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Abstract

This thesis describes the application of microrheology to characterize the struc-
tural, dynamical and mechanical properties of three soft, crowded materials: a quasi-
two-dimensional colloidal suspension above a rigid wall, an entangled actin solution,
and an active actin-myosin network. We demonstrate that by looking only at the
fluctuations of particles embedded in a material, a large amount of information can
be extracted regarding the structure, dynamics and mechanics of that material, and

the relations between these properties.

The first system we investigated was a quasi-two-dimensional suspension of
sedimented silica colloids above a planar substrate. We studied experimentally the
structure and dynamics of the suspension as its density was increased, i.e., area
fraction of particles was increased. This detailed investigation included 3D imaging
by two independent techniques, holographic and confocal imaging, as well as 2D
imaging by epi-fluorescence microscopy. The particles’ location and motion were
analyzed and revealed a rather sharp formation of a distinct second layer at an
area fraction of ~ 0.3, way below close packing. We found that this transition to
a two-layer structure, which is driven by entropy, strongly affects the diffusivity of
particles adjacent to the substrate, and its dependence on particle density. These

experimental results were verified by simulations.

In the second set of experiments, we studied the microrheology of entangled
F-actin networks, a model system for networks of semi-flexible polymers. A careful,
high-precision analysis of two-point microrheology experiments led us to the dis-
covery of a new regime of mechanical response in actin networks. This is despite
the fact that the microrheology of actin networks had been extensively investigated
earlier. The intermediate response was observed at surprisingly large distances of
a few microns. It turned out to be of much more general nature, inherent to any
two-component complex fluid. This discovery revealed that the bulk properties of
complex fluids set in at distances much larger than the characteristic structural

length-scale of the material (e.g., the mesh size of the actin network).
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Subsequently, we utilized the discovery of the intermediate response to de-
velop a new analysis scheme for microrheology experiments, based on the theoret-
ical description of this regime. Using a combination of one-point and two-point
microrheology, we were able to extract from the intermediate and bulk responses
the dynamic correlation lengths of actin networks as a function of several parame-
ters, such as concentration and filament length. This work has established a new
characterization tool for complex fluids. Application of our new analysis scheme to
entangled actin networks with increasing filament length enabled us to study the
relation between dynamic and static correlation lengths. Contrary to the prevail-
ing view, according to de Gennes, that the dynamic correlation length is equivalent
to the structural mesh size of the network, we found that the dynamic correlation
length starts increasing as soon as the filament length enters the newly discovered

intermediate regime (i.e., when it is still much larger than the mesh size).

In the final set of experiments, we studied the fluctuations of particles in a
model active soft matter system: an active actin-myosin gel. The non-equilibrium
nature of these active networks was investigated as their activity was varied, either
by increasing the motor concentration or by changing the size of the motor proteins.
While analyzing the motion of embedded tracer particles, we observed that at suf-
ficiently large concentration of myosin motor protein, the distribution of particles’
step sizes features a sequence of distinct peaks at large displacements, indicating
discrete events of motor activity. This observation is in contrast to the commonly
found distributions, which feature Gaussian or exponential statistics. These peaks
in the distributions are due to active processes in the networks, which have a cut-off
distance, or a characteristic length-scale. We have performed simple simulations
that reproduce these features and therefore support our interpretations of the re-
sults. We used these observations further to estimate the force that a single motor

exerts on the network.
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Chapter 1

Thesis Outline

Particles suspended in a fluid move in a random jiggling manner. This motion,
which is called Brownian motion, is named after the botanist Robert Brown, who
first observed this in 1827. Only many years after Brown, was it understood that this
eternal random dancing of particles is a result of thermal fluctuation in the fluid. A
complete theoretical framework of this phenomenon was formulated by Einstein in
1905, which offered a compelling evidence for the atomic hypothesis. In this thesis
we rely on these seminal insights to decode the jiggles resulting from thermal and

active motion of particles in a variety of soft materials.

Soft matter constitutes a class of materials that show a complex behavior
between those of viscous fluids and elastic solids, and that we encounter every day
in the form of food, glues, soaps, digital displays, and, in fact, most materials
of biological origin. Soft matter such us polymer networks, colloidal suspensions,
surfactants and liquid crystals is made of subunits larger than single molecules,
and its overall structures are governed by the interplay of thermal energy and weak
interactions. As a result, these materials display a rich and fascinating range of
behaviors. They are the basis of many modern technologies, and their study has
already yielded new insights into condensed matter and fundamental physics in

general.
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Figure 1.1: (a) Relationship between structure, dynamics, and rheology in soft matter.
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(b) An example of the relationships in the shear thinning-shear thickening transition in

hard sphere colloidal suspensions. Adapted from [1].

Characterization of a soft material requires that the relationships between
its structure, its equilibrium and non-equilibrium dynamics, and its rheology be
determined. These categories, sketched in Fig. 1.1(a), are not independent. In
most materials they are coupled, although not in a simple universal manner. A
concrete example is the hard sphere colloidal suspension, illustrated in Fig. 1.1(b).
In equilibrium, random collisions among particles (blue spheres) with liquid-like
order make the suspension resistant to flow. As the shear stress or, equivalently,
the shear rate increases, the particles become ordered into lane-like configurations.
These lane-like configurations have a lower viscosity relative to the more randomized
configurations. At yet higher shear rates, hydrodynamic forces between particles
dominate over stochastic ones, a change that disrupts the order and creates clusters,
i.e. transient fluctuations in particle concentration. The difficulty that particles have
in flowing around each other in such a strong flow leads to a higher rate of energy

dissipation and a sharp increase in viscosity [1].

An important way by which we learn about the structure and dynamics of soft

matter is to probe them mechanically. Rheology is the study of the deformation



and flow of materials in response to an applied force. Simple solids store energy
and provide a spring-like, elastic response, whereas simple liquids dissipate energy
through viscous flow. Real materials, and especially soft materials, are neither ideal
solids nor ideal liquids. Real soft materials exhibit both elastic and viscous re-
sponses and are therefore called viscoelastic. The internal structures of soft solids
and complex fluids, composed of colloidal particles, filamentous polymers, and other
supra-molecular arrangements, lead to complicated mechanical responses. As a re-
sult, the rheological response of these materials is not simply characterized by elastic
and viscous constants; rather, these relations can be functions of time (frequency),
direction, and extent of deformation. The goal of rheological experiments is to quan-
tify the viscoelasticity of a material over as wide a range of time scales as possible
and, ultimately, to relate these viscoelastic properties to the molecular meso- and
macro- structure of the material. Twenty years ago, owing in part to innovations
in digital video microscopy, it was realized that rheological information can be ex-
tracted from an analysis of the motions of micron-scale probe particles embedded
in the material. This measurement technique, termed microrheology, has expanded
the scope of materials and the range of length and time scales that can be studied
mechanically. Importantly, microrheology has enabled the study of materials in sit-
uations wherein traditional rheometers are difficult to use, e.g., when the material
is available only in very low quantities (< 1 mL). Moreover, microrheology has been
useful in situations where removal of materials from their natural (in situ) contexts

alters their ability to function, such as in living cells.

This thesis describes the application of microrheology, i.e., analysis of particle
motion, to study the structural, dynamical and rheological properties of three soft
matter systems. The first system is a monolayer of colloidal particles above a rigid
surface. Such a suspension near a geometrical confinement is a good model system
to study properties of many real-life scenarios, where particles are adjacent to a pla-
nar boundary, e.g., proteins near the cell membrane, or nanoparticles in microfluidic
channels. In this system, we were interested in the structural and dynamical prop-
erties of the monolayer as it becomes more crowded, i.e., the density of the colloids

in the monolayer increases. The second system is entangled actin networks. These



networks are excellent experimental models for semi-flexible polymers and the study
of their properties has provided useful insights into the physics of semi-flexible poly-
mers. We studied the microrheology of these networks at different crowded states,
i.e., at increasing polymer concentrations, or increasing filament lengths. The third
system is an active actin-myosin network. In contrary to the other two systems
described above, this system is not in thermodynamic equilibrium, and consists of
molecular motors that generate internal forces in the actin network, by the use of
chemical fuel. Such active networks are used as model systems for the cytoskeleton,
in order to study the underlying physical mechanisms of cellular mechanics. We
were interested in the structure and dynamics of these networks as their activity is
increased, i.e., the motor concentration and size are increased. Here the increase in

motor activity created different crowding states.

One prominent character common to all the three systems is that they are
crowded or dense solutions, composed of at least two-components, where there is a
complex interplay between their structure, dynamics and rheology. Microrheology
was the major experimental tool in my research. This technique is an umbrella term
for various methodologies that characterize material properties through the corre-
lation in motion of particles embedded in it. These correlations are both time and

length-scale dependent, and include auto and cross correlations in particle motion.

This thesis is organized as follows. In Chapter 2 we introduce the theoretical
foundations, practice and application of microrheology methodologies. A specific
emphasis is given to microrheology because it was the main tool used in all of my
projects, and was further generalized in our work to broaden its application. In

addition, we introduce the three experimental systems which we have investigated.

In chapter 3 we review and present three peer-reviewed journal papers sum-
marizing our investigation of the first two systems. The first article presents a
comprehensive study on the structure and dynamics, including 3D imaging by two
independent techniques, of a quasi-two-dimensional suspension of sedimented silica
colloids above a planar substrate. This work revealed the rather sharp formation of

a distinct second layer at an area fraction of only ~ 0.3, much lower than the close



packing. This transition to a two-layer structure was found to strongly affect the
diffusivity of particles adjacent to the substrate. The second article presents a care-
ful investigation into the microrheology of entangled actin networks, which resulted
in the discovery of a new regime of mechanical response at intermediate distances.
Our work revealed that this intermediate response, which was observed at surpris-
ingly large distances of a few microns, is of much more general nature, inherent to
any two-component complex fluid. We generalized the framework of microrheology,
based on the theoretical description of this regime, to include its response, and to
extract the dynamic correlation length of actin networks. Our work has established
a new characterization tool for complex fluids. The third article describes in de-
tail this characterization tool, based on the new analysis scheme for microrheology
experiments presented for the first time in the previous article. In addition, this
article describes its application to relate the dynamic correlation length with the
structure of actin networks. This was achieved by introducing another length scale,
the average filament length, without altering the network’s mesh size. We found
that the dynamic correlation length starts increasing once the filament length is on
the order of the size of the newly discovered intermediate regime (i.e., when it is
still much larger than the mesh size). This finding is in contrast to the common
view, according to de Gennes, that the dynamic correlation length and the static

correlation length (mesh size in polymer networks) are equivalent.

Chapter 4 describes the unpublished study of the third system, active actin-
myosin networks. The non-equilibrium nature of these active networks was investi-
gated using embedded tracer particles. Contrary to the commonly found distribution
of step sizes, which features Gaussian or exponential distributions, we observed a
sequence of distinct ”shoulders” in the distribution, indicating discrete events of mo-
tor activity. We used these observations further to estimate the force that a single

motor exerts on the network.

A concluding discussion regarding our work is presented in chapter 5, where
we recapitulate the main results which we have achieved, with special emphasis on
further implications and applications of our work, and discuss its possible future

directions.






Chapter 2

Introduction

2.1 Micorheology

Rheology is the study of the deformation and flow of material in response to ap-
plied stress. Simple solids store energy and provide a spring-like, elastic response,
whereas simple liquids dissipate energy through viscous flow. For more complex
viscoelastic materials, rheological measurements reveal both the solid- and fluid-like
responses and generally depend on the time scale at which the sample is probed [2].
One way to characterize rheological response is to measure the shear modulus as a
function of frequency. Traditionally, these measurements have been performed on
several milliliters of material in a mechanical rheometer by imposing a small oscilla-
tory mechanical strain and quantifying the resulting stress. Although conventional
mechanical techniques have given valuable insight into the mechanical response of
a wide range of materials, they work on bulk samples, hence precluding the study
of rare or precious materials and many biological samples such as Actin, which are
difficult to obtain in large quantities. Moreover, a conventional rheometer provides
an average measurement of the bulk mechanical properties, not allowing more de-
tailed measurement of local properties in inhomogeneous materials. In addition, the

mechanical nature of a rheometer’s measurements limits their frequency range, thus
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preventing the characterization of high frequency regimes. To address these issues,
a new class of microrheology methods has emerged, enabling the study of material
response at micrometer length scales with microliter sample volumes [3]. Microrhe-
ology methods typically use embedded micron-sized probes to locally deform the
sample. The use of small colloidal particles theoretically extends the accessible fre-
quency range by shifting the onset of inertial effects to the MHz regime; in practice,
the measurable frequency range varies with the details of the experimental appara-
tus. There are two broad classes of micro-rheology techniques: those involving the
active manipulation of probes by local application of stress and those measuring the
passive motions of particles due to thermal or Brownian fluctuations. The former is

termed active microrheology, while the latter is termed passive microrheology.

In the following I will introduce the theoretical underpinnings of these method-
ologies. Much of the material on microrheology is covered in review articles [4, 5]
and in Book chapter [6].

2.1.1 Passive microrheology

Passive microrheology techniques use Brownian dynamics of embedded colloids to
measure the rheology and structure of a material. Tracer particles undergo diffusion
in the medium they are embedded in due to thermal fluctuations. This behavior
is often represented by the mean square displacement (MSD), a time dependent

position correlation function of individual tracers. The MSD function is defined as
(AF(r)) = (|F(t + ) — 7)), (2.1)

where 7 is the d-dimensional particle position, 7 the lag-time, and the brackets
indicate an average over all particles and all times ¢. The time-averaging assumes
the fluid is always in thermal equilibrium and the material properties do not evolve in
time (ergodicity). For a spherical particle with radius a diffusing in a Newtonian fluid
of viscosity 7, the particle’s MSD is related to the diffusivity D via (A7?(7)) = 2dDr

where

kT

D= :
6mna

(2.2)

8



Equation (2.2) is known as the Stokes-Einstein relation (SER) and is the theoret-
ical cornerstone of all passive microrheology measurements. It asserts that mea-
surements of a particle’s thermally excited diffusivity can be used to extract the
viscosity of the fluid, thus relating the dynamics of embedded tracer particles to the
rheology of the medium. Owing to the importance of the SER in microrheology, it
is useful to derive Eq. (2.2) from first principles. In order to do so, it is instructive
to break the derivation down into two steps and critically examine the assumptions
underlying each of the steps. The first step is to view Eq. (2.2) as a statement
that a stochastic quantity (D) is related to the temperature times a deterministic,
mechanical quantity (M), i.e. D = kgT M, where M is the particle’s mobility in
the fluid. This is the Einstein part of Stokes-Einstein due to the fact that it was
Einstein who considered it in 1905. The second step is relating the deterministic
particle response (mobility, M) to the medium’s rheological properties (fluid viscos-
ity, 7). M describes the relation between the velocity (v) of a particle embedded in
the medium to a force (F) applied to it via v = M - F'. Solving the Stokes equations
for a Newtonian fluid with viscosity n around a spherical particle of radius a yields
the expression for the mobility, M = 1/67na. This result, first carried out by Stokes
in 1851, comprises the Stokes part of Stokes-Einstein.

Finally, to apply this approach to viscoelastic materials, the SER is general-
ized to account for materials that do not behave as Newtonian fluids, namely their
rheological properties are frequency-dependent and have real as well as imaginary

parts.

Einstein component: relating diffusivity to mobility

Consider a collection of particles diffusing in one dimension, and let us define ¢(z, t)
as the concentration of the particles at a position = at time ¢. If this concentration
is not spatially uniform, there will be a flux j(z,t), which is proportional to the
spatial gradient of the concentration. This flux is described by Fick’s first law of

diffusion:



Oc
oz’
where D is the diffusivity, or diffusion coefficient. Eq. (2.3) dictates that the flux

of particles will always be from higher concentration regions to lower concentration

j(x,t) = —D (2.3)

regions, while in equilibrium the concentration is uniformly distributed and does
not change over time. If there is an external potential U(z) acting on the particles,

then Fick’s law must be modified. The potential exerts a force

ou

= _2Z
ox

(2.4)

on the particles, producing a non-vanishing mean particle velocity v which, assuming
the force is weak, is linearly related to F' via the particle’s mobility (M): v = M - F.
This average velocity of the particles in response to the external potential gives rise
to an additional flux cv which should be added to Eq. (2.3), yielding a total flux of

j(z,t) = —D% —c (M : g—g) . (2.5)

In equilibrium, the concentration must be independent of time and is given by the

e (LY. »

Boltzmann distribution:

Detailed balance requires the net probability flux j to vanish in equilibrium, so that

a particle in a potential field U obeys

. OCeq ouy
j(.flf,t) =-D o — Ceq (M : a—x) =0. (27)

Solution of Eq. (2.7) using a concentration profile provided by Eq. (2.6) yields
D = kgTM. (2.8)

This expression, commonly known as the Einstein relation, connects a stochastic

fluctuating quantity (diffusivity) to a deterministic mechanical property (mobility).

10



Stokes component: relating particle mobility to material rheology

The calculation of the functional form of mobility M is based on the Navier-Stokes
equations, and was first obtained for a spherical particle steadily translating in a
Newtonian fluid by Stokes in 1851 [7]. For low-Reynolds number flows, where viscous
damping dominates over inertial effects, the Navier-Stokes and continuity equations

as applied to fluid phases reduce to
nV%i=Vp, V-i=0. (2.9)

Here « is the local velocity field of the incompressible flow far away from sources
and sinks and p is the local pressure. Equations (2.9) are known as the Stokes flow
equations and can be solved for ¥ and p by considering appropriate boundary condi-
tions for the fluid at the probe particle surface (no-slip) and at infinity (unbounded)
to relate the probe mobility to the viscosity of the medium. For a sphere of radius
a translating through a fluid of viscosity 7 at constant velocity v = vz, Eqns.(2.9)

yield the following solutions for « and p:

ua(r) 30 (On N TTe N a® [ Ouu N 327,
v 4 r 73 4 \ r3 7D
3nar-v

p(r) = =

(2.10)

r3
where 7= (z,y, z) is the vector distance from the center of the sphere.

Once solved for, the velocity field @ and pressure p can be used to determine

the stress tensor o,s via

OapB = —p5a5 + n (V,ﬂlg + VQUQ) . (211)

The viscous drag force on the particle (and consequently the mobility) is calculated

by integration of the stress tensor (0,4) over the particle surface:

Fa:/UaBdSB~ (212)
S

11



Substituting Eqns. (2.10) into Eqns. (2.11) and (2.12) and solving for the viscous
drag ¢ via F = (U, we obtain ( = 6mna, resulting in the Stokes mobility

M = ¢t = (6mna)”". (2.13)

The na combination could have been guessed from simple dimensional analysis
of the drag force; however, the prefactor 67 is a direct consequence of the no-
slip boundary condition for the fluid velocity on the sphere’s surface. Combining
Eq. (2.13) with Eq. (2.8) yields the known Stokes-Einstain relation of Eq. (2.2).
The next step is to generalize this relation to materials that are viscoelastic, having

viscosity which is both frequency-dependent and complex (n — n*(w)).

