For large micelles, one can expect that the

experimentally observed micellization will be determined by these kinetic rather than

equilibrium considerations [36]. Consequently, for such large micelles, not only could

premicellar aggregation become irrelevant, but the experimentally observed cmc might

be higher than the binodal-like point determined from equilibrium considerations, ϕ3.

It should be borne in mind, however, that such kinetic limitations are relevant to suf-

ficiently pure systems; the presence of a third component acting as a nucleation center

will naturally lower the barrier and promote premicellar aggregation. Apart from such

heterogeneous nucleation, it might be possible to overcome large nucleation barriers

within reasonable time scales by external means (e.g., agitation or sonication).

The analysis presented in this chapter, in fact, suggests a possible simple resolution

for the long-standing controversy regarding premicellar aggregation. Although the

phenomenon should exist in fully equilibrated surfactant solutions (Sec. 3.2), it should

be kinetically hindered in pure, unagitated systems (Sec. 3.3). This may explain why

premicelles have been observed in solutions containing a very small quantity of an

amphiphilic impurity (e.g., in fluorescence correlation and spectroscopy experiments

involving amphiphilic probes [7]; Chapter 6, [62], [67], [68]) and not in pure solutions

(e.g., using sensitive conductivity measurements [4], [11]). We shall return to this
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point in Chapter 5.



Chapter 4

Kinetics of Surfactant Micellization

In this chapter we present another major application of the free-energy formalism,

which was presented in Chapter 2. Here it is applied to the study of the kinetics of

micelle formation and growth.1

4.1 Introduction

As already mentioned in Sec. 1.4, previous theories of the kinetics of surfactant micel-

lization cast the process in the form of reaction kinetics with two separated time scales,

whereby micelles form and disintegrate through a series of single monomer-exchange

reactions. In this chapter we present an alternative approach, which is based on the

free-energy formalism derived in Chapter 2. A similar strategy was previously applied

to the kinetics of surfactant adsorption at interfaces [69, 70]. This approach has two

main advantages. The first is that it provides a more unified description of the ki-

netics — rather than considering different stages as separate processes (“reactions”),

they can all be examined as constrained pathways on a single free-energy landscape.

Considering different processes on the same footing allows, for example, easier identi-

fication of rate-limiting stages such as diffusion-limited or kinetically limited ones [70].

The second advantage of such a formalism is that it can be more easily extended to

more complex situations, e.g., ionic solutions or surfactant mixtures. The shortcoming

1The material presented in this chapter is being prepared for publication as Hadgiivanova, R.;
Diamant, H.; Andelman, D. Kinetics of Surfactant Micellization, to be submitted to J. Phys. Chem.
B.
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of the model is that it is phenomenological, following coarse-grained thermodynamic

variables rather than single molecules and aggregates. It is probably not appropriate

for large polymeric micelles, where intramolecular degrees of freedom play an im-

portant role and a more detailed description of molecules and aggregates is required

[39, 42, 43]. We shall focus here, therefore, on the micellization of small surfactants.

Another consequence of the coarse-grained modeling is that the derivation bears

similarities to the kinetics of first-order phase transitions (See Sec. 1.6). (This is not

the first time that such an analogy is invoked [38, 42].) However, unlike macroscopic

phase separation, micellization is restricted to finite-size aggregates, resulting, e.g., in

growth laws that are not scale-free.

In Sec. 4.2 we present the implications of the free-energy formalism for the process

of micelle formation. As in previous theories we subsequently separate the kinetics

into stages of disparate time scales, during each of which a different set of constraints

is imposed. The initial nucleation stage is considered in Sec. 4.3. Section 4.4 describes

the subsequent growth of the micellar nuclei as they absorb additional monomers from

the surrounding solution. Both options of kinetically limited and diffusion-limited

growth are studied. In addition, the possible role played by long-distance diffusive

transport is examined. In Sec. 4.5 the final relaxation toward equilibrium is addressed.

The surfactant solution may be either closed, containing a fixed number of surfactant

molecules, or open, i.e., in contact with a large reservoir which is at equilibrium.

Whereas in equilibrium this distinction is immaterial, the kinetics are found to be

strikingly different. Whenever necessary we shall address the cases of closed and open

systems separately. Finally, in Sec. 4.6 we discuss the limitations of our analysis,

summarize the conclusions, and indicate important experimental implications.

4.2 Model

We begin as before with the free energy, F (Eq. 2.2), and consider the possible path-

ways on the free-energy landscape, which lead from an initial state of the system to the

equilibrium state. At equilibrium the amphiphilic solution is spatially uniform and is

characterized by single mean values for the variables (e.g., φ1 and m), which minimize

F for a given φ. Out of equilibrium the values of variables may be position-dependent,
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and the total free energy is given by spatial integration of the local free-energy density.2

In Chapter 3 we studied the metastable premicellar aggregates, which may appear

at concentrations below the cmc, ϕ3. In this chapter we shall focus on the ordinary

micellization region, φ > ϕ3, where micelles are stable at equilibrium. It should be kept

in mind, however, that in this region the monomeric and micellar states are separated

by a free-energy barrier in the form of a saddle point of F at [φmin
1 (mmax, φ), mmax, φ].

The barrier may be high, leading to the measurement of an apparent cmc, which is

higher than the equilibrium one, ϕ3 [36]. As already noted in Chapter 2, above a

certain higher volume fraction, φ > ϕ4 > ϕ3, the barrier disappears and the micellar

state remains the sole minimum of F .

The initial and final states of the micellization kinetics are defined as follows. At

t = 0 the system is in the monomeric state, (φ1 = φ,m = 1), whereas its equilibrium

state is the micellar one. In a closed system this is done by setting the surfactant

volume fraction above the cmc, φ > ϕ3 (using, e.g., a stopped-flow technique). In an

open system the initial condition corresponds to opening a diffusive contact with a

bulk reservoir, whose surfactant volume fraction is above the cmc, φb > ϕ3, and which

has already reached the equilibrium micellar state. At t → ∞ the system reaches

the global minimum of the free energy — [φmin
1 (mmin, φ), mmin(φ), φ] in the closed case

and [φmin
1 (mmin, φb), m

min(φb), φb] in the open one. In what follows we consider the

kinetic pathway that the system takes between those initial and final states. Assuming

separation of time scales, we shall break the path into separate stages. The various

time scales, however, all derive from the free energy functional and a molecular time

scale, thus enabling comparison of the different stages on the same footing.

Throughout the following sections we shall demonstrate the results using a single

exemplary surfactant, whose parameters and properties are listed in Table 4.1. This

allows comparison with Chapter 3, where the behavior of the same surfactant (Table

3.1) for φ < ϕ3 was presented.

Figure 4.1 shows two cuts through the free-energy landscape as a function of ag-

gregation number for the exemplary surfactant in a closed system. Along the first

cut (solid line) the monomer volume fraction is assumed to be at quasi-equilibrium,

2 We neglect here surface-tension (gradient) terms associated with boundaries between such spatial
domains.
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Table 4.1: Parameters and properties of the exemplary surfactant

n u0 σ κ ϕ3 ϕ4

13 10 11 0.08 0.002028 0.1064

φ1 = φmin
1 (m). Thus, the minimum of this curve corresponds to the global minimum

— the equilibrium aggregation number. Along the other cut (dashed curve), which is

relevant to the next two sections, we constrain the concentration of micelles to remain

at its nucleation value.
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Figure 4.1: Cuts of the free energy landscape as a function of aggregation number for
the surfactant parameters of Table 4.1 and φ = 1.1ϕ3. The two curves correspond
to two different constraints: relaxation of the monomer volume fraction for the given
aggregation number (solid), or fixed concentration of micelles (dashed). A closed
system is assumed.

4.3 Nucleation

4.3.1 Closed system

For a closed system the total volume fraction at t = 0 is set to some value, φ > ϕ3,

and (apart from a short initial period of homogenization which we ignore) that value

remains fixed and uniform throughout the micellization process. The first stage to

consider is the climbing from the initial metastable state, (φ1 = φ,m = 1, φ), up the
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free energy to the saddle point [φ1 = φmin
1 (mmax), m = mmax, φ], i.e., the formation of

the critical nuclei (See Fig. 4.1). This activated process is assumed much slower than

diffusion. Hence, φ1 can be taken during this stage as spatially uniform and equal

to the value that minimizes the free energy for the given φ and m(t). Thus, as m(t)

increases from 1 to the critical-nucleus size mmax, the system proceeds along the path

that satisfies the constraints φ = const and φ1 = φmin
1 [m(t), φ].

A similar path was studied in detail in Chapter 3 to obtain the lifetime of metastable

micelles in the region ϕ2 < φ < ϕ3. Such a rigorous calculation, unfortunately, cannot

be repeated here, since the metastable monomeric state is actually not a local mini-

mum of F but just a cutoff at m = 1 (See Fig. 4.1). Nevertheless, as demonstrated

in Sec. 3.5, the activation time (dissociation time in Sec. 3.5 and nucleation time in

the current case) and its concentration dependence are primarily determined by the

free-energy barrier.

Since our model does not explicitly consider single micelles but macrostates con-

taining both micelles and monomers, we need to treat single-aggregate properties in

an appropriate way. We do so using the arguments presented in Sec. 2.3. The relevant

subsystem volume, Vs, is here the one that contains (on average) a single nucleus. The

volume fraction of critical nuclei, their concentration, and the volume per nucleus are

readily given by

closed system: φnuc(φ) = φ− φmin
1 [mmax(φ), φ]

cnuc(φ) = φnuc(φ)/[na3mmax(φ)]

Vs(φ) = c−1
nuc =

na3mmax(φ)

φ− φmin
1 [mmax(φ), φ]

(4.1)

Since φnuc is very small, Vs is much larger than the molecular volume, and our coarse-

grained approach is indeed applicable. The nucleation barrier and nucleation time

scale are given then by

closed system: ∆Fnuc(φ) =
Vs(φ)

a3

{

F [φmin
1 (mmax, φ), mmax, φ] − F1(φ)

}

τnuc(φ) ∼ τ0e
∆Fnuc(φ), (4.2)

where F1 is the free energy of the monomeric state (See footnote 3 in Sec. 3.2.2.) and
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τ0 a molecular time scale.

Various features of the nucleation stage can be calculated from Eqs. 2.2–2.5, 4.1

and 4.2, as demonstrated in Figs. 4.2–4.4. The concentration of critical nuclei (Fig.

4.2A) sharply increases with surfactant volume fraction as φ is increased above ϕ3.

The size of the critical nucleus (Fig. 4.3A) decreases with φ until it practically vanishes

as φ approaches ϕ4. The height of the nucleation barrier (Fig. 4.4) decreases as well

with φ, leading to a sharp decrease in the nucleation time scale (Fig. 4.4 inset). To

get an estimate of the actual nucleation time scales we may take τ0 ∼ 10 ns (the time

it takes a molecule with a diffusion coefficient ∼ 10−6 cm2/s to be displaced by ∼ 1

nm). For the example presented in Fig. 4.4 τnuc is extremely large close to ϕ3 but

drops to ∼ 1 s for φ ≃ 2ϕ3.
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Figure 4.2: Concentration of critical nuclei (normalized by the molecular volume) as
a function of surfactant volume fraction in the range between ϕ3 and ϕ4 for a closed
(A) and open (B) systems. Parameters are given in Table 4.1.