Generalized Stokes-Einstein relation

The crucial assumption in the generalization of the Stokes mobility is that the
functional form of the generalized Stokes mobility (GSM) M*(w) and the resistance
(*(w) is precisely the same as their Newtonian analogs, with the Newtonian viscosity

n replaced by the material’s frequency-dependent complex viscosity n*(w):

M) = M or )= T (2.14)

(W) 1
The basis of this assumption is within the underlying linearity of Stokes equations,
Eqns. (2.9), which, when solved in the non-inertial regime, admit viscous and vis-
coelastic solutions exhibiting isomorphic correspondence [8]. Mason ans Weitz [3]
used this assumption to derive the relationship between the probe’s MSD and M*(w),
starting from a generalized Langevin equation describing the forces acting on a small

particle of mass m and velocity V() in a complex material:

mV (t) = F(t) — /0 C(t—T7)V(r)dr. (2.15)

Here F'(t) represents random forces acting on the particle, including both the con-
tributions of the surrounding fluid and those that are due to any interactions with

any other particles or structures in the medium. The force is assumed to be a

12



Gaussian random variable with zero mean and to be completely decoupled from any
past velocity. ((¢) is the time-dependent hydrodynamic resistance, whose Laplace
transform is the inverse of the mobility ((s) = M(s)~'. ((t) is also known as the
time-dependent memory function, since it accounts for energy being stored by the
elasticity of the medium and returned at a later time. This equation can be solved

by taking the unilateral Laplace transform to obtain an expression for V(s):

o mV(0) + F(s)
V(s) = s C) (2.16)

where V(s) denotes the Laplace transform of V(¢) and s is the Laplace frequency.
The first term in the denominator of Eq. (2.16) reflects the contribution of inertial
effects, whereas the second term reflects viscous effects. Since F' is a stochastic
quantity, V'(¢) should be treated statistically; therefore, Eq. (2.16) is multiplied by

V(t = 0) and is ensemble-averaged to give:

m(V(0)°) + (V(0)F(s))

VO =2

(2.17)

Assuming that the random force is uncorrelated with the velocity, (F'V) = 0, and
using the equipartition theorem, 2m(V(0)?) = 1kgT', we obtain the velocity auto-
correlation for d-dimensional probe motion in the Laplace domain:

V(O)7(s)) = mdi?() (2.18)

For low enough frequencies, the resistance ¢ (s) dominates over the probe inertia
(typically < MHz for colloidal systems [9]) and Eq. (2.18) is reduced to

(V(0)V(s)) = dkgT¢ ™ (s) = dkgTM(s). (2.19)

Finally, the Laplace transform of the velocity autocorrelation can be related to the
MSD via the identity

VOV (5)) = T2 {(AP (1)} = S(AP(s)), (2.20)

13



where . denotes Laplace transformation, to give

(AF2(s)) ~ 282”233 _ QdffTM(s). (2.21)

Equation (2.21) is also known as the Fluctuation-dissipation theorem connecting

stochastic properties (MSD) to deterministic properties (M), and is more commonly
written in terms of the frequency-dependent shear modulus Gf(s) = sn(s), which is
related to the probe mobility by M(s) = (6raG(s)/s)~". The resulting expression

is known as the Generalized Stokes-Einstain Relation (GSER):

(A7(s)) = Bl

= Sraslls) (2.22)

which is the basis for all passive microrheology methods. It can be recast into
a more familiar form by the use of the transform of the time-dependent diffusion
coefficient, defined as D(t) = 1/2dO(Ar?(t))/0t, and the complex viscosity spec-
trum, 7(s) = G(s)/s. When these are substituted into Eq. (2.22), the transformed
diffusion coefficient takes a familiar form

kgT

D(s) = Grasi(s)

(2.23)
In the limit of a freely diffusing particle in a purely viscous solution Eq. (2.23)
reduces to the simple Stokes-Einstein relation (SER), and the frequency-independent
viscosity can be recovered (ny = kg1 /6maD), where D is the diffusion coefficient of
the particle in the fluid.

An equivalent representation of Eq. (2.22) in terms of the Fourier components,
more commonly encountered in oscillatory macrorheological data, can be readily
obtained via analytic continuation s = iw. In practice, the Laplace or Fourier
transformed MSD is typically not obtained directly from the time-domain data,
since the dynamic range is limited to only a few decades in conventional measurement
schemes. Instead, local power laws are used to approximate the time-domain MSD
and the transforms are generated via algebraic expressions based on the values of
the power law exponents. More details of this procedure will be given below, in
Sec. 2.1.3.
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2.1.2 One-point (1P) microrheology

The procedure described above interprets the dynamics of individual probe particles
as a viscoelastic response. This technique has come to be known as one-particle (1P)
passive microrheology (or one-point passive microrheology). In 1P microrheology
the rheological properties are inferred from the self-diffusion of the tracer particles,
and thus inherently sensitive to the local properties of the material, ég(S), rather
than its bulk properties, G(s). This feature (and consequently limitation) is further

elaborated in the following section.

1P passive microrheology uses the generalized Stokes-Einstein relation (GSER),

kgT

(A7%(s)) = rasCa(s)

(2.24)

to determine the local shear moduli G(s) from the measured single-particle mean-
square displacement, (Ar?(7)) =MSDY [3]. Here (A7?(s)) is the Laplace transform
of (Ar?(7)) as a function of Laplace frequency s, a is the particle radius, and kgT is
the thermal energy. Shear moduli and MSD may be readily converted between the
Fourier, Laplace and lag time domains with simple numerical routines [3,10]. These

routines are discussed in the next section.

2.1.3 MSD inversion procedures - connecting G* to the MSD

Image-based passive microrheology schemes typically report the MSD in terms of
lag-time, i.e., (Ar?(7)). In the previous section we defined the mathematical re-
lationship [GSER - Eq. (2.22)] that allows analytical calculation of rheological
properties from the MSD, a process called inversion. From Eq. (2.22) it is clear
that in order to determine the frequency-dependent shear modulus, the MSD must
first be converted to a frequency-space representation (Laplace or Fourier). The
Laplace/Fourier Transform integral spans all times from zero to infinity, requiring
data sets spanning this same interval in order to do the conversion exactly. Con-

ventional image-based methods yield MSD data that are limited to < 5 decades of
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temporal dynamic range, precluding direct numerical calculation of the transform
using either numerical integration or Fast Fourier Transform (FFT) algorithms. In
both cases, truncation of the data introduces substantial errors into the transformed
MSD, particularly near the dynamic range extrema, which might then be propagated

into the moduli.

One early approach attempted to overcome the problem by fitting an empirical
functional form to either (Ar?(7)) or (A7?(s)), and then using the empirical func-
tional form with fitted parameters in place of the experimental MSD to compute
the transform analytically [3]. This approach requires the choice of an arbitrary
functional form, which potentially can distort the data by, for instance, smoothing
out subtle features of the data. To overcome these weaknesses, approaches have
been developed that instead estimate the transforms algebraically using local power

law around a frequency of interest, w, and retaining the leading term [11]:

(AT*(7)) = (AF*(1)w)) (wT)*™), (2.25)
where (Ar?(1/w)) is the magnitude of (Ar?(7)) at 7 = 1/w and

dIn(Ar?(1))

a(T) - |‘r:1/w>
dinTt

(2.26)
is the power law exponent describing the logarithmic slope of (Ar?(7)) at 7= 1/w.
In practice, the slope is obtained by fitting the logarithm of both the MSD and
7 values at each 7 point, in the local neighborhood of this 7. Equation (2.25) is
an identity if the MSD is an exact power law, i.e., (Ar?(7)) ~ 7% therefore this
equation is a good approximation for near-power-law functional forms of the MSD.
For probe particles driven only by thermal energy, a must lie between 0 < o < 1.
The bound values correspond to particles embedded in a Newtonian fluid (o = 1)
or Hookean solid (o = 0). Using the evaluation of the unilateral Fourier transform
and Eq. (2.25):

/ )e“Tdr &~ (Ar?(1/w)) / Ye T T, (2.27)
0 0
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leads to

(A3 (w)) ~ (iw) " HAP2(1/w))T [1 + a(l/w)] - e7imel/@)/2, (2.28)
where I is the gamma function, I'(z) = [ 77 e 7dr. Substitution of Eq. (2.28)
into the GSER of Eq. (2.22), with s = iw, yields

) ~ kgT gima(1/w)/2
@)~ R T L T a(l/a)] : (2.29)

for the complex shear modulus. The elastic (G’) and viscous (G”) moduli are

G'(w) = |G*(w)|cos[ra(l/w)/2]
G"(w) = |G*(w)|sin[ra(l/w)/2]. (2.30)

Equations (2.30) provide physical intuition for the relation between the moduli in
terms of the power law behavior of the MSD. For the case of a Newtonian fluid
( = 1), the G*(w) is purely G”(w), and for the second limit of Hookean solid
(v = 0), the G*(w) is purely G'(w). Equations (2.29) and (2.30) are exact in the
limit where the MSD has a purely power-law form. For other more general forms,
these equations are an excellent approximation at lag times where the MSD is well
approximated locally by a power-law. However, when the MSD contains regions
of high curvature the error in the estimation of G*(w) can be ~ 15%. Another
limitation is that the weaker of the two moduli always contains larger error. To
remedy these situations, empirically modified versions of Eqns. (2.30) have been
developed which include second order logarithmic time derivatives of the MSD [12].
This modification helps to better account for curvature, gives a better estimate of
the moduli in curved regions of the data, and improves the results for the weaker
component of the modulus. The modified equations that are used for extracting the

moduli are

6w = G g o |75 - ) (5 -1)]
6"w) = G {1 fon |75 - p - @) (- 1) ] 2




where

o k’BT
~ 7a{AP ()T L+ a(1/w)] [+ )/

The second-order logarithmic time derivative of the MSD is denoted by (w), while

G(w)

(2.32)

o/(w) and f'(w) denote the local first-and second-order logarithmic derivatives of

G(w), ie., o(w) = ‘“;17%“’) and ['(w) = dz(lﬁligf). Using simulated data it was

estimated that the scheme described in Eqns. (2.31) and (2.32) can improve the

maximum errors in the computation of G'(w) and G”(w) from 40% to 4% [12].

2.1.4 Limitations of GSER in 1P microrheology

One-point microrheology is a powerful tool to study the rheological properties of
samples with extremely small sample volumes at frequencies inaccessible to bulk
measurements. However, this technique has several limitations. Here we mention
two important limitations related to the probed time-scales and the material’s het-

erogeneous length-scale.

The first limitation is related to the range of frequencies over which the GSER
of Eq. (2.24) is valid. Theoretical work by Levine and Lubensky [9] showed that
the GSER describes the thermal response of a bead embedded in a viscoelastic
medium within a certain frequency range, w. < w < w;. The lower limit, w,, is
the time scale at which longitudinal, or compressional, modes become significant
compared to the shear modes that are excited in the system. In bulk rheology,
the applied strain has only a shear component, whereas the thermally driven probe
particle responds to all of the thermally excited modes of the system, including
the compressional modes of the elastic network. Consequently, the GSER would
measure a different viscoelastic modulus G*(w) than bulk rheology. At frequencies
lower than w,. the network compresses and fluid drains from denser regions of the
network to more rarefied regions in a sponge-like manner. Above w,., the network
locks in with the incompressible fluid with the result that compressional modes
are suppressed. Consequently, the GSER should measure the same G*(w) as bulk
rheology. An estimate of the lower crossover frequency, w., can be determined by
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balancing local viscous and elastic forces. The viscous force per unit volume exerted
by the solvent on the network is ~ nv /&2, where v is the velocity of the fluid relative
to the network, n is the viscosity of the fluid, and ¢ is the characteristic length
scale of the elastic network. The local elastic force per unit volume exerted by the
network is G'V?u ~ Gu/a* at the bead surface where G’ is the elastic modulus of
the network, u is the network displacement field and a is the radius of the bead.
Force balance dictates that viscous coupling between the fluid and network will

occur when nv /&% > Gu/a?, leading to a crossover frequency

G/§2

na? -

We > (2.33)
For typical soft materials studied using passive microrheology, with elastic modulus
of G = 0.1 Pa, viscosity of n = 0.001 Pa-s, and characteristic length scale of ¢ = 0.1a,

this crossover frequency w, is approximately 1 Hz.

The upper frequency limit, w;, is the frequency at which inertial effects set in
at the length scale of the bead size. Recall that one assumption in the derivation
of the GSER in Eq. (2.19) was the neglect of inertia. Shear waves propagated by
the motion of the tracer decay exponentially from the surface of the bead through
the surrounding medium. The characteristic length scale of this decay is called
the viscous penetration depth and it is proportional to \/W, where p is the
density of the surrounding fluid and w is the frequency of the shear wave [13]. When
the viscous penetration depth becomes comparable to the size of the bead, inertial
effects become significant and cannot be neglected [14,15]. For a particle of radius

a, this occurs at a frequency given by

For typical soft materials studied using microrheology, with properties of G* =~
0.1 Pa, p ~ 1000 Kg/m?, and a ~ 0.5 ym, this frequency is w; ~ 20 kHz. From these
analyses, we find under typical conditions a large frequency range 1 Hz < w < 20 kHz

where the GSER accurately measures the shear modulus.
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The second limitation of the 1P microrheology technique concerns the local
inhomogeneities on the level of the probe particle. 1P microrheology assumes that
the local environment of the bead reflects that of the bulk. This is true only if
the medium is homogeneous on the scale of the particle size a. When the parti-
cle diameter is comparable to or smaller than the any length scale of structures
in the medium, the tracers can move within small cavities and their motions are
not only a measure of the viscoelastic response, but also of the effect of steric
hindrances caused by the cavity walls [16] or the effect of cage-hopping dynam-
ics between transient pores [17]. Interestingly, even if the tracer particle is larger
than the mesh-size, if the network has another length-scale larger than the tracer,
e.g. the filament length, 1P microrheology experiments describes an effective local
environment that is different from the network’s bulk properties [18]. This feature
of 1P microrheology can be exploited to distinguished between the heterogeneities
in structure or in the elasticity. Statistical techniques have been introduced for the
interpretation of multiple particle-tracking techniques and mapping of spatial and
temporal variation in mechanical response [16]. Furthermore, particles in similar mi-
croenvironments can be grouped together into a meaningful ensemble, and average
rheological and structural properties can be obtained. This statistical framework
revealed the heterogeneous probe statistics within agarose gels to result from true
porosity, rather than heterogeneous elasticity [16]. By contrast, F-actin networks
exhibited spatiotemporal heterogeneity [17]. Using this framework, it was shown

that cross-linked poly-acrylamide gels exhibit heterogeneous elasticity [19].

In addition to the effect of probe particle size, physical or chemical interactions
between the probe and the material can alter the local material environment and
cause the one-particle response to reflect the local microenvironment rather than
bulk rheology, regardless of bead size. Physical interactions, e.g. depletion and elec-
trostatic, can alter the local environment and affect diffusivity in a measurable way.
For example, colloids embedded in solutions of semiflexible polymers such as actin
and DNA are surrounded by depletion zones of the order of the polymer correlation
length [20], as evidenced by the depletion forces that such polymers establish be-

tween colloids [21,22]. In a theoretical calculation of the complex mobility M*(w) of
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a spherical probe in a viscoelastic two-fluid material the probe-material interaction
were modeled by surrounding the probe with a thin spherical shell with different
material properties [9,23]. The computed self mobility M*(w) of a single probe was

highly sensitive to the local material environment.

Chemical interactions between the embedded probe and sample are of much
interest and are highly system dependent. For example, in studies with an uncross-
linked flexible polymer solution, no effect of bead chemistry was found [12]. However,
surface chemistry seems to have significant effects in contact with biopolymer net-
works [24], since the charged groups used to stabilize commercially available colloids
react readily with many proteins, leading to nonspecific binding. In a study with
F-actin networks, the bead chemistry was changed to either inhibit or encourage
binding of actin to the bead surface [24]. The beads that prevented actin binding
were insensitive to changes in the mechanical properties of the network. By contrast,
beads that bound to actin filaments reflected the bulk properties of the networks
more accurately. However, a precise control of protein adsorption onto the beads
is usually hard to achieve. Moreover, there may be consequences to the binding of
probe particles. In the worst-case scenario, there is significant aggregation of the
probes and the macroscopic gel-like structures are significantly altered. In less ex-
treme cases, the presence of the bead affects only the surrounding local network but
the bulk properties are unchanged. In this case, it is possible to obtain a modulus
from 1P microrheology but it is unclear whether the measured local modulus reports

the bulk response.

Figure 2.1 shows schematic illustrations of several scenarios in which the em-
bedded probe particle is either chemically inert and is larger (Fig. 2.1(a)) or smaller
(Fig. 2.1(b)) than the network mesh size, or chemically adsorbed with controlled
binding properties (Fig. 2.1(c)) or with nonspecific binding properties (Fig. 2.1(d)).

As described in detail above, the information extracted from a single-particle
dynamics can be highly dependent on the microenvironment. To determine bulk
rheology without consideration of surface chemistry or structure heterogeneity a

slightly different approach is taken; this method is called two-point microrheology.
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Figure 2.1: Sketch illustrating several physical scenarios for the way colloidal particles
can be embedded in a network. Adapted from ref. 25. (a) Chemically inert particle with
radius a > network mesh size &, can provide information which is directly related to
the linear viscoelastic moduli of the material. If the particle is larger than all important
length-scales of the network (i.e. filament length, persistence length), the viscoelastic
properties extracted from its motion reflect bulk properties; otherwise the motion reflects
local viscoelasticity. (b) Particles with radius of a < ¢ which are resistant to protein
adsorption can move within small microenvironments and their motion is sensitive to
the viscosity of the solvent and hydrodynamic interactions with the network, but does not
reflect the bulk viscoelasticity. (c) For a < &, sticky particles, which adsorb protein, recruit
polymer filaments to their surface and possibly modify the local polymer concentration
close to the sphere. In this scenario, particle motions do reflect network fluctuations;
however, the tracers may sample unusually and artificially stiff regions of the network,
leading to uncertainty in the interpretation of the particle dynamics and the network
dynamics. (d) For a < &, even a small amount of protein adsorption can cause particles
to adhere to the network filaments, leading to unusual coupling to the network dynamics,

and hence to uncertainty in the interpretation of particle motion.
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2.1.5 Two-point (2P) microrheology

Particles immersed in a fluid excite long-ranged flows as they move, and similarly
move in response to fluid motion. By generating and reacting to a fluid’s local ve-
locity, colloidal particles experience hydrodynamic interactions with each other and
with the walls of their container. These interactions, in turn, are dominated by large-
scale properties of the material, rather than local regions surrounding the tracers
that may arise due to sample inhomogeneity or boundary effects at the particle-
material interface. These large-scale material properties are length-scale dependent
and are effected by the material length-scale properties, which at large enough dis-
tances (larger than any important length-scale of the material) conform to the bulk
properties which are measured by macrorheology. In 2000 a new technique was
developed, called two-point (2P) microrheology [26], which takes advantage of the
interparticle coupling to robustly extract bulk material properties. This technique
eliminates motion due to purely local structure and mechanics by measuring the
cross-correlated motion of pairs of tracers within the sample. The correlated motion
of the particles at sufficiently large separations is not affected by the size of the
tracer beads and is independent of the specific coupling between the probe and the
medium. 2P microrheology directly maps the long-range deformation or flow of the
material due to a single particle’s motion. Since one tracer’s strain field will entrain
a second particle, we can measure the strain field by cross-correlating two tracers’
motions. In a medium that is homogeneous at long length-scales, this strain field is
proportional to the tracer motion and decays as a/r, where r is the distance from
the tracer. Local heterogeneities, whether intrinsic to the material or created by the
presence of the probe, will affect individual particle motions, but these effects will

be uncorrelated at large distances.