4.3.2 Open system

When the system makes contact with an equilibrium reservoir of a higher volume

fraction, φb > ϕ3, monomers will first diffuse in, until the monomeric concentrations

are balanced. We shall assume that micellar diffusion from the reservoir is either

blocked or very slow. (If it is not, micellization in the system will be dominated

by simple transport of micelles from the reservoir.) Thus, the starting point for the

nucleation stage in this case is different from that of a closed system — it is still a

monomeric state, yet with a lower volume fraction, φ1 = φ = φ1b < φb. Nucleation
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Figure 4.3: Critical-nucleus size as a function of surfactant volume fraction in the
range between ϕ3 and ϕ4 for a closed (A) and open (B) systems. Parameters are given
in Table 4.1.

is again assumed much slower than monomer diffusion. Hence, the monomer volume

fraction remains fixed at φ1 = φ1b. At the same time it should minimize F for the

given m(t), which determines the value of the third state variable, φ. As the nuclei

grow, the total volume fraction increases, and the system proceeds along the path that

satisfies the constraints φ1 = φmin
1 [m(t), φ] = φ1b.

The nucleation path ends at the state of critical nuclei, which is also different from

the closed-system saddle point, because the total volume fraction has not reached the

bulk value, φ < φb. This state is given by the following set of equations:

open system: φmin
1 [mmax(φ), φ] = φ1b(φb) = φmin

1 [mmin(φb), φb]

⇒ φ = φ(φb) ⇒ mmax = mmax(φb)

φnuc(φb) = φ− φ1b

cnuc(φb) = φnuc/(na
3mmax)

Vs(φb) = c−1
nuc =

na3mmax(φb)

φ(φb) − φ1b(φb)
. (4.3)

The nucleation barrier and time scale are given then by

open system: ∆Fnuc(φb) =
Vs

a3
[F (φ1b, m

max, φ) − F1(φ1b)]

τnuc(φb) ∼ τ0e
∆Fnuc(φb), (4.4)
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Figure 4.4: Nucleation barrier (in units of kBT ) as a function of surfactant volume
fraction for a closed system. The inset shows the corresponding nucleation time in
terms of the molecular time scale τ0. Parameters are given in Table 4.1.

where φ and mmax as functions of φb are given by Eq. 4.3.

From Eqs. 2.2–2.5, 4.3, and 4.4 one can calculate the various parameters of the

nucleation stage for an open system. Examples are shown in Figs. 4.2B and 4.3B,

revealing striking differences from the case of a closed system. The explanation is

straightforward — the system is assumed to be in contact with the reservoir only

through its monomeric concentration, φ1b, which hardly changes as φb is increased

above the cmc. Hence, during this initial stage φ1 remains low regardless of the value

of φb. Consequently, the critical nuclei remain relatively rare and large, almost in-

dependent of concentration (Figs. 4.2B and 4.3B). Moreover, since φ1 does not reach

values above ϕ3, we get very high nucleation barriers, resulting in an unphysical nu-

cleation time for the open system. Thus, homogeneous nucleation in an open system,

which does not have micellar transport from the reservoir, is strongly hindered. In

the following discussion of open systems we shall assume that, despite this strong

kinetic limitation, nuclei were somehow caused to form (e.g., through heterogeneous

nucleation).
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4.4 Growth

The nucleation stage addressed in Sec. 4.3 ends when the critical nuclei have formed.

On the free-energy landscape the system has reached the saddle point of F . Sub-

sequently, a stage of faster growth takes place, as the system rolls down the free

energy toward larger m, the nuclei thereby absorbing additional monomers from the

surrounding solution (cf. Fig. 4.1).

The growth is assumed much faster than the nucleation of new micelles or fusion

and fission of existing ones. Hence, the concentration of micelles, cm = (φ−φ1)/(na
3m)

remains fixed at cm = cnuc. Consequently, the available volume per aggregate, Vs,

remains unchanged as well. We shall assume that the growth is also faster than the

diffusive transports among the aggregates (for closed and open systems) and with the

reservoir (open system). The increase in m, therefore, comes solely at the expense

of a decrease in the number of the surrounding monomers, while the total surfactant

volume fraction is conserved. Thus, we describe the growth kinetics as a constrained

path, [φ1(t), m(t)], such that cm = cnuc = const and φ = const.

Although diffusive transport into or out of the subsystem (of volume Vs) is assumed

negligible during this stage, it is a priori unclear whether the growth process itself,

within Vs, should be kinetically limited or diffusion-limited. We shall therefore examine

both options below. The constraints and the equations derived in this section apply

as well to closed and open systems, yet the values substituted for φ and cnuc differ

substantially. While for a closed system φ is the experimentally controlled surfactant

volume fraction, for an open system φ gets the lower and weakly changing values

determined from φb according to Eq. 4.3. The concentration of nuclei is also much

lower in the open-system case (cf. Fig. 4.2). Consequently, the results for the two

cases are quite different.

The aforementioned constraints imply that the average monomer volume fraction

decreases linearly with aggregation number,

φ1(t) = φ− na3cnucm(t). (4.5)

We are left with one independent variable, m(t), whose change in time could be
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either kinetically controlled or diffusion-controlled. Yet, before studying the detailed

evolution, let us examine its final state, which is common to both limits.

The final state of the growth stage, denoted (φ̄1, m̄), is given by the minimum of

F along the constrained path, (∂F/∂m)cm=cnuc,φ=const = 0. This yields

m = m̄ : ln[φ1(m)] + u(m) +mu′(m) + 1 − 1/m = 0, (4.6)

where φ1(m) is given by Eq. 4.5, and, once m̄ is calculated, φ̄1 = φ1(m̄). The result-

ing aggregation numbers and their dependence on the controlled surfactant volume

fraction are presented in Fig. 4.5. Note that the aggregation number at the end of

the current stage is not equal to the equilibrium micellar size, since it corresponds to

a minimum of F along the constrained path rather than its global minimum. Unlike

the equilibrium size, mmin, which is bound by thermodynamic stability to increase

with surfactant volume fraction (dotted lines in Fig. 4.5), the intermediate size m̄ can

have a richer behavior. Examined over a wider range of φ, m̄ is found to be non-

monotonous, having a maximum at φ < ϕ3. Hence, for the closed system it decreases

with φ (Fig. 4.5A), whereas for the open system, which remains dilute throughout this

stage, it increases with φ (and, therefore, with φb; Fig. 4.5B). In the closed system the

growth overshoots the equilibrium size for φ & ϕ3 and undershoots it at higher values.

Whether m̄ is larger or smaller than mmin is in accord with the question of whether

cnuc is smaller or larger than the equilibrium micellar concentration, respectively. (We

shall return to this point when we deal with the final relaxation in Sec. 4.5.) In the

open system m̄ is very close to, and slightly smaller than, mmin. Similar observations

can be made concerning the final monomer volume fraction, φ̄1, as demonstrated in

Fig. 4.6.

We now turn to the evolution of the micellar size. We shall first assume, in Sec.

4.4.1, that it is kinetically limited. We will subsequently check in Sec. 4.4.2 whether

such a description is consistent with the rate of monomer diffusion and consider the

alternative of a diffusive growth.
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Figure 4.5: Intermediate micelle size at the end of the growth stage as a function of
surfactant volume fraction in the range between ϕ3 and ϕ4 for a closed (A) and open
(B) systems. The inset in A focuses on volume fractions slightly above ϕ3. Dotted
lines show for comparison the equilibrium micelle size, mmin. Parameters are given in
Table 4.1.

4.4.1 Kinetically-limited growth

In the case of kinetically limited growth the diffusive transport of molecules to the

aggregate is assumed sufficiently fast so as not to limit the growth. The volume fraction

of monomers, φ1, satisfies Eq. 4.5 while being uniform across the sub-volume Vs. The

increase of m with time is taken as proportional to the relevant thermodynamic driving

force (i.e., the slope of F along the constrained path),

dm

dt
= −

α

τ0

Vs

a3

(

δF

δm

)

cm=cnuc

φ=const

=
α

τ0
{ln[φ1(m)] + u(m) +mu′(m) + 1 − 1/m} ,

(4.7)

where α is a dimensionless prefactor, and φ1(m) is given by Eq. 4.5. Equation 4.7,

supplemented by a proper initial condition for m(t = 0), forms a simple initial-value

problem for the temporal increase in micelle size, which can be solved numerically.

Since the initial state of this stage is a stationary (saddle) point of F , we cannot begin

with the strict initial condition, m(0) = mmax, but have to perturb it to start the

evolution.

An example for a numerical solution of Eq. 4.7, where we have taken m(0) =

mmax + 1 and φ = 1.1ϕ3, is shown in Fig. 4.7. The time scale of the growth, denoted



4.4 Growth 56

0 0.02 0.04 0.06 0.08 0.1
φ

0.001

0.002

0.003

φ 1

_

0.002 0.003 0.004 0.005
0.0005

0.001

A

0 0.02 0.04 0.06 0.08 0.1
φ

b

8.6×10
-4

8.8×10
-4

9.0×10
-4

9.2×10
-4

φ 1

_

B

Figure 4.6: Monomer volume fraction at the end of the growth stage as a function of
surfactant volume fraction in the range between ϕ3 and ϕ4 for a closed (A) and open
(B) systems. The inset in A focuses on low volume fractions slightly above ϕ3. Dotted
lines show for comparison the equilibrium monomer volume fraction, φmin

1 . Parameters
are given in Table 4.1.

τkin, is found to be about two orders of magnitude larger than the molecular time τ0

(say, of order µs in this example).

To get an expression for the kinetic time scale we examine the asymptotic behavior

of Eq. 4.7 as m approaches m̄, obtaining

m̄−m(t) ∼ e−t/τkin ,

τ−1
kin =

α

τ0

[

φ− φ1

mφ1
− 2u′(m) −mu′′(m) − 1/m2

]

m=m̄,φ1=φ̄1

. (4.8)

The results for τkin in terms of the molecular time τ0 are shown in Fig. 4.8. For

the closed system, over one decade of surfactant volume fraction, τkin decreases from

∼ 102τ0 to ∼ τ0. (Values below τ0, evidently, should not be regarded as physical.) The

inset shows that the growth rate for the closed system increases roughly linearly with

φ. For the open system the time scale is also about two orders of magnitude larger

than τ0, yet its dependence on φb is much weaker for the reasons described in Sec.

4.3.2.

4.4.2 Diffusion-limited growth

In Sec. 4.4.1 we have assumed that the surrounding solution can supply the amount of

monomers required for micellar growth within the time scale τkin. Let us check whether
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Figure 4.7: Temporal increase in micellar size assuming kinetically limited growth
in a closed (solid line) and open (dashed line) system. The curves are obtained from
numerical solution of Eq. 4.7 for the example of Table 4.1 and φ(φb) = 0.00223 = 1.1ϕ3

for the closed (open) system.

this assumption is consistent with the rate of diffusive transport from the solution into

the aggregate. The thickness of the diffusion layer around the aggregate, ldif , satisfies

the equation ∆m = (4π/3)l3difc1, where ∆m = (m̄−mmax) is the number of monomers

to be transported and c1 = φ1/(na
3) the monomer concentration. The diffusion time

scale is then τdif ∼ l2dif/D, D being the diffusion coefficient of a monomer. Using the

definition τ0 ∼ (na)2/D (i.e., τ0 defined as the time it takes a molecule to diffuse along

a distance comparable to its length), we obtain

τdif/τ0 ∼ [3∆m/(4πn2)]2/3φ
−2/3
1 ∼ (0.1–1)φ

−2/3
1 , (4.9)

where in the last relation we have assumed n ∼ 10 and ∆m ∼ 50. For our typical

example of φ1 ∼ 10−3 (cf. Fig. 4.5), τdif ∼ (10–102)τ0, i.e., comparable to τkin. Thus,

the situation concerning the limiting process for micelle growth is not clearcut, and

both processes may be relevant in general.