In 2P microrheology the vector displacement of individual tracers is calculated,
Arg(t,7) = 1ro(t+7) —14(t), where t is the absolute time and 7 is the lag time. Then

the ensemble-averaged tensor product of the vector displacements is calculated:
Dos(r,7) = (ArL(t, T)ATé(t, T)o[r — Rij(t)])i¢j7t, (2.35)

where ¢ and j label different particles, o and g label different coordinates, and
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RY(t) is the distance between particles 7 and j at time ¢. The average is taken over
the distinct terms (i # j); the self term yields (Ar?(7)) x §(r), the one-particle
mean-squared displacement (MSD'F). The two-point correlation for particles in an
incompressible continuum is calculated by treating each thermal particle as a point

stress source and mapping its expected strain field [27].

Ar(7) Ar ()

Figure 2.2: Schematic of two-point displacement components. In this sketch, the longi-
tudinal component D) = <AT'|1|(T)ATﬁ(T)> is the product of the displacement component
projected along the line separating the tracers by distance r. The transverse component
D, = (Arl (r)Ar? (7)) is the product of the displacement component projected perpen-

dicular to the line connecting the pair.

Spatially, D, (r, 7) can be decomposed into a longitudinal D) and transverse
D, components, where the former is the component of the motion along the center-
to-center separation vector of the two tracers (see Fig. 2.2), while the latter is
the component orthogonal to the separation vector. In an isotropic medium the
off-diagonal component vanishes by symmetry. For an incompressible medium, to

lowest order in a/r, the amplitudes of the two components are related via

1
Dy = 3Dy (2.36)

Typically, D) is the stronger component and hence easiest to measure in experiments

from a signal-to-noise perspective.

The Brownian motion of a single probe is the superposition of all modes with
wavelengths greater than the particle radius. The correlated motion of two parti-

cles with separation r is driven only by modes with wavelengths greater than the
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separation distance. Therefore, two tracers that are separated by more than the
coarse-grained length-scale in an inhomogeneous medium will depend on the coarse-
grained, macroscopic complex modulus. If the strain field decay is Dy(r,7) ~ 1/r
within a certain range of interparticle distances, the material can be treated as a ho-
mogeneous continuum at those length scales, and the shear modulus of the material

can be determined using the relation [26]

kT

DII(TaS) = ma

(2.37)
where Dj(r, s) is the temporal Laplace transform of Dy(r, 7). It is instructive to de-
rive Eq. (2.37) using the Oseen tensor analysis utilized in Ref. [28]. The overdamped
Langevin equation with pairwise hydrodynamic coupling yields the equation of mo-

tion for a collection of N particles:
N
vi(t) = > Hy (17 = 7D f5(0) + xa(t). (2.38)
j=1

Here the velocity of particle 7 is the sum of self (i = j) and distinct (i # j) terms
representing hydrodynamic coupling to deterministic external forces f;(t) as well

as stochastic noise y;(¢). The hydrodynamic interactions of the particles with the

surrounding fluid are described by their hydrodynamic mobility tensor, H;;, which
is also known as the Oseen tensor, and has the components:

¢ 8mnr
where ( = 67na is the Stokes drag for a sphere in Newtonian fluid derived in

Sec. 2.1.1, T denotes the d x d-dimensional identity matrix, I is a unit vector along
the vector connecting the centers of two particles separated by a distance r. Equa-
tion (2.39) is derived from solving the stokes flow equations and is essentially the
Green’s function for a point force solution [29]. The elements of the Oseen ten-
sor in Eq. (2.39) are the leading order components (O(a/r)). The next-to-leading
order components are O [(a/r)*] for the diagonal elements and O [(a/r)?] for the
off-diagonal elements [30]. It is apparent from Eq. (2.39) that interparticle cou-

pling does not depend on the radius of the particles, and its calculation does not
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assume any boundary condition on the interface of particle-material [30]. Brownian
forces are represented by the stochastic noise term x;(¢) which satisfies the following

correlations:

() =0, Qalt)xg(t) = 2kTHy; (|75 — 75])0(t — ). (2.40)

Equation (2.40) assumes that the random forces are consistent with Gaussian white
noise with zero mean and also with the fluctuation-dissipation theorem (FDT).

Explicitly, for two particles termed 1 and 2, Eq. (2.38) yields the coupled equations:

vi(t) = Hufi(t) +Hiofo(t) +xa(t) (2.41)
vo(t) = Mo fi(t) + Hoafo(t) + xa(t).

In the absence of external forces fi(t) = fa(t) = 0, Eqns. (2.42) reduce to v;(t) =

Xi(t). Computing the ensemble average of the cross-correlation (v (t)vq(t')) yields

(n()va(t)) = Oa)xa(t)) (2.42)
= 2kBTH12(T12)5(t — t/)
= il 5(t - t/)v

2mNrio

where 715 is the distance between the two particles. Taking the Laplace transform of
Eq. (2.43) and using the identity (7, (s)02(s)) = s>(A7(s)AFy(s)) = s2D(r, s) and
the frequency generalization for complex fluids 7j(s) = G(s)s~" give the Generalized
Stokes-Einstein relation for 2P microrheolgy described in Eq. (2.37). Significantly,
Eq. (2.37) has no explicit dependence on the particle size, a, suggesting that it is
independent of the tracer’s size, shape and boundary conditions with the medium
in the limit » > a. This is the advantage of 2P measurements that has enabled it
to overcome the inhomogeneity issue that limited the application of the GSER in

microrheology.

Comparing the longitudinal two-point correlation to the generalized Stokes-
Einstein equation used in 1P microrheology suggests defining a new quantity: the

two-point (2P) mean-squared displacement, MSD?" | as [26]
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2
MSD? = ;TD”(T, 7). (2.43)

This is the thermal motion obtained by extrapolating the long-wavelength thermal
fluctuations of the medium to the bead radius. If the material is homogeneous,
isotropic on length scales significantly smaller than the tracer, incompressible, and
connected to the tracers by uniform no-slip boundary conditions over their entire
surfaces, the 2P mean-squared displacement will match the conventional 1P MSD.
Any difference between them can provide insights into the local microenvironment

experienced by the tracers [16,31].

Unlike 1P microrheology, 2P microrheology is successful in determining the
bulk rheological behavior of an inhomogeneous medium. This allows measurements
in a larger range of materials that were previously inaccessible to 1P microrheology.
Although 2P microrheology is an excellent technique to measure distance-dependent
and bulk properties of materials, its application has not been as vast as 1P microrhe-
ology. The reason is the difficulties in extracting a reliable signal of the particles’
displacement correlations which are due to statistical noise. The statistical consid-

erations in microrheological experiments are discussed below.

2.1.6 Statistical considerations in 1P and 2P microrheology

experiments

The statistical error in particle MSDs is readily estimated. If we approximate the
distribution of tracer displacements as a Gaussian, the standard error for the vari-
ance is simply 2(x?)/v/Ngg, where N.g is the number of statistically uncorrelated
measurements in the distribution. if an image series contains /V; tracers and spans a
time interval 7', then Nz &~ N, T/7. That is, if we image a single particle for 10 sec
at 50 frames per second, we have roughly 500 independent samples of the displace-
ment for a lag time of 1/50 sec, but only 10 independent samples for a lag time of
1 sec. All this assumes that the intrinsic correlation time of particle fluctuations is

much smaller than 7, which is always valid in such measurements. This dependence
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on 7 causes the statistical errors to increase dramatically at longer lag times. As
an example, if we were imaging a sample containing 100 tracers at 50 frames per
second, and we wanted no more than 1% statistical error in the MSD over the lag
times from 1/50 to 1 sec, then we would need N = 10* independent samples at
7 = 1 sec. If we image 50 tracers in our field of view, then we need 17" = 200 sec of
data. The large amount of information (5000 images and 500,000 tracer positions
for this modest example) is efficiently analyzed by an automated image analysis

software.

In general, 2P correlation functions have much higher statistical noise, requir-
ing the acquisition of significantly higher statistical power, higher tolerance of noisier
data, or both. The origin of this is straightforward to understand. The value of D)
is the mean of a distribution of numbers (Ar;Ary), since both Ar; and Ary are
single-particle displacements, the widths of the distributions of (Ar;Ary) is roughly
(Az?(7)), the conventional MSD in the limit of weak correlation. In general, the
two-point correlated motion, Dy, is much smaller than the single particle MSD. As
shown above, under the most favorable case of incompressible homogeneous medium,
the ratio of these two quantities according to Eq. (2.43) is 2r/a, which typically has
a value of 10-20. We then expect that reliable measurements of the 2P MSD would
require averaging at least (2r/a)? or several hundred times [i.e., (10 — 20)?] more
AryAry measurements, relative to Az? measurements to compute a conventional 1P

MSD, in order to reach a similar statistical noise.

Fortunately, we are using video-based microscopy which enables us to image
~ 100 — 200 particles simultaneously. Each particle might have 10-20 neighbors
within the proper distance range for computing 2P correlations. Thus, each image
gives us not 100 samples of (Ar;Ary), as for the example above, but more like
several thousand. For this reason, the statistical noise of 2P measurements is highly
sensitive to the number of tracers in the field of view. In general, if there are
roughly 100 tracers in a microscope field of view, then about 10 times as many
images are required to accurately compute a 2P MSD than a conventional 1P MSD.
Alternatively, the statistical noise of the 2P measurement will be about /10, or just

a few times higher than that of conventional 1P MSD computed from the same data.
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It should be noted, however, that more statistical power is required for materials
where the 1P MSD is much larger than the two-point MSD, according to the square
of MSD' /MSD? ratio. In highly porous materials, for example, the 2P signal can
be so small compared to the background noise of uncorrelated tracer motion that it

becomes hopelessly impractical to measure from a statistical point of view.

2.1.7 Active microrheology

So far we have focused on the basic theory of passive microrheology measurements
utilizing broadband thermal energy to excite fluctuations that can be related to the
material’s underlying linear rheology via the FDT. In this thesis we focus on this pas-
sive approach; however, it is worthwhile mentioning the complementary technique to
passive microrheology, which is based on applying external forces to actively manip-
ulate the embedded particles. This technique is called Active Microrheology. The
forces are generated by the use of magnetic fields, electric fields, or micromechanical

forces.

The principle of active microrheology measurements is the same as an oscilla-
tory macroscopic rheometry measurement; however, there are several notable differ-
ences in practice. First, there is a difference in the length scales probed. Just as in
the case of passive microrheology, the active microrheological measurement is more
prone to the confounding effects of micron-scale inhomogeneities than macrorheol-
ogy. In macrorheology the length scale of the deformation is much larger than any
of the material’s intrinsic length scales, with the consequence that bulk rheology is
always measured. However, the smaller length scale of active microrheology mea-
surements has several advantages over macrorheology. For example, inertial effects,
which arise at high frequencies when the viscous penetration depth is comparable to
the sample thickness, can severely limit the upper frequency range of macrorheology
measurements (typically < 100 Hz). The micrometer length scales of microrheology
measurements enable probing of much higher frequency measurements, owing to the
fact that the frequency criterion for the dominance of inertial effects is w > \/W

where G is the shear modulus, p is the density of the surrounding fluid, and /¢ is
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the length scale of the shear deformation (¢ = a for microrheology) [13,23]. Finally,
a more subtle effect is that the strain field around an oscillating probe is not vis-
cometric (shear-only) but rather contains both shear and extensional components.
At low frequencies in viscoelastic gels, for example, fluid can freely drain from the
network, effectively decoupling the two and causing micro/macro disagreement [23].
No analog occurs in macroscopic rheometry as the strain field is viscometric (pure

shear).

Active microrheology inherits many of the features of passive microrheology,
but offers at least one potential and significant advantage: because the FDT con-
strains passive microrheology to the materials’ linear response, it is conceivable that
active microrheology can be used to extend microrheology to characterize the non-
linear rheology of complex fluids [32,33]. This could be accomplished using an
optical trap, for example, by increasing the amplitude of the trap displacement to
be much larger than the probe size over a duration much shorter than the Brownian
relaxation time of the material. In addition, active microrheology can probe prop-
erties of active materials, such as active cytoskeleton networks [34]. This feature is
another advantage over the passive technique that is again constrained by the valid-
ity of FDT. Any differences between properties measured using passive and active

microrheology can be attributed to the internal active forces in these materials [34].

2.1.8 Applications of microrheology

The first and foremost application of microrheology is to measure the rheologi-
cal properties of materials. The microrheology technique has several advantages
in measuring rheological properties over the traditional, macrorheological measure-
ments. First, the frequency range probed by microrheology can be extremely wide,
extended in particular towards high frequency (~MHz). Secondly, microrheology
measurements require only small volumes of samples (of ~ ul), allowing to study
materials that are not available in large quantities, such as proteins. In addition to
samples volume, microrheological experiments can be conducted in non-conventional

geometries, such as thin films, the interior of biological cells, membranes, and is not
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restricted to the geometry of the mechanical rheometer. Thirdly, the probed samples
can have very low viscosity (like water) and very low elasticity (tenuous gels), which
in some rheometers cannot be studied. Another advantage is the price of equipment
for microrheology experiments. The cost of a state-of-the-art rheometer is around
$100 000, whereas particle tracking can be carried out with a conventional optical
microscope and a video camera for around a third of the price. Sample volume can
be as small as 10 pL, compared to at least a few mL in traditional rheometers. This
may also have the effect of reducing the cost of an experiment, or even making the

experiment practically possible.

In addition to the original purpose and application of microrheology in measur-
ing rhelogical properties of materials, several applications were developed extending
the information that can be extracted from these experiments. Here we mention a

few applications.

Since microrheology uses micron-sized tracer particles that locally probe the
material properties, it is ideally suited for heterogeneous systems, where bulk meth-
ods give average distributions that are often very difficult if not impossible to decon-
volve. Microrheology is not constrained to ensemble averages. Furthermore, careful
analysis of 2P correlated motion can give length-scale and time-scale resolution of
dynamical modes [18,35]. For example, Chen et al. used 1P and 2P measurements
to distinguish between local and bulk material properties in a polymer solution, and
thus to ascertain features of the depleted region around the tracer particles, and its
relation to the polymer correlation length [35]. Microrheology can also give infor-
mation on other forms of non-uniformity, for example the directional anisotropy in
dense sheared DNA solution [36]. If spatial heterogeneity is found to be present,
careful statistical analysis is required to test its significance. Individual particle
movements must be considered since different particles may be exploring different
microenvironments. Statistical techniques have been developed to compare the indi-
vidual particles and map spatial and temporal variation in mechanical response [16].
Furthermore, particles in similar microenvironments can be grouped together into
a meaningful ensemble and average rheological and structural properties can be ob-

tained. It is also important to test trends in MSD as a function of bead size to
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determine the nature of the constraints felt by the bead. For example, a plateau in
the MSD that is observed at the long lag times indicates that the particles are con-
strained by the material. However, examination of the dependence of this plateau
on particle size can reveal the nature of the constraint, i.e., if it is as a result of
local elasticity of the material, or rather as a result of steric constraints, and report

information regarding the size of the pores in the material.

Microrheology can also highlight physical processes in the material that would
not be seen by any other bulk-averaged technique. Examples of the power of this
method come from the study of inhomogeneous systems, where there can be a de-
pendence of the rheology on the spatial length-scale, for example the effect of actin

filament length on the rheology of entangled actin networks [18].

In 2P microrheology measurements, a comparison between the longitudinal
component Dy, and the transverse one, D, can give information on the compress-
ibility of the material. In incompressible medium the ratio D, /Dy = 0.5, however
the compressibility changes the anisotropy of the strain field, and modifies the rel-
ative amplitude of the tensor components (Dy, D). Thus, measuring the ratio
between the different tensor components should enable measurement of compress-
ibility. In practice, it is possible to measure frequency and length-scale dependent
compressibility using microrheology via this ratio D, /Dj < 0.5. It is important
to note that the compressibility discussed here is of the overall fluid, including the

solvent, and not only one of its components (e.g., the network).

In this thesis we describe our contribution to the applications of microrheol-
ogy. First, by investigating the distance-dependent viscoelastic response of actin
networks using 2P microrheology, we were able to discover a new regime of me-
chanical response at intermediate distances. In addition, based on the theoretical
predictions of this regime we developed a new analysis scheme of microrheology ex-
periments, combining 1P and 2P measurements, to characterize in more detail the
mechanical response of complex fluids, and to measure their dynamic correlation

length and structural properties.
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2.2 Colloidal suspensions

The principal characteristic which determines if a particle is colloidal is its size,
where this size range encompasses particles on the order of nanometers up to the
micrometer scale. Colloidal suspensions are everywhere to be seen in our daily life:
obvious examples are toothpaste, salad dressing and paint. Another example is
molten chocolate, which is a colloidal suspension of sugar crystals and cocoa solids
in oil. Finally, many biological systems can be viewed as colloidal suspensions,
e.g., blood is a suspension of cells and globular proteins in water. In addition to
the technological relevance of these suspensions, from a fundamental point of view
colloids are excellent model systems to study questions of relevance in condensed
matter physics, such as the phase behavior of fluids or fluid response to mechanical
perturbations. The major benefit of colloidal systems arises from the mesoscopic
particle size which allows convenient and non-invasive particle imaging with optical
microscopes. One is therefore not restricted to the analysis of averaged physical
quantities as typically obtained in scattering experiments on atomic matter. More-
over, particle-particle and particle-substrate interactions in colloidal systems can be

both realized in a large variety and modified continuously.

There are a variety of forces brought to bear by the presence of colloidal par-
ticles within a fluid. Hydrodynamic, Brownian, and interparticle forces compete
against one another to determine the dynamic and thermodynamic properties of
the suspension [29]. Stability and phase behavior are governed by the balance be-
tween Brownian motion and interparticle forces such as electrostatic repulsion, and
attraction due to dispersion forces. These interactions completely determine the
suspension microstructure. In addition, when a boundary is present, e.g. a rigid
wall, the structure and dynamics of the suspension is governed also by the boundary
interactions with the colloidal particles. In order to deconvolve some of the forces
present in such a system, a theoretical overview of individual forces and their role
in determining the dynamics of the suspension is given below. The bulk of the
theoretical overview will assume a monodisperse suspension of hard sphere colloids,

which is a simplification, but relevant in many applications and in most of the stud-
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ies discussed in this thesis. The polydispersity has an important consequence in

sedimented suspension as described in the first article in Chapter 3.

2.2.1 Interparticle forces

Charged colloidal particles suspended in water interact through a variety of inter-
particle forces such as hard core repulsions, van der Waals attractions and Coulomb
interactions. The particles’ influence on the surrounding medium modifies these
interactions, for instance leading to screening of Coulomb interactions by atomic-
scale simple ions. In this section we concentrate on the static forces acting between

particles, where the following sections discuss dynamic interactions.

Van der Waals forces

All atoms can be thought of as fluctuating dipoles because the electrons surrounding
the nucleus do not form a uniform barrier or screen. The average distribution of
charge around a molecule may be symmetrical, thus there is no net dipole moment.
However, the electrons move about at any instant of time, resulting in an instanta-
neous distorted distribution of electron which creates a small dipole. The resultant,
attractive force between atoms is known as a van der Waals force [29]. There are
three kinds of interactions contributing to van der Waals forces: (i) interactions
between thermally fluctuating permanent dipoles, known as Keesom forces; (ii) in-
teractions between thermally fluctuating, induced and permanent dipoles, known as
Debye forces; and (iii) interactions between quantum-mechanically induced dipoles,
known as London forces. The long range attractive interactions between colloidal
particles originate from London forces, where although the net permanent dipole
moment may be zero, the induced interaction can produce a net attraction. These
forces are proportional to the polarizability of the atoms and inversely proportional
to the sixth power of the distance between two interacting atoms. Since the par-
ticles in a colloidal system are large compared to atomic dimensions, macroscopic

interactions can be approximated by the summations of the pairwise interactions of
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the constituent molecules in the individual particles. Therefore, the scaling up of

van der Waals forces depends on the geometry of the particles involved.

For two spheres of equal radius, a, at a surface to surface separation distance,
K < a, apart along the center to center axis, the total interaction energy, Vy, is

given by [37]

Aga
ValK) = — 57 (2.44)

The quantity Ag is called the Hamaker constant, and contains information regarding

the detailed potential energy between two atoms in the interacting spheres and the

density of these spherical particles.

The overall van der Waals interactions are always attractive and contribute
to the destabilization of colloidal suspensions. The stability of the suspension is

provided by other repulsive interactions such as electrostatic and steric forces.

Electrostatic interactions

Particles that are dispersed in a fluid of high dielectric constant, such as water,
usually develop charges on their surfaces. This surface charge can be a result of
two possible processes: (1) ionization or dissociation of surface groups, which leaves
behind a charged surface, and (2) adsorption (binding) of ions from solution onto a
previously uncharged surface. The adsorption of ions from solution can also occur
onto oppositely charged sites, also known as ion exchange. Since the system as
a whole is electrically neutral, the dispersing medium must contain an equivalent
charge of opposite sign. These charges are carried by ions, by an excess of ions of
one sign on the particle surface and an excess of ions of the opposite sign in the
solution. Hence, if we consider an individual particle immersed in the liquid, it is
surrounded by an electric double layer, which consists of the charges on the surface
of the particle and in the solution. As a result of thermal motion the electric charge
carried by the layer in the solution extends over a certain distance from the particle

surface, and dies out gradually with increasing distance into the bulk liquid phase.

Theories such as the Debye-Hiickel approximation and Gouy-Chapman theory
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have been used to explain the electrical double layer of colloidal suspensions. In this
theory the average charge distribution and the corresponding electrical potential

functions have been related on the basis of the Poisson-Boltzmann equation (PBE):

—1 —z;el
2. 0 )
Ve = e % n; 2;€exp ( T ) , (2.45)

where 1 is the electrical potential, nY the number density of ions of valency z;, €y the

pemittivity of vacuum, e the dielectric constant of the fluid and e the elementary

charge.

The derivation of Eq. (2.45) was done under several simplifying assumptions;
(i) the electrolyte is an ideal solution with uniform dielectric properties, (ii) the ions
are point charges, and (iii) the potential of mean force and the average electrostatic
potential are identical. According to this theory, the average charge density at a
given point can be calculated from the average value of the electrical potential at
the same point with Boltzmann’s theorem, and the electrical potential distribution

can be related to the charge density with the aid of Poisson’s equation.

Linearization of the Poisson-Boltzmann equation (Eq. 2.45) yields an approx-

imate solution which is valid for weak potentials, i.e. ey < kgT),

Ze exp(ka)exp(—kr)

o(r) =

 Amege 1+ ka r

: (2.46)

with r the distance from the center of the colloidal particle, and Z is the number
of surface charges. The potential (2.46) constitutes the well known Debye-Hiickel
potential. Note that the finite geometry of the colloid is taken into account by

the second factor which matches unity for point-like particles (a = 0). The inverse

/ EOEkBT

When two like-charged particles approach each other, their electrical double

screening length s is

layers will start to overlap, resulting in a repulsive force that opposes further ap-

proach. This pair interaction between colloids is obtained by linearly superimposing
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Eq. (2.46) yielding

722 (exp(ka)\” exp(—kr)
Vi(r) = 4
&(r) dmege < 14+ ka ) r (2.48)

with r now the center-to-center distance between the colloidal particles. The last
factor in Eq. (2.48) reflects the fast decay of the pair interaction with respect to the
distance r originating from screening effects due to thermal motions of the mobile

ions.

The DLVO theory, named after its developers: Derjaguin and Landau [38],
Verwey and Overbeek [39], describes the force between charged surfaces interacting
through a liquid medium. It combines the effects of the London-van der Waals
attraction and the electrostatic repulsion due to the overlap of the double layers of
counterions. The central concept of the DLVO theory is that the total interaction
energy of two surfaces or particles is given by the summation of the attractive and

repulsive contributions described above. This can be written as
Vr=Va+ Vg (249)

where Vi is the total interaction energy. This theory successfully explains the long-
range interaction forces observed in a large number of systems such as colloids,

surfactant and lipid bilayers.

Steric forces

Steric stabilization is another method used to control the stability of colloidal sus-
pension. Adsorbed organic molecules induce steric repulsion. The presence of the
adsorbed layer has the effect of preventing the centers of the particles from coming
closer than 2(a + <), where a is the particle radius and ¢ is the thickness of the
adsorbed layer. In order to stabilize the suspension the thickness of the adsorbed
layer ¢ should be sufficiently thick in order to overcome the van der Waals attractive

force.
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Theories of steric interactions are not well-developed. There is no simple,
comprehensive theory available as steric forces are specific, depending on molecu-
lar details of the adsorbed layer [40-42|. For example, the magnitude of the force
between surfaces coated with polymers depends on the length and coverage of poly-
mer on each surface, on whether the polymer is simply adsorbed from solution (a
reversible process) or irreversibly grafted onto the surfaces, and finally on the qual-
ity of the solvent [40,43]. Different components contribute to the force, and which

component dominates the total force is situation-specific.

Although this repulsive interaction is complex, we can give several intuitive
explanations for its mechanism. Generally, the steric mechanism has two effective
elements which contribute to the overall colloidal stability. One is the osmotic
contribution, relating to the increase in the local density of adsorbed molecules,
which results in the diffusion of the medium into the region between the surfaces to
reduce the concentration of adsorbed molecules at this region and thus to drive the
particles apart. The second is the entropic contribution, relating to the reduction
in the number of configuration of adsorbed polymer chains as particles get closer.
This implies a reduction in the entropy of the system (AS) and hence an increase

in the free energy (i.e., repulsion).

2.2.2 Brownian motion

In the preceding section we discussed the forces influencing the static properties of a
colloidal suspension. In the two following sections we discuss the dynamic properties.
These interactions between particles in suspension are mostly mediated by the fluid
(in contrary to the static interactions which are direct), and hence are affected by
hydrodynamic interactions. Here we describe the effect of interaction with the fluid
in two sections, contributing to the motion of a single particle (Brownian motion),

and influencing long-ranged correlations in suspensions (hydrodynamics).

Due to their size, colloidal particles are impacted by the motion of the sus-

pending fluid molecules, creating a stochastic particle motion called Brownian mo-
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tion. The Langevin equation describes the motion of such a colloidal particle. The
equation has two contributions - a deterministic part describing friction forces from
the fluid, and a random part arising from the fluctuating part of the force. For a
spherical particle of radius a in a Newtonian fluid of viscosity 1 and density p, the

one-dimensional Langevin equation describing its motion is [29]
d*r  dx
— — =F(t 2.50

where z(t) is the particle position at time ¢, m = 4mwa3p/3 is its mass, { = 67na is
the friction coefficient (also described before as hydrodynamic resistance) and F(t)
is the random fluctuating Brownian force. The function F'(t) represents the effect of
collisions between the particle and the fluid molecules, and is assumed to be random

in direction and magnitude and uncorrelated on the time scale of particle motion:
(F(t)) =0, (FOF()) =Ad(t—1), (2.51)

where A is the noise intensity. The value of noise intensity can be determined by the
equipartition theorem, which assumes that the kinetic energy is equally partitioning

among the translational modes of the particle (in the present case only one mode)

so that ,
1 dx 1

In the limit of ¢ — oo, the result for the mean squared velocity from Eq. (2.50) is,

dx 2 ]. t t / 1" A
o = dt/ dt” —C(t—t")/m—C(t—t )/mA t/ . t” - 9.
() )= ffoe [ =) =g 259

Combining Eqns. (2.52) and (2.53) yields the value of A = 2(kgT, which relates the
strength of the random Brownian fluctuations to the frictional forces that dissipate
the energy. Both originate from the interaction between the particle and the solvent

molecules, but differ substantially in time scales.

A typical experiment observing the Brownian motion of a particle is conducted

at time scales much larger than the viscous relaxation time, 7. o pa?/n, thus it is
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useful to derive the ensemble properties arising from the Langevin equation in terms

of displacements rather than velocities.

Solution of Eq. (2.50) leads to a form for the mean squared displacement of a

particle in the x—direction of

won= [ a [ar (%) -2 <<Z—t)> 1= 21— expl—ct/m)

(2.54)
In the short time limit, ¢ < 7., Eq. (2.54) can be expanded via a Taylor series,

(22(2)) = %m <<‘;—f)2> t+ <<‘;—f)2> 2. (2.55)

This is called the ballistic regime.

yielding

In the limit of long times, ¢ > 7., Eq. (2.54) combined with Eq. (2.53) reduces

to the familiar equation:

2y = 2 [ (AN kT
(@(0) = <(dt) >t—2 ot =2Dt, (2.56)

where D = kgT'/( is the diffusion coefficient described in the previous sections.
This equation is one of the most useful equations in experiments with colloidal sus-
pensions. Extracting the diffusion coefficient, and assuming ( = 67na for spherical
particles, allows to measure the viscosity of the liquid in which the colloids are em-
bedded (which is the basis of microrheology as described in the previous sections). It
is important to note here that as the density of the colloidal suspension is increased
the diffusion coefficient extracted from the mean square displacement of the particles
is decreased, which is due to a different, effective viscosity of the suspension. This
effective viscosity of the whole suspension (colloids and solvent) increases as the
density of the colloidal particles is increased. The leading (linear) effect of a volume
fraction ¢ of hard spheres on the viscosity of the bare liquid, 79, was calculated by
Einstein [44], and found to be,

n="1o (1 + g¢) : (2.57)
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2.2.3 Hydrodynamic interactions

Particles immersed in a fluid excite long-ranged flows as they move, and similarly
move in response to fluid motion. By generating and reacting to the fluid’s local ve-
locity, colloidal particles experience hydrodynamic interactions with each other and
with the walls of their container. This section will focus on these interactions. In col-
loidal suspensions, the relative particle-fluid motions generate hydrodynamic forces
that strongly influence the dynamic properties of the suspension. The disturbance
caused by the motion of one particle decays so slowly with distance that interparticle
effects are seldom negligible, and therefore hydrodynamic forces transmitted from

one particle to another through a viscous fluid must be taken into account.

The equations describing the properties of fluid flow are the Navier-Stokes
equations, which describe the velocity, the pressure and the mass of the fluid flow.
These equations can be derived by considering two quantities which are conserved

in an isothermal fluid flow, mass and momentum. From mass conservation we have:

ap L
N + V- (pu) =0, (2.58)

where p(7,t) is the mass density of the fluid, and @(7,¢) is its velocity, at position
7 and time ¢. For an incompressible fluid, which has constant density, Eq. (2.58)
reduces to

V-i=0. (2.59)

The equation for the conservation of momentum is

du [817

- 1
P =P EH@V)@} =F — Vp+nV?i+ (K+—n)V(V-a‘), (2.60)

3

where p(7,t) is the pressure, ﬁ(ﬁ t) is an external force density, K and 7 are the
compression and shear viscosities respectively. In the case of incompressible fluid,

Eq. (2.60) reduces to the more familiar form

p {g—? +(i- V) a‘] =F — Vp+ V2. (2.61)
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This non-linear equation can be further simplified in the case of a very viscous
fluid where inertial effects of the fluid are negligible. This regime of behavior is also
known as the low-Reynolds number regime. The Reynolds number is a dimensionless
number Re = pUL/n, which describes the ratio between inertial and viscous forces,
where L is a typical length in the system and U is a typical velocity. Low values of
Re indicate negligible inertial effects and Eq. (2.61) becomes linear and simpler to
handle,

nV%i—Vp+F = 0. (2.62)

This equation, together with the equation derived from mass conversation (Eq. (2.59))
are known as the Stokes equations, and are similar to Eq. (2.9) from Sec. 2.1.1. In
the previous section, we discussed the leading order term of the solution to the linear
equation, i.e., point force. In this section we first elaborated on the derivation of
this linear equation and we further consider higher order terms of the solution, i.e.,
taking into account the size of the tracer particle a > 0. All the studies described in
this thesis are in the regime of low-Reynolds number and, therefore, we concentrate

our attention on it.

The linear equation can be solved by considering the classical Stokes problem
of a rigid sphere of radius a, driven by a steady force F through an incompressible
fluid of viscosity n [45]. The fluid velocity at position 7 away from the sphere’s

center is given by

U(r) = U1 + v, (2.63)
with
- (5 +WB)F (2.64)
Yo = gryr \ 0T ) 0P '
a® 3rars
I o 2.65
2 247nr3 ( o r2 ) B ( )

where Greek indices denote the coordinates (x, y, z), and repeated indices are
summed over. The dominant term at large distances, ¥, is the flow due to a force
monopole F. Its 1 /1 decay is dictated by momentum conservation, ensuring that

the integrated momentum flux (proportional to @, ~ r?) through any closed surface
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around the sphere remain fixed. This dominant response can be decomposed into
longitudinal and transverse components (force and velocity parallel and perpendic-

ular to 7, respectively),

’U1|| = F1|| V11 = (266)

—F
A 8rr-

both of which are positive. This dominant response is the Oseen tensor, mentioned
previously in the section describing 2P microrheology (Sec. 2.1.5). It holds as long
as momentum is conserved in the system. Turning to the correction term, the
subdominant 75, we point out the largely overlooked fact that it is actually made
of two contributions, having the same spatial form but opposite signs and different
physical origins, U, = Uss + Uay,. The first term is the flow due to a force quadrupole
(a correction to the force monopole), whose longitudinal and transverse components

are

a? a?

Uop = 30, Vg = —F||7 Vafl =

— F. 2.
Amnrs + (2.67)

8
The second contribution to the subdominant term is due to a mass dipole created
opposite to the direction of the sphere’s displacement. It originates from mass
conservation (rather than momentum like the two terms described above). Its lon-
gitudinal and transverse components are:

a? a?

F’Ha Uoaml = —7127”7773 - (268)

Uop = —2Uz,  Vgm| = 67r—777’3
In a simple Newtonian fluid, where the only important characteristic length

scale is the particle size a, these two contributions to the subdominant term are

summed up to a net negative correction to the longitudinal response, vy = —a®(12wnr®) ' Fj,

and a positive correction to the transverse one, 0o, = —a?(247nr3)~1F| . Interest-

ingly, in complex fluids or concentrated colloidal suspensions, which always have an

intrinsic length scale (e.g., mesh size or correlation length in the suspension), there

is a difference between the two terms of the above subdominant response. The force

quadrupole depends on the bulk properties of the material 7y,, as it derived from

momentum conservation. However, the mass dipole term is related to mass conser-

vation, arising from motion of mass in the local environment of the particle, and
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it depends, therefore, on the local response of the material, with 7eq. (Although
it is related to the local environment, it is still long range.) If the local and bulk
properties are not the same (and usually the local properties are softer than the
bulk as they are related to the properties of the solvent), the two terms separate
into two different contributions, and a new regime of mechanical response emerges,
the intermediate response, whose origin is from mass conservation. This new regime
was predicted theoretically [46] and in this thesis we describe its experimental ob-

servation and verification for the first time.

The above description of the static and dynamic interactions in colloidal sus-
pensions is correct for an unbounded suspension. In one part of this thesis we
describe the study of the structure and dynamics of suspensions adjacent to a rigid
substrate. The proximity to a rigid wall adds static interactions between the colloids
and the wall. In addition, it alters the particles’” Brownian motion and hydrody-
namic interaction, mainly because in fluid flow near a rigid wall momentum is not

conserved. In the next sections we describe the characteristics of such suspensions.

2.2.4 Colloidal suspension near a rigid surface

In a wide range of practical scenarios, a suspension of particles is in close proxim-
ity to a geometrical confinement, for example diffusion near the cell membrane or
in microfluidic channels. For such cases the description of forces presented above
requires modifications in order to characterize correctly the suspension’s properties.
To a first approximation, these scenarios can be modeled as a colloidal suspension

adjacent to a rigid wall.

The interactions between the colloidal particles and the rigid surface has two
contributions; one, which is relatively simple, is from the static forces between the
surface and the particles. For example, the van der Waals and electrostatic forces are
modified to correctly describe the interaction between a colloid and an infinite wall.
The second, and more complicated contribution, is to the dynamical interactions

which are modified as a result of the disturbed fluid flow in the presence of an
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infinite wall. The calculation of this flow field depends profoundly on the boundary
condition at the surface of the wall. The simplest case is a wall whose surface can
be considered as a no-slip boundary, i.e., the velocity of the fluid at the surface of
the wall is zero. This condition dictates that there is a momentum loss to the rigid
wall. Here we mention several static and dynamical properties of such suspensions

near a rigid wall.

The electrostatic interaction between a colloid and a wall can be described
as [29]

Un(h) = Bexp(—r(h —a), B = —2C (( wa )), (2.69)

- dregera® \ (1 + ka
where h is the distance between the center of the particle and the wall. This expo-
nential decay was verified experimentally by recording the fluctuation of a colloidal
particles near a wall [47]. The van der Waals interaction between a colloid and a

infinite wall is [37]
AHCI,

6K
This expression is correct in cases where a > K, where K here is the surface-to-

UA(K) ~ (270)

surface distance. In most practical scenarios, the colloidal particles are well sepa-

rated and this VDW interaction can be neglected.

The overall structure of a colloidal suspension near a wall, which is determined
from all particle-particle and particle-wall static forces, results in a disruption of the
typical 3D structure of the unbounded suspension. This disruption can be, for

example, in the form of a layered structure decaying away from the surface [48,49].