To treat the diffusion-limited growth in more detail we employ the following ap-

proximations. First, we neglect the increase in the micellar radius, R, and take it as

constant. Although this description is evidently inaccurate, it crucially allows us to
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Figure 4.8: Time scale of kinetically limited growth as a function of surfactant volume
fraction in the range between ϕ3 and ϕ4 for a closed (A) and open (B) systems. The
insets show the increase of τ−1

kin (growth rate) with φ or φb. Parameters are given in
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avoid the complicated treatment of a moving boundary. Since the growth does not

begin from a single monomer but from a critical nucleus of finite size mmax, we do not

expect the approximation of constant R to qualitatively affect the results. Second, the

diffusion layer is assumed much smaller than the subsystem, ldif ≪ V
1/3
s , thus allowing

us to consider the latter as infinite, and the monomer volume fraction far from the

micelle as given by Eq. 4.5. Third, we neglect back flow (desorption) of monomers

from the micelle to the solution. This is justified in view of the strong driving force

(large slope of F ) for growth above the critical nucleus.

We assume a radial volume-fraction profile of monomers, φ1(r > R, t), which fol-

lows the diffusion equation,

∂φ1

∂t
= D

1

r2

∂

∂r

(

r2∂φ1

∂r

)

. (4.10)

The growth of a micelle is determined by the diffusive flux of monomers from the

solution,
dm

dt
= D

4πR2

na3

∂φ1

∂r

∣

∣

∣

∣

r=R

. (4.11)

The boundary condition far from the micelle is given according to Eq. 4.5 by

φ1(r → ∞, t) = φ− na3cnucm(t). (4.12)
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For the problem to be well posed, Eqs. 4.10–4.12 should be supplemented by appro-

priate initial conditions for φ1(r, 0) and m(0), as well as a local “adsorption isotherm”

at the aggregate surface, relating φ1(R, t) and m(t). The latter lies beyond the scope

of our coarse-grained description. At any rate, we are interested primarily in the qual-

itative asymptotics of the diffusive transport from the solution into the aggregate, for

which these details are not crucial. The asymptotic behavior as the final state of the

growth stage is approached is worked out in the Appendix, yielding

φ1(R, t→ ∞) ≃ φ̄1

[

1 − (τdif/t)
3/2
]

, τdif =
a2(n∆m)2/3

4πD
φ̄1

−2/3
. (4.13)

Thus, unlike the exponential relaxation of a kinetically limited process (Eq. 4.8),

the diffusive relaxation is characterized by a slow power law. Upon substituting

τ0 ∼ (na)2/D in Eq. 4.13 the general form of τdif , derived earlier from heuristic argu-

ments (Eq. 4.9), is confirmed. Figure 4.9 shows the dependence of τdif on the controlled

surfactant volume fraction according to Eq. 4.13, where we have taken τ0 = (na)2/D.

The cases of closed and open systems are again found to behave qualitatively differ-

ently, τdif strongly decreasing with φ in the former and weakly increasing with φb in

the latter. This is a consequence of the different dependencies of m̄ on concentra-

tion, commented on earlier (cf. Fig. 4.5). Comparison of Figs. 4.8 and 4.9 confirms

our earlier assessment, that τkin and τdif are comparable in general, and both growth

mechanisms may be relevant. For a closed system at concentrations slightly above the

cmc we get for our representative example τdif ≫ τkin, i.e., strictly diffusion-limited

growth. 3

4.4.3 Role of bulk diffusion

In Sec. 4.4.2 we have considered the local diffusive transport that takes place around

individual micelles, feeding them with monomers. In the case of an open system there

should also be slower, long-distance diffusion of monomers from the bulk reservoir.

In principle this should have been the next stage to consider. However, for an open

3Bear in mind that τkin and τdif are associated with very different time dependencies — an
exponential law vs. a power law — and are defined only up to a numerical prefactor. Hence, they
should be compared with respect to the order of magnitude only.
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Figure 4.9: Time scale of diffusion-limited growth as a function of surfactant volume
fraction in the range between ϕ3 and ϕ4 for a closed (A) and open (B) systems.
Parameters are given in Table 4.1.

system we find that the monomer volume fraction at the end of the growth stage, φ̄1,

is invariably very close to the equilibrium (bulk) value, φmin
1 . (See Fig. 4.6B.) This is a

consequence of the small number of initial nuclei (Fig. 4.2B), whose growth consumes,

therefore, a small number of monomers. Thus, the driving force for bulk diffusion is

very weak. Consistently, for an open system we find also that the micellar size at the

end of the growth stage, m̄, is very close to the equilibrium size, mmin (Fig. 4.5B).

Therefore, at any rate, the bulk diffusion that does occur after the growth stage has

a very minor contribution to the micellization.

4.5 Final relaxation

At the end of the growth stage monomer transport into the existing micelles has

been exhausted, and the micelles have equilibrated with the surrounding monomers.