The dynamical properties of a suspension near a wall are influenced by the flow
field around a moving sphere. A no-slip boundary condition at the wall modifies this
flow, breaking its symmetry and increasing the drag on the sphere. Faxén introduced
the method of reflections in 1927 to address this question and obtained the mobility
(and, hence, diffusivity) for a sphere at height h above a wall, moving parallel to
the surface [45]

Dt = Do{ 1= 50 5 () o () - (1) ) e
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where Dy is the diffusion coefficient of the sphere in an unbounded fluid. This
expression was verified experimentally for an isolated spherical particle near a wall
[50]. This in-plane self-diffusivity holds only for dilute suspensions of particles. Once
the density of the particles increases, the diffusion is expected to decrease similar to
the unbounded case. However, the functional form of the decrease with increasing
density is different from the unbounded case as a result of the wall presence [51].
The hydrodynamic interaction between colloidal particles can be calculated by the
methods of images and was obtained for a pair of particles diffusing at a distance h
above a wall [52,53]:

3kpTh?
3kgTh?
Dilr>h) = Foog (2.73)

These coefficients describe the leading terms of the in-plane correlated diffusion
between two colloidal particles. Note that the leading term in the hydrodynamic
interaction decays as ~ r~3, rather than r~!, which is due to the unconserved

momentum in the system.

In this thesis, we study monolayers of particles near a wall. The first paper in
Chapter 3 presents a comprehensive investigation of the structure and dynamics of

colloidal suspensions that are adjacent to a rigid surface.

2.3 Cytoskeleton networks

The cytoskeleton is a remarkable system of filaments located in every eukaryotic cell.
This system pulls the chromosomes apart at cell division, and then splits the cell
into two. It drives and guides the intracellular traffic of organelles, ferrying materials
from one part of the cell to another. It supports the fragile plasma membrane and
provides the mechanical linkages that let the cell bear stresses and strains without
being ripped apart as the environment shifts and changes. It enables some cells,

such as sperm, to swim, and others, such as fibroblasts and white blood cells, to
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crawl across surfaces. It provides the machinery in the muscle cell for contraction
and in the neuron to extend an axon and dendrite. It guides the growth of the
plant cell wall and controls the amazing diversity of eukaryotic cell shapes. Unlike
conventional, polymeric materials, the cytoskeleton can actively generate forces by
means of active filament (de)polymerization and the action of motor proteins. As a
result, cells can autonomously adapt their shape and mechanical behavior [54]. The
varied functions of the cytoskeleton center on the behavior of three families of protein
molecules, which assemble to form three main types of filaments. Each type of
filament has distinct mechanical properties and dynamics, but certain fundamental

principles are common to them all.

2.3.1 Cytoskeleton filaments

The three types of cytoskeletal filaments are intermediate filaments(IF'), micro-
tubules (MT), and actin filaments. IF are rope-like fibers with diameter of around
10 nm, made of intermediate filament proteins which constitute a large and hetero-
geneous family. IF provide mechanical strength and resistance to shear stress. MT
are long, hollow cylinders made of the protein tubulin. With an outer diameter of 25
nm, they are much more rigid than actin filaments. MT determine the positions of
membrane-enclosed organelles and direct intracellular transport. They are long and
straight and typically have one end attached to a single microtubule-organizing cen-
ter called centrosome, as shown in table 2.1. Actin filaments determine the shape
of the cell’s surface and are necessary for whole-cell locomotion. Although actin
filaments are dispersed throughout the cell, they are most highly concentrated in
the cortex, just beneath the plasma membrane. Also, actin filaments are the major
component of muscle cells together with their motor protein, myosin. Table 2.1

compares the three types of filaments.
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Filament type Persistence length Filament shape Typical location in cell

Actin Filaments ~ 10 pm o

wu gz

Microtubules ~ 1000 pm

Intermediate Filaments ~ 1 pm B

Table 2.1: Comparison between the cytoskeletal filaments (pictures adapted from [55])

2.3.2 Actin networks

Actin is the most abundant protein found in eukaryotic cells. It comprises 20%
of the total protein mass in muscle cells and up to 5% in nonmuscle cells [56].
Globular actin (G-actin) polymerizes to form filamentous actin (F-actin) with a
diameter, d, of ~ 7 nm and contour lengths, L, up 50 um. An actin filament
can be regarded as two parallel protofilaments that twist around each other into a
right-handed helix. Actin filament growth and organization are regulated by many
factors, including ionic concentrations and a variety of capping, binding, branching,

and severing proteins.

The extensional modulus, or Young’s Modulus, F, of F-actin is of order 10° Pa,
similar to that of plexiglass [57]. However, because of the small filament diameter,
the energy needed to bend F-actin is comparable to thermal energy, kgT'. This ratio
defines a length, the persistence length [, = ro/kpT, where kg ~ Ed* is the bending
stiffness. This length is the distance over which vectors tangent to the filament

contour become uncorrelated by the effect of thermally driven bending fluctuations.
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For F-actin, [, ~ 8 — 17 pum [58,59] and thus, it is semiflexible at micron length
scales with a persistence length intermediate to that of DNA, [, ~ 0.05 um [60],
and microtubules, [, ~ 1000 pum [58]. F-actin appears to be the primary mechanical
component of the cytoskeleton, as it provides mechanical support to the cells. In
addition, the actin network is connected to trans-membrane adhesion proteins, thus
facilitating the transduction of intracellular and extracellular mechanical signals,
which allow cells to detect and respond to both chemical and mechanical signals

from their extra-cellular environment [61].

In this thesis we study the properties of in-vitro reconstituted actin networks
using microrheology methodology. The structural, dynamical and mechanical prop-
erties of in-vitro actin networks are highly interesting from two point of views. One
is as a model system to understand basic physical mechanisms in polymeric net-
works. The second is as a simplified, controlled version of the cytoskeleton network,

used to understand basic concepts and mechanisms in cellular mechanics.

2.3.3 Actin as a model system for semi-flexible polymers

The motivation for investigating the viscoelastic properties of F-actin networks, from
a physicist’s point of view, stems from the fact that they provide versatile model
systems to study fundamental properties of polymeric fluids and gels. One major
difference to synthetic polymers is the enormous contour and persistence lengths
of these filaments. Thus actin filaments are a very good realization of semiflexible
polymers whose material and statistical properties are very different from Gaussian

chains.

The semi-flexible nature of individual actin filaments affects the mechanical
properties and structure of F-actin networks profoundly. Due to their small aspect
ratio, d/l,, filaments become sterically entangled at very small volume fractions,
¢ ~ (d/l,)* ~ 107%. These networks are characterized by an average mesh size,
& = 0.3/y/ca, where c4 is the actin concentration in mg/mL and & is measured in

microns [62], which typically gets values of 0.1 —2um. The mesh size, also known as
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the static correlation length of the network, depends only on monomer concentration
and does not depend on the filament length [ (as long as a network is formed, i.e.,
[ > &). The dynamic correlation length, &;, is the characteristic length over which
dynamic correlations in the medium decay, and according to the prevailing view
(by de Gennes) is equivalent to the static mesh size of the network [63,64]. In
this thesis we investigate the effect of filament length on the relation between the
dynamic correlation length and the mesh size. The results of this study is described
in the third article of Chapter 3, which reveals that, in contrary to the prevailing
assumption, the relation between these correlation lengths is more complicated and

may depend also on the filament length.

Similar to flexible polymer solutions, the mechanical properties of entangled
semi-flexible polymer solutions are entropic in origin, due to the reduced number of
filament conformations as a result of topological constraints. However, the mechan-
ical properties of these solutions are qualitatively different from entangled solutions
of flexible polymers. For instance, thermally induced bending fluctuations of single
filaments, that lead to a high frequency mechanical response, are proportional to
w34 [65] (in contrast to flexible polymers, were high frequency behavior is character-
ized by power-laws in the range of w'/? to w?? [66]). At lower frequencies, the steric
constraints of the surrounding filaments prohibit large amplitude bending fluctua-
tions and effectively constrain the filament dynamics to a tube. The elastic plateau
modulus is determined by the volume of these allowed bending fluctuations [67].
Filaments can relax only by translational diffusion in the tube, or reptation, which
can be on the order of hours in in vitro F-actin samples. Since the single filament
reptation time determines the time scale over which the polymer solution flows, the

storage modulus G’ of entangled F-actin extends to very low frequencies, ~ 0.001 Hz.

An example for the viscoelastic moduli measured for F-actin is shown in
Fig. 2.3, with two characteristic regimes [68]: viscous dominance at high frequen-
cies, with moduli evolving with w?*; and elastic dominance at low frequency, with

a plateau in the storage modulus.
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Figure 2.3: Elastic and loss moduli as measured by diffusing wave spectroscopy of a 24 uM
(1 mg/mL) F-actin network. At low frequencies, F-actin networks are weak and solid-like.
At high frequencies, F-actin networks are liquid-like; the loss modulus dominates the elastic
modulus. The filled symbols represent elastic and loss moduli measured by mechanical

rheometry. Figure adapted from Ref. [68].

Theoretical description by the two-fluid model

One theoretical model that describes the viscoelastic properties of actin networks is
the two-fluid model. In this model the F-actin solution is modeled as a viscoelastic
medium consisting of a viscoelastic network, characterized by a displacement vari-
able, that is viscously coupled via a friction coefficient to an incompressible, Newto-
nian fluid, characterized by a velocity field. The main advantage of this model is that
it is sufficiently simple to be treated analytically while delivering the key features
of a complex fluid — emergent correlation length ¢ and bulk viscoelastic modulus
G§(w). Its main disadvantage is that it is a continuous, linear, hydrodynamic model,
neglecting effects of thermal fluctuations, small-scale heterogeneities, and nonlinear
advection. This model was used to validate the accuracy of the GSER in polymer
networks, in particular, and complex fluid in general [9,23]. In this thesis, we study

the mechanical properties of actin networks. The experimental observations were
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supported by a theoretical description of the network using the two-fluid model,
which predicts the response of a generic viscoelastic network to mechanical pertur-
bations. The resulting viscoelastic response and scaling laws were used to verify the
appearance of the new intermediate regime of mechanical response, and to develop

our new extension of microrheology analysis.

2.3.4 Actin as a model system for cell mechanics

Cells are complex systems composed of many different functional components. Cel-
lular complexity is simultaneously the source of many interesting physical puzzles
as well as an obstacle to understanding them. To overcome the barrier of complex-
ity and yet to form a more complete understanding of cells, minimal model systems
mimicking specific cellular components have been devised. These pave the way for an
integrated thorough study of cells. Many biophysicists have focused on the structure
and dynamics of the actin cytoskeleton using such bottom-up approaches [17,69-72].
The minimal model principle provides tools to study the single molecule interactions
of cytoskeletal filaments and associated binding motors [73], but also tools to un-
derstand how collections of motor molecules interacting with actin filaments can
lead to meso-scale active network behavior. Studies of bulk actin networks have
been largely used as minimal model systems. Originally, such systems have been
used mostly as a basis to understand the underlying mechanical properties of actin
networks (as discussed in the previous section) [70,71,74], and more recently several
studies moved on to the out-of-equilibrium behavior of actin networks containing

active myosin motors [34, 75-79].

The mechanical properties of actin networks confer to cells the ability to swiftly
adapt their shape to perform different functions. Many researchers have focused ef-
forts on understanding what underlying factors tune actin structure and mechanics.
Such works includes a vast number of experiments on how crosslinkers of actin lead
to network strain stiffening at high strains [74,80] or how they tune structure [81].
These studies were based on assays using bulk actin networks, whose composition

and structure was modulated by the controlled addition of crosslinkers. Comple-
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mentary to this, research on active actin-myosin gels has focused on understanding
how the myosin IT motor remodels the network structure and mechanical properties
by generating internal stresses [82-86] and identifying the underlying dynamics of
these out-of-equilibrium materials [34, 76-79].

Molecular motors and myosin II motors

Biological motors are responsible for various cellular tasks, such as transport of cargo
along filamentous tracks or structural modification of the cytoskeleton for cellular
motion. Each filament family has its own family of associate molecular motors.
Kinesin and dynein belong to a motor families that walk along M7, while myosin
motors are associated with actin filaments. Myosin has been the most studied of
the motor proteins owing to its presence in striated muscle. The most commonly
studied class of myosin is myosin II, which is found in both sarcomeric and smooth
muscle, as well as in the cytoplasm. Myosin II can be split into two sections: heavy
meromyosin (HMM), which has the motor domains and can hydrolyse ATP, and light
meromyosin (LMM), which has a coil-coil structure and tends to form filamentous
aggregates (known as mini-filaments). The thick filament in skeletal muscle is formed
from huge filamentous aggregates of hundreds of myosin II, while myosin II in the
cytoplasm forms mini-filaments with a small number of myosins. Myosins are in
general non-processive, i.e. they detach after only a few ATPase cycles (or steps).
The size of the aggregate, and hence its processivity can be tuned by control over
the monovalent K* concentration [83], which enable detail investigation of the effect

of increasing activity on the actin network’s structure, dynamics and mechanics.

In this thesis we study in-vitro active actin-myosin networks, where we were
interested in characterizing the effect of increasing activity on the networks proper-
ties. By precise control of network parameters we were able to tune the activity of
networks, in the form of gradual increase in size and concentration of myosin mini-

filaments, and to characterize their properties. This study is described in Chapter 4.

53



o4



Chapter 3

Articles

This chapter describes our results for two out of the three experimental systems that
we have investigated. In the following I will shortly review our results and present
the published articles.

3.1 Structure and dynamics of sedimented col-

loidal suspensions

The structure and dynamics of quasi-2D suspensions of silica colloids above a single
wall were investigated by a combination of experiment, simulation and theory. We
performed detailed investigation of the structure and dynamics of the suspension
as its density increases, by looking at the particles’” motion in 3D. We discovered
that as the density is increased a rather sharp formation of a second layer occurs.
Surprisingly, this transition between one-layer to two-layer structure occurs at a
relatively low area fraction ~ 0.3, much lower than the packing fraction of such a
2D suspension. By looking at the dynamics of the suspension, we revealed that
although the diffusion properties in each layer decreases monotonously (as expected
for a dense suspension), the overall diffusion coefficient of the suspension follows

a different behavior of flattening at high densities. The reason is that the second

55



layer, which has higher diffusivity, becomes more dominant and occupied. Thus,
the prior knowledge of the two-layer structure is important to correctly interpret
the overall diffusivity and, consequently, the viscosity of the suspension. In this
study I conducted all the experiments and their analysis, and collaborated with
other scientists from Poland and the United States who performed the simulations
and theory respectively. More information on this study can be found in the first
article of Sec. 3.3.

3.2 Viscoelastic response of F-actin networks at

intermediate distances

We have performed detailed investigations on the microrheology of entangled F-actin
networks. A careful, high precision analysis of the 2P microrheology experiments led
to the discovery of a new regime of mechanical response at intermediate distances
in actin networks. This is despite the fact that the microrheology of actin networks
had been extensively investigated earlier. The intermediate response, arising from
the effect of mass displacement rather than momentum diffusion, is enhanced by the
much softer local microenvironment of the tracers compared to the bulk properties
of the actin network. Consequently, the cross-over to the bulk behavior is pushed to
surprisingly large distances, much larger than the mesh size, £, of the actin network.
Since the intermediate response is related to mass conservation in the fluid, it is in-
herent to any two-component complex fluid, and is related to the correlation length
of the material. Based on the theoretical description of this regime, we developed
a new analysis scheme for microrheology experiments. Using a combination of 1P
and 2P microrheology, we extracted from the intermediate and bulk responses the
dynamic correlation lengths of actin networks as a function of several parameters,
such as concentration and filament length. This work has established a new char-
acterization tool for complex fluids. More information on the discovery of the new

intermediate regime and its verification can be found in the second article of Sec. 3.3.

One application of our new analysis scheme is to study the relations between
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the dynamic correlation length and the structure of the actin network (mesh size, &).
This was done by introducing another new length scale, the average filament length,
without altering the network’s mesh size (static correlation length). Contrary to
the prevailing view, according to de Gennes, that the dynamic correlation length is
equivalent to the structural mesh size of the network, we found that the dynamic
correlation length starts increasing as soon as the filament length enters the newly
discovered intermediate regime (i.e., when it is still much larger than the mesh size).

More information on this application can be found in the third article of Sec. 3.3.

3.3 Publications

In what follows the articles appear as published in the scientific press and according

to the order at which they have been discussed above.

1. A. Sonn-Segev, J. Blawzdziewicz, E. Wajnryb, M. L. Ekiel-Jezewska, H. Dia-
mant, Y. Roichman, Structure and dynamics of a layer of sedimented particles,
J. Chem. Phys., 143, 074704 (2015).

2. A. Sonn-Segev, A. Bernheim-Groswasser, H. Diamant, Y. Roichman, Vis-
coelastic response of a complex fluid at intermediate distances, Phys. Rev.
Lett., 112, 088301 (2014).

3. A. Sonn-Segev, A. Bernheim-Groswasser, Y. Roichman, Extracting the dy-
namic correlation length of actin networks from microrheology experiments,

Soft Matter, 10, 8324 (2014).
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We investigate experimentally and theoretically thin layers of colloid particles held adjacent to a solid
substrate by gravity. Epifluorescence, confocal, and holographic microscopy, combined with Monte
Carlo and hydrodynamic simulations, are applied to infer the height distribution function of particles
above the surface, and their diffusion coefficient parallel to it. As the particle area fraction is increased,
the height distribution becomes bimodal, indicating the formation of a distinct second layer. In our
theory, we treat the suspension as a series of weakly coupled quasi-two-dimensional layers in equi-
librium with respect to particle exchange. We experimentally, numerically, and theoretically study
the changing occupancies of the layers as the area fraction is increased. The decrease of the particle
diffusion coefficient with concentration is found to be weakened by the layering. We demonstrate that
particle polydispersity strongly affects the properties of the sedimented layer, because of particle size
segregation due to gravity. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928644]

. INTRODUCTION

Being relevant to a wide range of practical scenarios, the
behavior of colloid suspensions near solid surfaces has been
thoroughly studied over the years. This research effort consists
of several bodies of work, for each of which we can give only
a few representative references. The first category of papers
concerns the disruption of the structural isotropy of a three-
dimensional (3D) fluid suspension by the surface, e.g., the
formation of a layered structure decaying away from the sur-
face under equilibrium!-? and nonequilibrium? conditions. An-
other category addresses the effect of the anisotropic geometry
on particle dynamics near a single planar surface—for isolated
particles,*!! particle pairs,*!>~!* and a 3D suspension adjacent
to a surface.!>™"”

Regarding quasi-two-dimensional (quasi-2D) layers of
particles, most studies have considered the confinement of
suspensions between two rigid surfaces. This research ad-
dressed structural properties of such confined suspensions,?*-24
and the dynamics of single particles,>~? particle pairs,?5°
and concentrated quasi-2D suspensions.’*? Another type of
quasi-2D suspensions has also been studied, where a particle
layer is confined to a fluid interface.?33¢

In cases where the surface attracts the particles and the
suspension is sufficiently dilute, the system can contain a single
layer of surface-associated particles in contact with a practi-
cally particle-free solvent.> A single layer can also form as a
result of gravitational settling of particles toward a horizontal
wall. This scenario is studied in the present work.

Sedimented colloidal particles undergo random Brown-
ian displacements, which results in diffusive broadening of
the fluctuating particle layer. The width of the particle height
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distribution above the bottom surface is characterized by the
sedimentation length /, i.e., the height at which the gravita-
tional energy of a particle equals its thermal energy. The dy-
namics and height distribution of individual sedimented parti-
cles above the bottom surface were studied in Refs. 7-9 using
total internal reflection microscopy. Particle monolayers at
higher densities were investigated experimentally for a system
in which the sedimentation length is much smaller than the
particle diameter.?” It was shown that at high area fractions
the suspension can assemble into quasi-2D colloidal crystals,
but formation of a nonuniform vertical microstructure was not
observed, because of the small sedimentation length.

Here, we are interested in the structure and dynamics of
a surface-associated layer for which the sedimentation length
is comparable to the particle diameter. We focus on the ef-
fects of the suspension concentration on the statistical height
distribution of particles and their diffusion coefficient. Unlike
the quasi-2D suspensions confined between two surfaces or
adsorbed at a fluid interface (which restricts particle config-
urations and motions in two directions), in the present sys-
tem no constraints are imposed on the distance between the
particles and the single wall. Thus, at sufficiently high area
fractions, particles form a nontrivial stratified microstructure.
This microstructure and its effect on particle dynamics are
analyzed in our paper.

The article is organized as follows. Section II describes
the experimental methods used to prepare the system, image
the particles, and analyze the extracted data. In Sec. III, we
describe the theoretical background and numerical methods
used to perform the simulations. In Sec. IV, we present the
results concerning the equilibrium structure of the quasi-2D
suspension observed in planes parallel to the bottom surface
(the quasi-2D radial distribution) and in the direction perpen-
dicular to it (the height distribution). Section V addresses the

©2015 AIP Publishing LLC
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diffusion of particles parallel to the surface, as affected by the
surface proximity. We discuss our findings in Sec. VI.

Il. EXPERIMENTAL METHODS
A. Quasi-2D system of sedimented Brownian spheres

Quasi-2D colloidal layers are created by placing a
suspension of colloidal silica spheres in a glass sample cell
~150 um high. The particles are then allowed to sediment
and equilibrate for 30 min at a temperature of approximately
24°C before measurements start (Fig. 1). We use green
fluorescent monodisperse, negatively charged silica particles
(Kisker Biotech, PSI-G1.5 Lot #GK0090642T) with diameter
d = 1.50 + 0.15 um and mass density gy = 2.0 g/cm?. Mono-
layers of area fraction 0 < ¢ < 0.62 are prepared by diluting
the original suspension with double distilled water (DDW,
18 MQ), without and with the addition of salt at a concentra-
tion [KCl1] = 0.01M. The sample walls are cleaned and slightly
charged by plasma etching to avoid particle attachment to the
bottom wall of the cell. We observe that the aqueous medium
above the colloidal monolayer is free of colloids. Since the
particles are floating right above the bottom wall, we can treat
the upper wall as a distant boundary.

B. Imaging techniques

Particle position and motion in the x—y plane, perpendic-
ular to the optical axis, are observed using epifluorescence
microscopy (Olympus IX71). Images are captured at a
rate of 70 fps by a CMOS camera (Gazelle, Point Grey
Research). We use in-line holographic microscopy to image
the dynamics of particles in three dimensions in dilute

(@)

(b)

. Y@
\

FIG. 1. (a) Images of fluorescent 1.5 ym-diameter silica spheres suspended
in water, taken after the particles sedimented to create a quasi-2D suspension
at area fraction ¢ =0.49. Large (small) image corresponds to a typical image
of the first (second) layer. Scale bar =5 pum. (b) Schematic view of the system
and its parameters.

J. Chem. Phys. 143, 074704 (2015)

samples.*® This imaging technique uses a collimated coherent
light source (DPSS, Coherent, A = 532 nm) to illuminate a
sample mounted on a microscope. The light scattered from
the sample interferes with the light passing through it, to form
a hologram in the image plane. We reconstruct the light field
passing through the sample by Rayleigh-Sommerfeld back-
propagation and extract from it the particle location in three
dimensions.***" For holographic imaging measurements we
use non-fluorescent silica particles with the same diameter
(d = 1.50 £ 0.08 um, Polysciences, Inc.). Additional details of
the setup and measurement methods can be found elsewhere.*

We use confocal imaging to monitor particle positions in
a dense layer in three dimensions. Our spinning disc confocal
imaging system (Andor, Revolution XD) includes a Yokogawa
(CSU-X1) spinning disc, and an Andor (iXon 897) EM-CCD
camera. An objective lens (Olympus, x60, NA = 1.1, water
immersion) mounted on a piezoelectric scanner (Physik Instru-
mente, Pifoc P-721.LLQ) is used to scan the sample in the z
axis, with a step size of 100 nm.

C. Height calibration

A suspended tracer particle is subject to electrostatic and
gravitational forces in addition to thermal fluctuations, affect-
ing its height distribution.® The particle potential energy can
be described as

U =mgz + Be™ &4/, ()

where z is the vertical position of the tracer, g is the gravita-
tional acceleration,

m = %AQO(P 2)

is the buoyant mass of the tracer (Agp is the mass density
difference between silica and water), A is the Debye screening
length, and the amplitude B depends on A and the surface
charges of both particle and glass surfaces. The corresponding
probability distribution of the particle height z is

plz) = 27 le VBT, 3)

where kgT is the thermal energy and Z~! is the normalization
constant.

The height distribution of a single particle above the sam-
ple’s bottom was obtained from very dilute suspensions, using
in-line holographic imaging**~ (see Fig. 2). Our holographic
measurements provide values of relative particle positions, but
not the absolute particle heights with respect to the bottom
wall. We thus set the peak position to z = 0 and focus on the
height relative to this reference plane. The exponential decay
on the right side of the probability-density peak is governed by
a decay length,

_ kgT
=g
(the sedimentation length), resulting from the competition
between gravity and thermal forces. The exponential-decay
length determined from the holographic measurements agrees
well with calculated sedimentation length (4), without any

fitting parameters, //d = 0.16 (see Fig. 2). The electrostatic
term of the probability-density, which controls the steep rise

l “)
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FIG. 2. Holographic imaging. Height probability distribution of a single
sphere (in salt-free water) shifted to the maximum value and fitted to Boltz-
mann probability distribution (3) with particle—wall potential (1).

of the probability, affects mostly the peak position rather than
its shape. Since we shifted the peak position to z = 0, the fitting
of the entire probability-density using Egs. (1) and (3) was
insensitive to the value of B. Reasonable fits were obtained
for A in the range of A ~ 40—70 nm. These low values of A are
commonly found, and are due to elevated ion concentration
in the solution. These in turn may be caused by ion leakage
from the sample glass walls and from contact with air.*! Better
estimations of B and A are given in Sec. IV A 1, using mobility
measurements.

The applicability of the holographic imaging is limited to
low-density suspensions, whereas the confocal imaging can be
also used at higher concentrations. On the other hand, confocal

1T (b)
0.8f
= 0.61
04}
0.21

0-2

FIG. 3. (a) Confocal imaging. Height probability distribution of silica par-
ticles at ¢ < 0.003 with diameters of dy=1.5 um (blue) and dp=1.0 um
(black). Inset: logarithm of the probability distributions scaled by dg in units
of 10% um™3; as expected, the two curves have approximately the same slope,
which is used to calibrate the confocal height measurements. (b) Height prob-
ability distribution of silica particles with diameter do=1.5 pum extracted
from holographic imaging (green circles, see Fig. 2) and confocal imaging
(blue line). The red dashed line corresponds to the expected barometric
exponential decay. The suspensions in both figures were with no added salt,
[KCl] = O0M.

J. Chem. Phys. 143, 074704 (2015)

height measurements suffer from spherical aberrations due to
multiple changes in refractive index in the imaging path. This
leads to a systematic error in measuring z, which can be elimi-
nated by proper calibration. We calibrate the confocal measure-
ment of the relative vertical particle positions by requiring the
exponential decay of the height distribution to agree with the
known, and verified, value of /.

In Fig. 3(a), we show the particle-height distribution p(z)
at ¢ < 0.003 for two different particle sizes (dyp = 1.0, 1.5 um).
The distributions are shifted so that the highest probability
is located at z = 0. Scaling the logarithm of the distributions
by d?) [inset of Fig. 3(a)] shows that the normalized decay
constants for the two particle sizes have approximately the
same value, from which we calibrate the confocal microscope’s
height measurements. In Fig. 3(b), the height distributions
extracted by the two methods (holographic and confocal imag-
ing) are overlaid. This figure emphasizes the higher accu-
racy of holographic imaging over confocal imaging, especially
around z = 0, where the increase in distribution should be
very steep.®*® The difference between the curves can also be
attributed to polydispersity, since the holographic imaging is
a single-particle measurement while the confocal imaging is
a multiple-particle measurement, and its corresponding curve
represents an average over ~40 particles.

lll. NUMERICAL METHODS
A. The system
1. Particles and their interactions

Silica particles are modeled as Brownian hard spheres
with or without electrostatic repulsion (depending on the salt
concentration), immersed in a fluid of viscosity 7. The bottom
wall is treated as an infinite hard planar surface. Creeping-
flow conditions and no slip boundary conditions at the particle
surfaces and at the wall are assumed.

In a salt solution with [KCI] = 0.01M, the Debye length
is only about 5 nm, and therefore electrostatic interactions
are screened out. The particles thus interact only via infinite
hard-core particle—particle, and particle-wall potentials, and
the gravity potential mgz, and no other potential forces are
involved. The strength of the gravity force is described by
sedimentation length (4).

In addition to the hard-core repulsion, in DDW with no
added salt ([KCI1] = OM) particles are assumed to also interact
via particle-wall and particle—particle Debye—Hiickel poten-
tials,

V(z) = Be =4/ )
and
V'(r) = B'e "D/, (6)

where A is the Debye screening length, B and B’ are the
potential amplitudes, and r is the distance between the particle
centers. The consideration of Debye—Hiickel potentials in the
salt-free case is based on our experimental measurement A
~ 60 nm. A finite Debye screening length in DDW stems from
the presence of residual ions in the solution.*?
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2. Suspension polydispersity

To determine the effects of the suspension polydispersity
on the near-wall microstructure and dynamics, we have per-
formed numerical simulations for a hard-sphere (HS) system
with a Gaussian distribution of particle diameters,

d — dp)?
aﬁljﬁi} ™

where d and dj are the actual and average particle diameters,
and o is the standard deviation. All the particles have the
same mass density og; hence, particles of different sizes have
different buoyant masses and different sedimentation lengths
(4). The dimensionless sedimentation length based on the
average particle diameter d is defined as

p(d) =

(o)l

l kgT
e ®)
do mogdp
where
mo = Zdy Ago. )

The area fraction ¢ based on the average particle diameter d,
is

¢ = ymnd?, (10)

where n is the number of particles per unit area. Since the
particles are free to move in the z direction, the area fraction ¢
can exceed 1.

3. System parameters

The simulations were carried out for the following system
parameters: For dimensionless sedimentation length (8), we
use the value

lo

— =0.158, 11

& (11)
calculated from the particle size and density. Based on the
comparison between the calculated and measured values of the
equilibrium average of the lateral self-diffusion coefficient for
isolated particles in DDW, we estimate that the Debye length
and the amplitude of particle—wall electrostatic repulsion are

B pa—
ksT
These values are used for salt-free suspensions at all suspen-

sion concentrations. Assuming that the charge densities of the
particle and wall surfaces are similar, we take

Md =0.03, 10. (12)

B’ = B/2 (13)

for the interparticle-potential amplitude, as follows from the
Derjaguin approximation.*3

The simulations were performed in the range of area frac-
tions ¢ < 1.2. For polydisperse HS systems, the calculations
were carried out for o /dy = 0.10,0.15, 0.20, and 0.25 (we esti-
mate that 0.10 < o/dy < 0.15 for the silica particles used in
the experiments). For particles interacting via Debye—Hiickel
potentials (5) and (6), only monodisperse suspensions were
considered.
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B. Evaluation of the equilibrium distribution
1. Low density limit

For monodisperse suspensions at low particle concen-
trations, the equilibrium particle distribution p(z) is given
by normalized Boltzmann factor (3). To determine the par-
ticle distribution for a dilute polydisperse suspension, the
particle-size-dependent Boltzmann factor for individual parti-
cles, p1(z; d), is convoluted with particle-size distribution (7),

z
pw:/dmwm&uy (14)
0
For a HS system,
pi(z;d) = ITe~@d2g(z — q)2), (15)

according to Equations (1)—(4), where 6(x) is the Heaviside
step function, and the sedimentation length [ is particle-size
dependent due to the variation of particle mass.

2. Monte Carlo (MC) simulations

To determine the equilibrium microstructure of a sedi-
mented suspension at finite particle area fractions, equilibrium
MC simulations were performed for 2D-periodic arrays of
spherical particles in 3D space (with periodicity in the hori-
zontal directions x and y and the box size L). The particles
interact via infinite hard-core repulsion and the pair-additive
potential,

N N
UX) = Y migzi+ ) V(z) +
i=1

i=1

N N
DDV, (16)
i=1j

J#i

N | =

which includes the gravity term and particle—wall and particle—
particle screened electrostatic potentials (5) and (6). Here,
X = (ry,...,ry) is the particle configuration (with r; denoting
the position of particle i), z; is the vertical coordinate of particle
i, and r;; = |[r; — ;]| is the relative particle distance.

A purely HS system with V =V’ = 0 was modeled for
monodisperse particles and for polydisperse particles with
Gaussian size distribution (7). For systems with nonzero elec-
trostatic repulsion, only monodisperse particles were consid-
ered.

The initial configuration was prepared by placing N = 400
particles randomly in a vertical cuboid box with the square
base L and the height 10L. The size L of the 2D-periodic
cell was determined to obtain the required area fraction ¢ of
the sedimented particle layer. The suspension was allowed
to sediment by following the MC random-walk dynamics in
the configurational space X* (as described below). After the
equilibrium state was reached, suspension properties were ob-
tained by averaging the quantities of interest over at least 200
independent configurations.

Our adaptive simulation procedure was performed by
repeating the MC steps defined as follows.

(a) A randomly selected particle i is given a small random
displacement, r; — r; = r; + A, where A is chosen from a
3D Gaussian distribution with the standard deviation adap-
tively adjusted to the current mean gap between particles.
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This displacement results in the change of the configura-
tion from X to X”.

(b) According to the Metropolis detailed balance condition,
the new configuration is accepted with the probability

min (1,exp {- [U(X") - U(X)] /kpT?}), an

provided that there is no particle—particle or particle-wall
overlap.

To let the system reach an equilibrium state X, the MC
steps (a) and (b) are repeated 10°N times. The next independent
equilibrium configuration X, is obtained from the previous
configuration X,, by performing 10*N MC steps. The particle
height distribution p(z) and other equilibrium quantities are
obtained by averaging over 200 independent configurations X;.

C. Hydrodynamics and self-diffusion
1. Low density limit

In the absence of a wall, the self-diffusion coefficient
of an isolated solid sphere with diameter dj is given by the
Stokes—Einstein expression

kT
"~ 3andy’

The self-diffusion coefficient D(z) of a sphere with diameter d
at a distance z from the wall differs by a factor

0 (18)

D(Z) do

Dy E#“(Z/d)’ (19)

where the normalized mobility coefficient 1 depends on the
dimensionless particle position z/d and no other parameters.
Relation (19) refers to the lateral component of the self-
diffusion coeflicient (parallel to the wall), which was measured
in our experiments. However, an analogous expression also
holds for the normal component.

For monodisperse particles in the dilute-suspension limit,
the effective self-diffusion coefficient D averaged across the
suspension layer is obtained by integrating (19) with Boltz-
mann distribution (3),

Dy °°
o= | dzp@mra) (20)
0 dj2
For a polydisperse suspension, an additional average over
particle-size distribution (7) is needed,

2= [ war@ [ oo, en
0 0 d/2

The mobility coefficient y(z/d) was evaluated with high
accuracy using the HypromurripoLE algorithm for a particle
near a single wall. The integrals in Egs. (20) and (21) were
performed numerically using the Gauss method, with 1 (z/d)
calculated by a series expansion.

2. Computations for larger densities

The effective self-diffusion coeflicient for suspensions at
higher concentrations was evaluated using a periodic version®
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of the Cartesian-representation algorithm for a system of parti-
cles in a parallel-wall channel.>**® In our approach, periodic
boundary conditions in the lateral directions are incorporated
by splitting the flow reflected by the particles into a short-
range near-field contribution and a long-range asymptotic
Hele—Shaw component. The near-field contribution is summed
explicitly over neighboring periodic cells, and the Hele—Shaw
component is evaluated using Ewald summation method for a
2D harmonic potential. #>+7

The one-wall results were derived from the two-wall
calculations using an asymptotic procedure based on the obser-
vation that in the particle-free part of the channel the velocity
field tends to a combination of a plug flow and a shear flow. All
other flow components decay exponentially with the distance
from the particle layer. The one-wall results are obtained by
eliminating the shear flow and retaining only the plug flow
generated by hydrodynamic forces induced on the particles.*’
The calculations were performed for the distance to the upper
virtual wall H = 10d,, which is sufficient to obtain highly
accurate one-wall results.

The self-diffusion coefficient is determined by averaging
the trace of the lateral translational-translational N-particle
mobility, evaluated using HypromuLTIPOLE codes based on the
above algorithm, with the multipole truncation order L = 2.%°
By comparing results for different values of L, we have verified
that truncation at L = 2 yields accuracy better than 0.5% for
the quantities considered in our study. The averaging was per-
formed over equilibrium configurations of N = 400 particles
in a 2D-periodically replicated simulation cell. Independent
equilibrium configurations were constructed using the MC
technique described in Sec. III B 2.

IV. STRUCTURE OF THE QUASI-2D SUSPENSIONS
A. Experimental results

A typical image of our quasi-2D colloidal suspension is
shown in Fig. 1. For each area fraction ¢ and salt concentration,
the suspension can be characterized by the structure in the
x—y plane (parallel to the cell floor) and the density profile in
the z direction (perpendicular to the floor). In this section, we
discuss results of our measurements of the microstructure of a
sedimented particle layer.

1. Mean particle height at low area fractions

As mentioned in Sec. II C, our imaging techniques do
not yield absolute particle heights. To estimate the mean par-
ticle distance z from the bottom wall (the mean height) in a
dilute suspension layer, we observe particle dynamics in the
horizontal directions, and compare measurement results with
theoretical calculations of the effect of the wall on the lateral
particle diffusion. Using fluorescence imaging, we determine
the projection of particle trajectories onto the x—y plane, r)(z),
and extract the effective self-diffusion coefficient,

D, = (Arj(1))/(47), (22)

where 7 is the time interval. The position-dependent diffu-
sivity D(z) in the x—y plane of a single particle near a planar
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wall is given by the following expansion in the particle—wall

distance:*’

D() 32 z 64\ z

45 (a\* 1 (ay 2
4096(z) 512(z)’ 9
where z = 0 is the wall position. Expansion (23) is accurate
within 5% to 1% as z increases from 0.51d up to d/2 + 2/, in
the range where sedimented particles spend most of the time in
a low-density suspension under equilibrium conditions. Here,
[ = 0.16d is sedimentation length (4).