Yet, the final state of this stage, (φ̄1, m̄), does not correspond to the global free-energy

minimum, since up till now we have constrained the concentration of micelles to remain

at its nucleation value (cf. Fig. 4.1). A slower process should ensue, therefore, during

which the size and/or concentration of micelles relax to their equilibrium values.

In the open system the situation is a bit unusual. (Recall from Sec. 4.3, however,

that actually reaching the current stage in an open system should already involve

overcoming high barriers.) The monomer volume fraction has equilibrated with the
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bulk reservoir and reached its equilibrium value. The size of the existing individual

micelles has equilibrated as well, reaching mmin. What has not equilibrated yet is the

total surfactant volume fraction — specifically, the contribution to φ from the micellar

concentration. Since there is no thermodynamic driving force for either monomer

transport or changes in the size of the existing micelles, and we do not allow for

transport of micelles from the reservoir, the only open pathway to final relaxation

is the very slow nucleation of additional micelles. The newly formed micelles will

take monomers from the solution, causing transport of additional monomers from the

reservoir, until the total surfactant volume fraction reaches its equilibrium value, φb.

The relaxation of the closed system is qualitatively different. Both the monomer

volume fraction and aggregation number have not equilibrated yet and will change in

time while keeping the total surfactant volume fraction constant. We expect changes

in the micellar concentration to occur through fusion or fission of micelles. Two

additional processes, which in principle can be considered, are less relevant in this

case. First, nucleation of new micelles or complete disintegration of existing ones might

occur but will require the much longer time scale of τnuc. Second, Ostwald ripening —

a common relaxation mechanism where larger domains grow at the expense of smaller

ones — is not expected to take place, since the micelles are not unstable and the

required positive feedback is thus lacking.

Either fission or fusion should be dominant, depending on whether m̄ has overshot

or undershot, respectively, the equilibrium sizemmin. (See Fig. 4.5A.) Correspondingly,

the micellar concentration cm will either increase or decrease, respectively, with time.

Over the time scale of these rearrangements of aggregate size and concentration we

can assume that the monomer volume fraction is relaxed, i.e., φ1(t) = φmin
1 [m(t), φ].

We are left again with a single kinetic variable — either m(t) or cm(t). The two are

related via

cm(t) = {φ− φmin
1 [m(t), φ]}/[na3m(t)]. (4.14)
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The kinetic equation for the micellar size reads

dm

dt
= −

β

τm

Vs

a3
f(m)

f(m) =

(

δF

δm

)

φ1=φmin
1 (m)

φ=const

= (4.15)

= φmin
1

′
lnφmin

1 −

[

φ− φmin
1

m2
+
φmin

1
′

m

]

ln(φ− φmin
1 )

−(φ− φmin
1 )u′(m) + [u(m) + 1 − 1/m]φmin

1

′
,

where Vs = na3mmin/[φ − φmin
1 (mmin)] is here the volume per micelle at equilibrium,

φmin
1 (m) is given by Eq. 2.4, a prime denotes ∂/∂m, and β is a dimensionless prefactor.

We have introduced another microscopic time scale, τm, which characterizes the single-

micelle dynamics. It is expected to be orders of magnitude larger than the molecular

time τ0 — either because of the long diffusion time required for two micelles to meet

before fusing (in which case τm should be of order, say, 10−5–10−4 s), or due to kinetic

barriers for fusion or fission, which are not explicitly accounted for by our model.

Equations 2.4 and 4.15 can be solved numerically to obtain m(t) and, subsequently

(via Eq. 4.14), also cm(t). Figure 4.10 shows the solutions for our exemplary surfactant

and two volume fractions, corresponding to fission- and fusion-dominated relaxation.
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Figure 4.10: Evolution of micellar size (solid) and concentration (dashed) during the
final relaxation stage in a closed system. Parameters are given in Table 4.1, and the
volume fraction is φ = 0.00223 = 1.1ϕ3 (A) and 0.00523 = 2.58ϕ3 (B).

To find the relaxation time we examine the asymptotic behavior of m(t → ∞)
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according to Eq. 4.15, obtaining

|m(t) −mmin| ∼ e−t/τrel

τrel =
τm
β

a3

Vs

1

f ′(mmin)
, (4.16)

where f(m) has been defined in Eq. 4.15. The dependence of τrel on surfactant volume

fraction is shown in Fig. 4.11. The relaxation time is found to depend weakly on φ,

remaining of the same order as (or slightly larger than) the single-micelle time τm

throughout the concentration range.
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Figure 4.11: Time scale of final relaxation as a function of surfactant volume fraction
in the range between ϕ3 and ϕ4 for a closed system. Parameters are given in Table
4.1.

4.6 Discussion

Our findings concerning the kinetics of micelle formation have several experimental

implications. A particularly clearcut one relates to micellization in an open system

— a solution in diffusive contact with a reservoir of monomers and micelles. We have

found that, in cases where only monomer transport from the reservoir is allowed and

the transport of micelles is blocked, micellization should be kinetically suppressed.

The suppression is two-fold. First, strong activation is required for the homogeneous
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nucleation of the first micelles (Sec. 4.3). This stems from the low surfactant concentra-

tion maintained in the system due to the correspondingly low monomer concentration

(sometimes referred to as inter-micellar concentration) in the reservoir. Second, even

after micelles do nucleate and grow, their final relaxation toward the equilibrium ag-

gregation number and micellar concentration should be hindered, since the relaxation

pathway requires the nucleation of additional micelles (Sec. 4.5). The consequent pre-

diction is that the formation of micelles in such open monomeric solutions may be

suppressed for a macroscopically long time. In fact, this behavior is regularly man-

ifest in applications involving micelle-enhanced ultrafiltration [71]. It has also been

observed in dialysis experiments [72], where the time scale of micelle formation was

estimated as 1–10 hours. In ultrafiltration procedures and the dialysis experiment a

micellar solution is forced through a membrane, whose pores are smaller than the mi-

celles. The surfactant solution on the other side of the membrane remains monomeric

for a macroscopically long time despite its contact with a micellar solution above the

cmc.