From expression (23) and D extracted according to (22),
we can calculate the suspension’s mean distance from the wall
(where z in (23) is replaced by a mean value (z)). This calcu-
lation holds in the limit ¢ — 0, where there are no particle-
particle interactions. We measure D from the particle trajec-
tories, r)|(t), in extremely low area fraction solution, ¢ < 0.003
(in salt-free water), and obtain a mean distance from the wall
(z) = 1.1 £ 0.1 um, corresponding to a mean gap € = z — d/2
of 0.3-0.4 um between the particle surface and the wall. We
also extract (z) for different salt concentrations by extrapo-
lating D (measured at various area fractions) to ¢ = 0 (see
Sec. V A), obtaining (z) = 0.95 + 0.05 um for [KCI] = 0.01M
and (z) = 1.11 £ 0.05 um for [KCI] = OM. The latter matches
the average height extracted from the diffusion of tracers in the
extremely low density suspension.

For A = 5 nm (added salt), the mean height calculated from
Boltzmann distribution (3) is dominated by the exponential
decay due to gravity and is practically independent of B in
particle-wall potential (1). For B = 0, using the particle mass
as determined from Eq. (2) with no fitting parameters, we
get (z) =0.99 pm, in agreement with the diffusivity-based
measurements of (z). This result confirms that in the added-
salt case we can neglect the electrostatic repulsion from the
wall. For the salt-free case, taking A = 50 nm, we obtain (z)
=1.11 um for B in the range 5-15 kgT. These values are
consistent with those obtained by fitting the measured height
distribution to theoretical expression (1) (see Sec. II C).

Since Eq. (23) does not include lubrication correction for
small particle—wall gaps ¢, it overpredicts D(z) for z < 0.51d;
however, the accuracy of the approximation is sufficient for the
purpose of the present estimates. In our calculations discussed
in Secs. III and V B, highly accurate HyproMuLTIPOLE results
were used instead of far-field approximation (23).

D) _,_ 94 1(d)3

2. Radial distribution in the horizontal plane

To verify that no crystalline or hexatic structures are
formed at higher values of the area fraction, we evaluate from
the experiment the radial distribution function g(r) and the
full 2D pair distribution g(r, ) in the x—y plane, for both the
salt-free and salt-added suspensions. No dependence on 6 was
found. The radial distribution g(r) for several values of the area
fraction ¢ is shown in Fig. 4(a) for the salt-free system and in
Fig. 4(b) for the salt-added system. We observe a fast decay of
g(r) in all our experiments and no splitting of the second peak,
confirming that the colloidal suspension is in the liquid phase.
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FIG. 4. Radial distribution function g (r) in the x—y plane for experiments in
(a) salt-free and (b) salt-added ([KCI1] =0.01M) water. The distribution g (r)
was calculated separately in the first and second layers (see Sec. IV A 4 for
the layer definition) and combined with appropriate weights.

For monodisperse hard spheres, the first peak of g(r)
should correspond to the diameter of the sphere. Our measure-
ments show that the first peak is at » = 1.68 ym for suspensions
without salt and at r = 1.60 um for suspensions with [KCI]
= 0.01M. The difference between these two numbers implies
that the effective shell around the particles in the salt-free
samples is around 40-50 nm, which provides an estimation
for the screening length in DDW without the addition of salt.
This estimate of A is consistent with the other two mentioned
above.

3. Vertical density profile

The height distributions p(z) of the silica particles at
different area fractions of the sedimented particle layer were
acquired using confocal imaging and conventional image anal-
ysis.”® These distributions for salt-added suspensions with
[KCI] = 0.01M are plotted in Fig. 5(a) for several values of the
area-fraction ¢. Since we cannot precisely measure the position
of the wall, the distributions are shifted so that their first peak
(close to the wall) is located at z = 0. These distributions
indicate the formation of a second layer of particles for area
fractions ¢ > 0.26. The observed center of the second layer is
located Az = 0.75 um above the center of the first layer. The
layer separation is thus significantly smaller than the expected
separation Az ~ d = 1.5 um (which is similar to the peak
separation for the radial distribution). See further discussion
in Sec. VI and the Appendix.

To highlight the onset of the formation of the second layer,
we look at the subtraction of the height probability distribution
at the lowest area fraction from the distribution at all area
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FIG. 5. (a) Height probability distribution of the silica colloids (in [KCl]
=0.01M) for increasing area fraction reveals the formation of a second layer.
Colors correspond to different area fractions (as labeled). (b) For the most
dense suspensions [¢ =0.54 and ¢ =0.48 (inset)], the height distribution
(black solid line) around the two peaks can be fitted to two Gaussian func-
tions (blue lines). The intersection of the two Gaussians defines an effective
boundary (red broken line) between the first and second layers; occupation
percentages are indicated.

fractions, Ap = p — pg-0.054 [Fig. 6(a)]. Two phenomena are
expected when a second layer is formed: (i) negative values
at z = 0 um, corresponding to a reduction in the fraction of
particles populating the first layer, (ii) positive and increasing
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FIG. 6. (a) The difference between the height probability distribution at
increasing area fractions and the distribution at the lowest area fraction
¢ =0.054, Ap = p—pg=-0.054 (in [KCl] =0.01M). Colors are as in Fig. 5(a).
Gray (black) dashed line corresponds to z =0.75 um (z =0 um). (b) Values
of Ap at z=0 um (red squares) and z =0.75 um (blue circles) for all area
fractions. Both plots exhibit a change in trend at area fraction ¢ ~ 0.3.
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values at z = 0.75 um, corresponding to the formation and
increasing population of the second layer. The values of Ap at
z =0and 0.75 um are plotted in Fig. 6(b). The two expected
phenomena are observed at approximately ¢ ~ 0.3, indicating
the area fraction above which a second layer becomes occu-
pied. At area fractions smaller than 0.3, we still obtain negative
values of Ap at z = 0 um, and positive values at z = 0.75 um;
however, these values are relatively low and can correspond to
the broadening of the exponential distribution due to increase

in ¢.

4. Particle-layer occupation fractions

For the area fractions at which a clear second peak in the
particle distribution p is seen in Fig. 5(a) (i.e., for ¢ = 0.48
and 0.54), we fit the area around each peak to a Gaussian
function and define the point of intersection between the two
Gaussians as the effective boundary between the two layers.
Figure 5(b) shows the two distributions with the Gaussian fits
and our definition of that boundary, which turns out to be at a
distance of 0.39 + 0.04 um above the peak of the first layer in
both densities.

Using this boundary, we evaluated the occupation frac-
tions f; = ¢;/¢ of the bottom (i = 1) and top layer (i = 2),
where ¢; is the area fraction of particles in layer i. The results
are shown in Fig. 7(a) for a suspension in [KCI] = 0.01M
solution as a function of the total area fraction ¢. As expected,
the fraction of particles populating the second layer grows as
the total area fraction of the suspension is increased.

0.8f
« 0.6
0.4F
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0.41
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FIG. 7. Occupation fractions f; and area fractions ¢; of suspension layers as
a function of the total area fraction ¢; circles (squares) correspond to the first
(second) layer. (a) Occupation fractions for experiments in [KCl]=0.01M
extracted from the confocal height distribution curves (yellow) and from the
2D images (green), showing good agreement between the two methods. (b)
The same data replotted for the area fractions ¢1 and ¢, of the first and second
layers.
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An additional independent measurement of the layer occu-
pation fractions is done using epifluorescence microscopy,
which enables us to image the different layers separately [see
Fig. 1(a)]. The occupation fraction of each layer is determined
by counting the number of particles observed therein. The
occupation fractions measured using the epifluorescence imag-
ing technique are plotted in Fig. 7(a) along with the results
obtained from the confocal microscopy. The two methods yield
similar results.

Alternatively, we can represent the layer-occupation re-
sults in terms of the area fractions ¢; and ¢, of the first and
second layers [see Fig. 7(b)]. Both ¢ and ¢, increase as ¢ is
increased.

B. Numerical simulations

Here, we present results of MC simulations of the equi-
librium microstructure of a HS suspension in the near wall
region. The HS potential corresponds to the system with [KCI]
= 0.01M, for which the electrostatic repulsion is negligible.
Since the suspension used in the experiments is polydisperse,
in what follows we consider both monodisperse and polydis-
perse systems.

1. Near-wall particle distribution

Figure 8 shows a snapshot of a typical particle config-
uration for a monodisperse suspension at an area fraction
¢ =0.49. The top and the side views are depicted. Parti-
cles in different layers are represented by different colors
to enable visual assessment of the in-layer particle distribu-
tion and correlations between layers. These distributions are

FIG. 8. Top and side views of an equilibrium particle configuration for a
monodisperse HS suspension with an area fraction ¢ = 0.49. Particles in the
first layer, z/do < 0.9 (black), second layer, 0.9 < z/dy < 1.8 (green), and
third layer, z/do > 1.8 (red).

J. Chem. Phys. 143, 074704 (2015)
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FIG. 9. Particle-wall distribution function for (a) monodisperse suspension;
(b) polydisperse suspension with standard deviation of particle diameter
o /dp=0.15. Simulation results for area fraction ¢ =0 (solid line), 0.3
(dashed), 0.6 (dotted), 0.9 (dotted—dashed), 1.2 (long-dashed). The insets
show the deviation Ap = p — pg -0 from the low-density distribution.

qualitatively similar to the ones observed in the experimental
system [Fig. 1(a)].

The layering phenomenon we observe already at low area
fractions is entropically driven, and is governed by the ratio
l/d. In our system this ratio is intermediate, i.e., both sedi-
mentation and thermal noise are significant, and hence layering
does not require geometrical frustration. Figure 9 presents
MC results for the suspension density profile p(z) at several
area fractions in the range 0 < ¢ < 1.2 for a monodisperse
system [panel (a)] and a polydisperse system with o-/dy = 0.15
[panel (b)].

Similar to the experimental data discussed in Sec. IV A,
the simulation results plotted in Fig. 9 indicate that there is
a single layer of sedimented particles at low area fractions
¢, and a two-layer microstructure at higher area fractions.
Development of a third layer for ¢ > 0.9 is also noticeable
in the region z/dy 2 2. Suspension polydispersity results in
broadening of the peaks of the particle distribution.

These results indicate that the microstructure of individual
layers is similar to the microstructure of a 2D hard-disk fluid,
consistent with the experimental results shown in Figs. 1 and 4.
Particles of the second layer are typically positioned over holes
of the first layer, because such a particle placement minimizes
the excluded volume in the configurational space. Otherwise,
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z/d,

FIG. 10. Particle-wall distribution function for area fractions (a) ¢ =0.054
and (b) 0.54. Experimental results (solid circles); simulation results for
standard deviation of particle diameter o-/dp=0 (solid line), 0.1 (dashed),
0.15 (dotted), 0.20 (dashed—dotted), and 0.25 (long-dashed).

we do not observe any significant correlations between particle
layers.

A direct comparison between the experimental and simu-
lation results is presented in Fig. 10 for two values of the
area fraction ¢. At low area fractions [Fig. 10(a)], the agree-
ment between the experiments and simulations is good. (The
standard deviation of the particle-size distribution for which
the simulations match the experimental data, o/dy ~ 0.25,
is larger than the estimated standard deviation 0.1 < o/dj
< 0.15 based on the manufacturer’s specifications; the addi-
tional spread of the experimentally observed peak can be attrib-
uted to random errors of the particle height evaluation from the
confocal-microscopy images.)

A comparison of the numerical and experimental results at
a higher area fraction, as shown in Fig. 10(b) [also see Figs. 5
and 9], reveals that (i) the experimentally observed second
maximum of the density distribution develops at lower area
fractions than the corresponding maximum in the numerical
simulations; (ii) the experimental second peak is narrower,
and its position is shifted towards the wall. In contrast, the
plots of the excess distribution Ap with respect to the low-
density limit, shown in Fig. 6(a) and the insets of Fig. 9,
indicate that the onset of the formation of the second layer
occurs at approximately the same area fraction according to

J. Chem. Phys. 143, 074704 (2015)

FIG. 11. (a) Occupation fraction f; and (b) normalized average particle
diameter d; in the first particle layer (black), second layer (blue), and third
layer (green), vs the total area fraction ¢. The results for a monodisperse
system (solid lines) and polydisperse systems with standard deviation of
particle diameter o-/dop=0.1 (dashed), 0.15 (dotted) 0.20 (dashed—dotted),
and 0.25 (long-dashed). The symbols represent experimental results from
confocal imaging (circles) and 2D images (squares) for a suspension with
salt concentration [KCl] =0.01M. Note that the experimental second layer
corresponds to the sum of the second and third layers in the MC simulations.
The layer boundaries in the numerical calculations are set at z1 =0.9d, and
z2=1.8d and in the experiments are obtained from Gaussian fitting (see
Fig. 5).

the simulations and experiments. Moreover, the measured and
calculated occupation fractions of the layers are similar for
all area fractions, as depicted in Fig. 11(a). A possible source
of the observed discrepancies between the experimental and
numerical results for the particle distribution p(z) is described
in the Appendix. It also provides a plausible explanation of
the fact that the agreement between the experiments and MC
simulations for the layer occupation fractions f; is quite good
in spite of the discrepancies for p(z).

2. Polydispersity effects

The results in Fig. 11(a) show that the occupation fraction
of the first two layers is relatively insensitive to the suspension
polydispersity; in contrast, the occupation fraction of the third
layer strongly increases with the standard deviation of particle
diameter. This increase stems from the presence of smaller
(lighter) particles in polydisperse systems: smaller particles
tend to migrate into the top layer, as evident from Fig. 11(b).
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FIG. 12. Low-density limit of the near-wall particle distribution for a
monodisperse system (solid line) and polydisperse systems with standard
deviation of particle diameter o /dp=0.1 (dashed), 0.15 (dotted) 0.20
(dashed—dotted), and 0.25 (long-dashed).

For dilute suspensions, the particle-size segregation results in
variation of the slope of log p(z) with the distance from the
wall, as illustrated in Fig. 12. We estimate that this variation
causes an approximately 20% uncertainty of the calibration of
the confocal height measurements described in Sec. II C.

C. A quasi-2D model of the equilibrium
layered microstructure

Here, we present a semi-quantitative theoretical model for
evaluating the occupation fractions f; of the particle layers in
a sedimented colloidal suspension. Our theory is based on the
assumption that the suspension microstructure can be approx-
imated as a collection of weakly coupled quasi-2D layers in
thermodynamic equilibrium with respect to particle exchange.

The equilibrium condition for layers i and i + 1 is

Wi+ MQZi = iyl + MZZit1, (24)

where y; is the chemical potential of layer i, and z; is its
position. According to Eq. (24), the next layer forms when
the free-energy penalty 0 F = w;dN, associated with inserting
additional particles into a given layer i, exceeds the extra
potential energy needed to place the particles into the new
layer i + 1 above it. In our model, y; is approximated as the
chemical potential of a 2D hard-disk fluid of area fraction
¢;. All disk diameters are equal to the sphere diameter d,
which corresponds to a layer of spheres with the same vertical
position z.

In the low area-fraction limit, the chemical potential of a
hard-disk fluid is

MHi = kgT In o + C(T), (25)

where C(T') depends only on the temperature 7. According to
equilibrium condition (24) and equation of state (25), we thus
have

¢i+1 =r¢,-, i = 1,2,... (26)

with the ratio r given by the Boltzmann factor

r=e? (27)
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where [ is defined by Eq. (4) and A = z;,1 — z;. We assume that
the layer separation A is independent of i.
For finite area fractions, relation (26) is replaced with

¢i+1 = r(¢i)¢i’ l = 1,2,. ey (28)

where the layer occupation ratio » depends on the area fraction
in the adjacent layers. The factor r(¢) is determined from
equilibrium condition (24) with the help of the Gibbs—Duhem
relation
d2

du="-¢"'dp. 29)
where p is the lateral 2D pressure within the layer. Combining
(24), (28), and (29) yields

dr p'(¢) ]
— =r |22 ], 30
i ’[p’<r¢> G0
where
= @) 31
g (6¢ r oY

Differential equation (30) is solved for r = r(¢) with boundary
condition (27) at ¢ = 0. Occupation fractions f; = ¢;/¢ are
then determined by iteration, applying Eq. (28) and the relation

6= (32)
i=1
We have solved Eq. (30) and determined the occupation
fractions f; using the scaled-particle-theory equation of state
for hard disks,!

nd*p 9
4kgT (1 - )
The results of our calculations are presented in Fig. 13 for a
HS system with the same value of sedimentation length (11)
as in our MC simulations. Based on the separation between the
first and second peak of the suspension density profile shown
in Fig. 9(a), the calculations were performed for A/d = 1.
The theoretical results in Fig. 13 are compared with the
MC simulations of a monodisperse HS suspension with the
boundaries between the layers set to z; =d and 7z, = 2d,

(33)
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FIG. 13. Occupation fraction f; for the first (black), second (blue), and third
(green) layer vs the total area fraction ¢ for a monodisperse HS suspension.
Theoretical results (solid lines), MC simulations (symbols).
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consistent with the peak positions. The agreement between
our simple theory and simulations is quite good. A similar
agreement was obtained for other values of the dimensional
parameter //d (results not shown).

The layer boundaries used in Secs. IV B and V B to
compare the MC results with experiments differ from the
boundaries used in the above model by approximately 10%.
Due to the observed deviation between the measured and
simulated particle distributions (see Fig. 10), it is not possible
to define the layer boundaries in a unique, equivalent way
for the experimental and simulated systems. Therefore, the
layer boundaries z; = 0.9d and z; = 1.8d used in Secs. IV B
and V B were chosen based on the comparison between the
experimental and numerical results for the occupation fractions
and self-diffusivities in particle layers.

V. PARTICLE DYNAMICS
A. Experimental results

The short time self-diffusion coefficient in the x—y plane,
Dy, is determined for different total area fractions of the sedi-
mented particles by extracting mean square displacement (22)
from 2D epifluorescent images of the first and second particle
layer. The mean-square displacement is measured over a time
interval 7 that is small compared to the structural relaxation
time of the suspension, to ensure that the measurements yield
the short-time self-diffusion coeflicient.

The results are shown in Fig. 14 for suspensions with
salt concentration [KCI] = 0.01M and salt-free suspensions
with [KCI] = OM. The self-diffusion coefficient is expected to
decrease as the particle concentration increases; indeed, we

(a)
0.6/ ml g g
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S ‘%@
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o
DR
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FIG. 14. Short-time self-diffusion coefficient D g, normalized by the Stokes-
Einstein diffusion coefficient D, as a function of the total area fraction
¢; circles (squares) correspond to the first (second) layer, and triangles to
the effective Dy calculated by the weighted average of the self-diffusion
coefficients for the two individual layers. (a) Suspension with no added salt.
(b) Suspension with salt concentration [KC1] =0.01M.
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observe this decrease for both salt concentrations and in both
layers, for ¢ < 0.4. In the case of [KCl] = 0.01M, correspond-
ing to A = 5 nm, the particles can get much closer to the cell
floor, which in turn results in lower values of the self-diffusion
coeflicient compared to suspensions with [KCI] = OM.