We have analyzed the kinetics of micelle formation as divided into three major

stages — nucleation, growth, and final relaxation of micellar size and concentration.

This separation into distinct stages should be generally valid, as the corresponding

three time scales are quite well separated. Such three stages have been resolved in a

recent x-ray scattering experiment on block copolymer micellization [46]. They also

emerged in other micellization theories [38].

The nucleation stage is much longer than all others and, since it is an activated

process, its duration is exponentially sensitive to surfactant volume fraction as well

as other parameters (Fig. 3.7). The range of nucleation times that we get for our

exemplary surfactant in a closed system (typically larger than 1 s) is in line with

measured values of mτ2 — the time scale for formation or disintegration of entire

micelles [11]. The high nucleation barriers found close to the equilibrium cmc (φ =

ϕ3) imply that the measured (apparent) cmc might in certain cases be higher than

the equilibrium value. This issue, which was raised before in the context of block

copolymer micelles [36], clearly merits further study.

The growth stage occurs on much faster time scales (e.g., 10−6–10−5 s for our

example). These time scales are similar to those measured for τ1 — the single-monomer
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exchange time at equilibrium [11]. We have found that the growth may in general

be either diffusion- or kinetically limited, and that it should be diffusion-limited at

concentrations close to the cmc. This is in accord with τ1 being usually diffusion-

limited for short-chain surfactants while becoming kinetically limited for longer-chain

ones, which face higher kinetic barriers for incorporating into a micelle [11]. The

diffusion-limited growth has a distinctive 3/2 power-law relaxation (Eq. 4.13), which

should be verifiable in scattering experiments like the one described in Ref. [46], when

they are applied to short-chain surfactants.

The final relaxation stage (in a closed system) may involve either reduction in ag-

gregate size (fission), accompanied by an increase in aggregate concentration, or the

other way around (fusion). (See Fig. 4.10.) Which of these scenarios holds depends

on whether the aggregate size attained in the preceding growth stage has overshot

or undershot the equilibrium aggregation number. The former should hold at con-

centrations close to the cmc, whereas the latter occurs at higher concentrations. We

note that in the experiment of Ref. [46] the aggregates grew in size during their final

relaxation, which is in line with the fact that the amphiphile concentration was much

higher than the cmc. An interesting consequence of this analysis is that, by tuning to

the right surfactant concentration, one should be able to eliminate the final-relaxation

stage altogether, thus reaching the equilibrium micellar state already at the end of

the growth stage. Another relevant prediction is that the relaxation time of this final

stage should be almost independent of surfactant concentration (Fig. 4.11).

The main shortcoming of our model is its mean-field character. We have assumed

that the kinetics in the surfactant solution can be described within a representative

sub-volume, Vs, containing a single aggregate and being uncorrelated with the other

sub-volumes. Upon closer inspection, in fact, we find that Vs for a closed system typi-

cally contains ∼ 10–102 surfactant molecules, which is comparable to the aggregation

number. Hence, correlations among such sub-volumes are to be expected as the mi-

celles nucleate and grow. Another important mean-field aspect is our description of

the state of the system as a deterministic point, and its kinetics as a sharply defined

path, on the free-energy landscape. In practice, and particularly close to the cmc, the

system should be more accurately described by stochastic distributions, with polydis-

persity and occupancies of both the monomeric and aggregated states [56]. (See Sec.
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3.2.) Nonetheless, we do not expect these approximations to qualitative change our

main results.



Chapter 5

Conclusions and Experimental

Implications

The self-assembly of amphiphilic molecules into compact aggregates is an important

process with numerous biological, technological, and scientific applications. The pro-

cess also serves as a model system for the study of more complicated systems in soft

matter physics and biology. In this thesis we have aimed to present simple theo-

retical models, which capture the well known as well as new qualitative features of

micelle-forming systems in experimentally relevant scenarios.

The general free-energy formalism derived in Chapter 2 is a simple and powerful

tool to study various problems concerning micellar aggregation. We have shown that,

despite its simplicity, it enables one to approach nonequilibrium problems such as

metastable aggregates and the kinetics of micelle growth from a new direction. Since

it contains a minimum number of molecular parameters, it gives a general, unified

description of the qualitative properties of micellar solutions.

In Chapter 3 we have characterized the phenomenon of premicellar aggregation

and proposed an explanation as to why it has been so much disputed among scholars

during the years. We have shown that, at complete equilibrium, a metastable aggre-

gated state in an amphiphilic solution can be occupied to a large extent due to its

small free-energy distance from the stable monomeric state. This highly occupied ag-

gregated state is identified as the premicellar state. At the same time, we have shown

that the nucleation barrier to the formation of premicellar aggregates can be very high,
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especially in the case of larger micelles. This should lead in many cases to inability

to observe homogeneously nucleated premicellar aggregates in the experiment’s time

limits. If the nucleation barrier is very high one may actually measure a cmc, which is

higher than the equilibrium one (apparent cmc). Our analysis assumes, however, that

the system is pure (i.e., consisting only of amphiphile and water). Even a very small

amount of a third (hydrophobic or amphiphilic) component can act as a nucleation

center, and thus effectively decrease the nucleation barrier and promote premicellar

aggregation. This fact might explain why certain experiments observe premicellar

aggregation while others do not, as the observation of premicellar aggregates likely

depends on the method used. The strongest support for the existence of premicellar

aggregation so far has come from spectroscopic methods, which require the addition

of an amphiphilic fluorescent dye, which can act like such a heterogeneous-nucleation

agent. No convincing support for premicellar aggregation has come, however, from

macroscopic methods such as conductivity measurements, which do not introduce for-

eign agents and can be performed in highly purified solutions and with high sensitivity.

Our analysis, therefore, suggests the following novel perspective on this controversial

issue. Premicelles should exist in certain cases at equilibrium, yet their formation

is kinetically hindered. The premicelles observed in some cases may be genuine, in

the sense that the impurity present in such experiments does not lower the cmc for

the formation of stable micelles, but rather facilitates the formation of (the otherwise

kinetically hindered) metastable micelles.

To verify the predictions of Chapter 3 a number of measurements can be performed.

To measure the size and polydispersity of the premicellar aggregates techniques like

FCS were already shown to be applicable [62]. To measure the lifetime of the aggre-

gates one can in principle apply methods like stopped-flow, where the concentration

of micelles can be measured as a function of time upon dilution of the system, or

use relaxation methods like ultrasonic spectroscopy [11, 73]. The possibility that in

certain cases the apparent cmc, as measured experimentally, is affected by kinetic

limitations and is not the true equilibrium cmc, clearly calls for further investigation

and re-examination of published data. For example, such an apparent cmc should be

accompanied by hysteresis effects upon re-dilution. Another “fingerprint” of a kineti-

cally determined cmc might be found in the effect of a small concentration of a third
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agent (impurity). When equilibrium is considered, one expects a smaller effect of a

given concentration of impurity on shorter-chain surfactants, which have a higher cmc.

If kinetics are concerned, on the other hand, the effect of impurity should be smaller

on longer-chain surfactants, which have a higher nucleation barrier and a larger critical

nucleus.

The theory of micelle formation and growth presented in Chapter 4 gives a uni-

fied picture of the process, since the different stages involved can be considered and

compared using a single formalism. One of our main results is that, although the final

equilibrium state of the open and closed system scenarios is the same, the kinetics of

the two are strikingly different. In an open system, where the contact with a reservoir

at concentration above the cmc is only through monomer exchange, the formation

of micelles is expected to be suppressed, since it will proceed mainly through slow

nucleation of new micelles. In the closed system we find that during the growth stage,

where both diffusion and kinetic control may play a role, the size of the micelles either

overshoots or undershoots the equilibrium micelle size depending on the amphiphile

concentration. This stage is followed by relaxation processes of fission or fusion of

micelles. Such a behavior has been observed in computer simulations [24].

The kinetic theory raises a number of suggestions for future experimental work.

The scenarios of open and closed systems are experimentally achievable. Our findings

of strongly suppressed micellization in an open system, if only diffusion of monomers

from a reservoir is allowed, provide a theoretical explanation for a commonly encoun-

tered scenario in micelle-enhanced ultrafiltration procedures and are in agreement with

a dialysis experiment [72]. Technical capability of following the formation of micelles

in detail has been demonstrated recently [46, 74]. Such capabilities open new possibil-

ities to examine the detailed predictions given in Chapter 4 — e.g., diffusion-limited

vs. kinetically limited growth, overshoot in aggregate size, concentration dependen-

cies, etc. The three stages of micellization, exhibiting different time scales, have been

already observed for block copolymer micelles [46]. We hope that our results will

motivate further studies for short-chain surfactants.

Overall, the free-energy formalism developed and used throughout this work has

proved to be a useful tool for the study of micellization. Another interesting appli-

cation may be the study of “spinodal micellization”, where a deep initial quench (in
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concentration or temperature) removes the nucleation barrier for micelle formation.

We hope, therefore, that the theoretical framework and results presented here will lead

to future theoretical and experimental studies. For example, our free-energy formalism

allows for easy extensions of the theory to include additional effects and interactions,

such as electrostatics and surfactant mixtures.



Appendix: Analysis of

Diffusion-Limited Growth

In this appendix we calculate the asymptotic time dependence of the micellar size,

m(t), in a diffusion-limited growth. The equations to be handled are 4.10–4.12.

To leading order at long times we can substitute in Eq. 4.12 m(t) ≃ m̄, turning the

boundary condition far away from the micelle into φ1(r → ∞, t) = φ̄1. We now define

ψ(r, t) = φ1(r, t) − φ̄1, so that ψ(r → ∞, t) = 0, and introduce Laplace-transformed

variables, ψ̂(r, s) =
∫∞

0
dte−stψ(r, t), m̂(s) =

∫∞

0
dte−stm(t). The diffusion equation,

Eq. 4.10, is then rewritten as

sψ̂ = D
1

r2

∂

∂r

(

r2∂ψ̂

∂r

)

, (5.1)

(where we have assumed ψ(r, 0) = 0, as the accurate initial profile should not affect the

long-time asymptotics), and the boundary conditions, Eq. 4.11 and 4.12, transform to

sm̂−mmax = D
4πR2

na3

dψ̂

dr

∣

∣

∣

∣

∣

r=R

(5.2)

ψ̂(r → ∞, t) = 0. (5.3)

The solution of Eqs. 5.1–5.3 is

ψ̂(r, s) = −
na3

4πD

sm̂−mmax

1 +R(s/D)1/2

e−(s/D)1/2(r−R)

r
, (5.4)

from which we get

ψ̂(R, s) = −
na3

4πDR

sm̂−mmax

1 +R(s/D)1/2
. (5.5)
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The limit t → ∞ corresponds to s → 0, at which sm̂ − mmax ≃ m̄ − mmax = ∆m.

Subsequently inverting Eq. 5.5 back to real time and taking the limit t→ ∞, we find

ψ(R, t→ ∞) ≃ −
na3∆m

8(πDt)3/2
, (5.6)

which yields Eq. 4.13 for τdif .
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