Using a linear fit to the values of D/Dy for the low area
fractions, where there is no observable second layer, we can
extrapolate to ¢ = 0 and extract the self-diffusivity of a single
particle. The extrapolated results agree well with the measure-
ments at very low concentrations ¢ < 0.003, as discussed in
Sec. IV A 1.

From the known occupation fractions f; and f, for each
¢, we can weigh the contribution of each layer to the total
self-diffusivity, and construct an effective D of the whole
suspension (Fig. 14). As expected, for ¢ < 0.4 the effective
self-diffusion coefficient D; decreases as ¢ is increased in
both salt concentrations. For larger ¢ we observe a flattening
of Dy, which clearly indicates that the second layer becomes
dominant in those area fractions. This observation is supported
also by the saturation of ¢, at ¢ > 0.45 [Fig. 7(b)].

B. Numerical simulations

The results of our numerical simulations for the short-
time lateral self-diffusion coefficient D in a HS system are
presented in Fig. 15 for a monodisperse suspension and for
polydisperse suspensions with o/dy = 0.1 and 0.15. Figure 16
shows the corresponding results for a system of monodisperse
hard spheres with particle-wall and particle—particle electro-
static repulsion (5) and (6).

The results depicted in Fig. 15 indicate that for moder-
ately polydisperse suspensions (in the range corresponding to
the polydispersity of silica particles used in the experiments),
the self-diffusion coefficient is only moderately dependent on
o /dy. For larger values of the variance of particle diameters,
the normalized self-diffusion coeflicient Dy/Dy significantly

D,/ D,

0 02 0.4 0.6

FIG. 15. Normalized short-time self-diffusion coefficient D g/ Dy, as a func-
tion of the area fraction ¢ for a suspension with salt concentration [KCl]
=0.01M. The main panel shows D averaged over the whole system, and the
inset shows D for the first (bottom, red) and second (top, blue) particle layer.
Experimental results (solid circles); simulation results (open symbols) for a
monodisperse system (circles) and polydisperse systems with the standard
deviation of the particle diameter o~ = 0. 1d) (triangles) and 0.15d (squares).
Note that at low area fractions the triangles overlap with the solid circles. The
lines are a guide for the eye.
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FIG. 16. Normalized short-time self-diffusion coefficient D/ Dy, as a func-
tion of the area fraction ¢ for a suspension with no salt. Symbols are the same
as in Fig. 15. Results are shown only for monodisperse suspensions.

increases with the degree of the polydispersity, because the
mobility is dominated by small particles. This increase is illus-
trated in Fig. 17 for a suspension in the low-area-fraction limit
¢ =0.

The results of our hydrodynamic calculations for a HS
suspension and for a suspension with screened electrostatic
repulsion are compared with experimental results for suspen-
sions with [KCI] = 0.01M (Fig. 15) and [KCI1] = OM (Fig. 16).
In the case of [KCl] = 0.01M, the numerical and experimental
results agree within expected experimental inaccuracies. For
the case of [KCI] = OM, the differences between experiment
and simulation cannot be explained solely by experimental
errors. Such discrepancies can arise from a difference between
the layer heights comparing experiment to simulation (see
Fig. 10). This in turn might arise from additional unaccounted
electrostatic interactions.

Our results show that the particle-wall hydrodynamic
interactions significantly hinder particle diffusion. For
example, for a monodisperse suspension in the low density
regime, the effective self-diffusivity is decreased by approxi-
mately 50% due to the wall presence, according to the results
depicted in Fig. 17 (o0/d — 0). A numerical estimate of
the lateral self-diffusion coefficient in a particle layer in the
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FIG. 17. Normalized short-time self-diffusion coefficient Dg/Dg in the
low-area-fraction limit ¢ =0 (for the system with salt) as a function of the
suspension polydispersity.
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absence and in the presence of the wall indicates that the
wall hindrance effect is nearly as strong for the area fraction
¢ = 0.6 (the largest value considered in our study) as in the
low-density limit.

This trend differs from the behavior of semi-infinite
suspensions confined by a planar wall, as determined using the
evanescent wave dynamic light scattering technique.'®!*>2 In
the evanescent-wave scattering studies, it was observed that at
high suspension volume fractions the self-diffusion coefficient
averaged over a near-wall layer approaches the bulk value; it
was thus concluded that, as the volume fraction increases, the
wall effect is dominated by the interparticle hydrodynamic
interactions.

It should be noted, however, that the assessment of the
effect of the wall on the suspension dynamics was done
differently here and in the evanescent-wave studies.'®!%2
We compare the self-diffusivity values for the same particle
configuration in the presence and absence of the wall,
whereas Michailidou et al.'®'” and Liu et al.’>> compare wall
bounded and unconfined bulk systems. There is, thus, no
contradiction between our present results for particle diffusion
in a sedimented particle layer and the earlier findings for the
near-wall dynamics in wall-bounded bulk suspensions.

VI. DISCUSSION

In this paper, we have studied in detail the structure and dy-
namics of quasi-2D colloidal suspensions near a wall, compar-
ing experiment, numerics, and analytical calculations. This
study complements earlier ones on colloids near surfaces in
several respects. While previous measurements using total in-
ternal reflection microscopy examined the height distribution
and diffusion of single particles,7’9 our holographic, confocal,
and video microscopies have provided the height distributions
and dynamics of many-particle layers. An earlier investigation
of dense sedimented monolayers was focused on heavy parti-
cles, whose size significantly exceeded their sedimentation
length,’” whereas our layer is much more thermally excited,
allowing for elaborate structure perpendicular to the surface.
Experiments using evanescent wave dynamic light scattering
provided information on the collective (Fourier-space) diffu-
sion of 3D suspensions near a wall, 61952 while ours have
explored the real-space diffusion in a quasi-2D scenario.

Before discussing the results and their implications, we
would like to briefly summarize the three most significant
findings. (a) We have identified a distinctive structural feature
of sedimented layers, the sequential appearance of second and
third sub-layers at relatively low values of area fraction. (b)
We have observed a profound effect of the layering on the
self-diffusion of particles parallel to the substrate. (c) Poly-
dispersity is found to have a strong effect on the structure and
dynamics of colloidal particles sedimented above the wall.

Our central result is a rather sharp formation of a distinct
second layer at an area fraction of ¢ ~ 0.3. This value is
much lower than the area fraction required for close-packing
or other 2D structural changes such as the formation of hex-
atic or crystalline order. One important consequence of this
result concerns the apparent self-diffusion of the particles in
the suspension and its dependence on particle density. Due
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to the higher mobility of the particles in the elevated layer,
the effective diffusivity is higher and levels off as particle
density increases. The experimentally observed behavior could
be interpreted incorrectly if one is unaware of the layering (or
stratifying) effect.

We find good agreement between experimental and simu-
lation results for the occupation fractions of the first and second
layers and for the lateral self-diffusivity (both for the entire
suspension and in the individual layers). However, we also find
an unexpected discrepancy in the position and the height of
the second peak in the near-wall particle distribution. While
the source of this discrepancy is unknown, one possibility,
related to optical aberrations, is suggested in the Appendix. On
the other hand, the difference between theory and experiment
might also be a result of an actual physical effect, such as more
complicated electrostatic interactions setting in at higher layer
densities.

Another new insight put forth in this study is the signif-
icant effect that polydispersity has on the occupation and
composition of layers close to the bottom wall, even in the
case of arelatively small dispersion of particle sizes. The effect
of polydispersity is evident already at low densities, since the
smaller and larger particles segregate into the upper and lower
layers, respectively. We expect the phenomena described here
to be quite general and to be manifested in any such system
where the sedimentation length / is of the order of the particle
diameter. This conclusion is supported by the appearance
of the phenomena both in experiments and in Monte Carlo
simulations.

An important outcome of this paper is the construction
of a very simple theoretical quasi-2D model of the layered
microstructure in thermodynamic equilibrium. Such systems
have been analyzed earlier using density-functional theory,>?
but our theoretical model is much simpler and easier to apply.
We have demonstrated that the model approximates well the
experimental and numerical results for the system studied in
this work.

We conclude with three open issues. Layering phenomena
near a wall are well documented in 3D suspensions as well.'™
An interesting question is whether this perturbation to the 3D
pair correlation function could be fundamentally related to the
sequential layering reported here. The structural features near
the wall should also affect two- and many-particle dynamics in
the quasi-2D suspensions, which can be characterized by two-
point microrheology. Finally, taking a more detailed account
of interparticle forces such as strong electrostatic interactions
may hopefully provide deeper understanding of the effects
observed in this work.
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APPENDIX: OPTICAL EFFECTS ON MEASURED
PARTICLE DISTRIBUTIONS

We present a simple model to support a hypothesis that
the discrepancy between the measured and calculated near-
wall particle distributions stems from optical aberration caused
by nonuniform optical properties of the suspension in the
near-wall region. We assume that such aberration produces a
nonlinear rescaling of the coordinate z,

7 = 7(2), (A1)

where z is the actual and Z is the measured particle position.
The rescaling (A1) results in the corresponding transformation
of the particle density

PE) = o2 (A2)

Z

To demonstrate that a distortion (A1) can produce the observed
shift and change of height of the features of the distribution p,
we consider an ad hoc distortion model with the transformation

between the measured and actual vertical coordinates given by
the equations

1, z2<21,
d ~4 —_
2 _lioa-pit=E <7<, (A3a)
dz 22— 21
b, 22<2,
and
b= ag, (A3b)

where zj, 22, and « are the model parameters. Transformation
(A3) describes position-dependent coordinate contraction with
the amplitude gradually increasing in the region z; < z < 2,
(the region where the second peak occurs according to the
experimental data). The overall deviation of the Jacobian (A3)
from unity is proportional to the area fraction of the suspension
layer.

Figure 18(a) compares distorted distribution (A2) with the
corresponding untransformed distribution p(z) obtained from
MC simulations of a HS suspension at the area fraction ¢
= 0.54. Figure 18(b) presents the distorted distribution for the
set of area fractions for which experimental results are depicted
in Fig. 5(a). The parameter values of transformation (A3) are
given in the figure caption.

The results show that coordinate transformation (A3a)
shifts the position of the second particle layer to the left and
produces a corresponding enhancement of the peak of particle
distribution, similar to the experimentally observed features of
the distributions depicted in Figs. 5(a) and 10(b). Thus, our
calculations provide indirect support to our optical-distortion
hypothesis. The distortion hypothesis can also explain why
the measured and calculated occupation fractions and self-
diffusivities of the particles in the top layer agree well (see
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FIG. 18. The effect of model distortion transformation (A3) on the particle
distribution p(z) in a HS suspension with the standard deviation of the
particle distribution o~ /d¢=0.2. (a) A comparison of the MC result for p(z)
(solid line) with transformed distribution (A2) (dashed line) at the area frac-
tion ¢ = 0.54; (b) the transformed distribution for different area fractions (as
labeled). The parameters of transformation (A3) are z;/d =0.55, z2/d =1.2,
and @ =2.5.

Figs. 11 and 15), in spite of the fact that the observed and
calculated positions of the layer differ significantly.

It is an open question what the source of distortion (A1)
might be. Since the suspension is imaged from above in our
confocal-microscopy system, we hypothesize that reflection
of laser light from the first (bottom) particle layer results in
stray illumination of the second layer, producing distorted par-
ticle height measurements. The optical distortion hypothesis
can be verified by experiments using refractive-index matched
suspensions, but such investigations are beyond the scope of
the present study.
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The viscoelastic response of complex fluids is length- and time-scale dependent, encoding information
on intrinsic dynamic correlations and mesoscopic structure. We study the length scale above which bulk
viscoelasticity sets in, and the material response that precedes it at shorter distances. We show that the
crossover between these two regimes may appear at a surprisingly large distance. We generalize the
framework of microrheology to include both regimes and apply it to F-actin networks, thereby extracting
their dynamic correlation length from their bulk and local viscoelastic properties.
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Most fluids in nature and industry are complex, or
structured [1], in the sense that they include mesoscopic
elements in between the molecular and macroscopic scales.
For example, in suspensions, micron-scale solid particles
are dispersed in a molecular fluid, and in polymer gels the
polymer chains form a network embedded within a
molecular solvent. Consequently, the response of complex
fluids to stress is characterized by intermediate length and
time scales.

The bulk viscoelastic response of such materials is
commonly measured using macrorheology [2]. Similar
information, for a wider frequency range and smaller
material quantity, can be extracted from microrheology
by following the motions of embedded tracer particles
[3-8]. In one-point (1P) microrheology [3-5] the thermal
fluctuations of a single particle are used to infer the
viscoelastic properties of the medium via a generalized
Stokes-Einstein relation (GSER). It has been found that this
measurement is affected by the local environment of the
tracer particle [9,10], and thus, may fail to reproduce the
material’s bulk response. Two-point (2P) microrheology [6]
overcomes this obstacle by tracking the correlated motions
of particle pairs as a function of their separation. 2P
measurements have focused on asymptotically large sep-
arations, where the pair correlation has a universal form due
to momentum conservation.

The current Letter addresses two questions: (i) Beyond
what length scale does the bulk viscoelastic behavior
emerge? (i) What is the material response at smaller length
scales? We find that the leading correction to the asymp-
totic behavior at large distances, referred to, hereafter, as
the subdominant response, may be unexpectedly large,
causing the bulk response to set in at surprisingly large
distances. The physical origin of the subdominant response,
which is unique to complex fluids, is different from that of
the asymptotic one. It is related as well to a conservation
law (of fluid mass rather than momentum), resulting in a
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generic system-independent form. The study of this dis-
tinctive regime leads to a more complete description of the
complex-fluid response.

We first derive the generic form of the subdominant
response and, subsequently, confirm the general predictions
in a specific theoretical example, the two-fluid model of
polymer gels [8,11,12]. Extending the framework of micro-
rheology to include the subdominant term, we validate its
significant effect in a model experimental system,
entangled F-actin networks of various concentrations.

We set the stage by recalling the classical Stokes problem
of a rigid sphere of radius a, driven by a steady force F
through an incompressible fluid of viscosity n [13]. The
fluid velocity at position r away from the sphere’s center is
given by v(r) = v, + vy, with vy, = (82nr) ™! (8,5 + F,85) F5
and vy, = a?(24mnr’) " (8,5 — 3t,85)F5, where Greek
indices denote the coordinates (x, y, z), and repeated
indices are summed over. The dominant term at large
distances, v, is the flow due to a force monopole F. Its r~!
decay is dictated by momentum conservation, ensuring that
the integrated momentum flux (proportional to Vv, ~ r~2)
through any closed surface around the sphere remain fixed.
This dominant response can be decomposed into longi-
tudinal and transverse components (force and velocity
parallel and perpendicular to r, respectively), v =
(4znr)~'F, v = (8anr)~'F, both of which are pos-
itive. Turning to the subdominant v,, we point out the
largely overlooked fact that it is actually made of two
contributions, having the same spatial form but opposite
signs and different physical origins, v, = v + V,,,. The
first, voy = 3v,, is the flow due to a force quadrupole
Q,ap = 3a%8,,F 5. We focus our attention on the opposite
contribution, v,,, = —2v,. It is the flow due to a mass
dipole m = —[a?/(31)]F = —27aU, created opposite
to the direction of the sphere’s displacement, where
U = (6zna)~'F is the sphere’s velocity. The net subdomi-
nant term introduces a negative correction to the

© 2014 American Physical Society
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longitudinal response, vy = —a*(12znr*)~'F), and a
positive  correction  to  the  transverse  one,
vy, = a*(24zanr®)~'F . Since the simple fluid has no
intrinsic length scale, these corrections vanish as a — 0.

Now, contrast the above with the case of an isotropic
viscoelastic medium [14], having a frequency-dependent
complex shear modulus G(w) = G'(w) + iG"(w) [i.e.,
bulk shear viscosity #7,(w) = G(w)/(—iw)]. Dynamic cor-
relations in the medium (as measured, e.g., by dynamic
scattering) decay with a characteristic correlation length &,
which in polymer solutions is believed to coincide
with the static mesh size &, [11]. Consider a sphere of
radius a, driven through the medium by an oscillatory
force Fe~'. At sufficiently large distances the medium
velocity must be dominated by the monopolar v, =
(87n,1) ! (8,45 + Bufts) F g, for the same momentum-con-
servation reasons given above. This is the basis of present
2P microrheology [6-8]. The two subdominant r~3 con-
tributions, however, become separated. Consider first the
limit a/&; — 0, for which the separation is largest.
(Because of the intrinsic length scale &;, v, does not
vanish in this case.) The force quadrupole, Q ~ §§F , creates
a flow vy ~ & (n,r*) "' F, dependent (like the monopolar
v1) on bulk viscosity. By contrast, the mass dipole in this
limit arises from fluid displacement at scales smaller than
&,, where the relevant viscosity is the solvent’s, #; hence,
m ~ —(&/n)F, creating a flow v,,, ~ —&5(nr*) ' F. Thus,
vy, is enhanced relative to v,, by a factor of 7, /5, which is
typically very large. In such a case of a large contrast
between local and bulk response, the mass-dipole term
takes over the subdominant response and changes its sign,
Vag = Voo ~ —E5(n?) 1 (845 — 3F,E5)Fp. This has two
distinctive consequences: (a) The corrections to the longi-
tudinal and transverse responses flip signs, vy =
Emr3)'Fy, vay ~—=E(nr})~'F,. (b) The crossover to
the asymptotic r~!' term is pushed further to a distance
re ~ (np/n)"?E4 > £,. In the opposite limit of an arbitrar-
ily large sphere, a/&; — oo, only bulk properties matter,
and we have Q ~a?F, m ~ —(a*/n,)F, making v,; and
v,,, comparable again. To interpolate between the two
limits, we define a local viscosity at the scale of the probe,
ny = F/(6zaU), as determined from the sphere’s velocity
[15]. Additionally, dimensionless scale functions may be
introduced, satisfying Q = a’f(£;/a)F and m=
—(a®/ny)g(€4/a)F, such that both f(x) and g(x) inter-
polate between values ~1 for x < 1 and ~x> for x > 1.

We demonstrate the validity of these predictions in the
two-fluid model of a dilute polymer gel [8,11,12]. In this
model, an incompressible viscous fluid with velocity field
v(r, t), pressure field p(r, t), and viscosity 7, is coupled to a
dilute elastic (or viscoelastic) network with displacement
field u(r, ) and Lamé coefficients y and 1 via a mutual
friction coefficient I" [16]. For a point force acting on the
fluid component, one obtains for the fluid-velocity
response in Fourier space [(r, ) = (q,w)] [8]

1+ (n,/n)Eq>

(501 _flaq )F ’ (1)
ma*(1+&Eq%) 7 Py

Ve(q, @) =

with n, = — p/(iw) and & = nu/[C(u — iwn)]. Inverting
back from q to r while assuming #, > 5, we get at large
distances the two predicted terms, v == v, + v,, where

ap atp d\%ap alp
vy, =——Fj, Vyy=—————"———""Fu (2
la 8 W g 2a ! r3 p ( )

These results are for the limit a/&; — 0, where 7, — 1. We
have calculated also the fluid-velocity response of this
model to a forced rigid sphere of finite radius a. The 531
coefficient in Eq. (2) is then modified to a*g(&;/a) with
g(x) given below [17]. The dominant response becomes
equal to the subdominant one at the distance

re=al2(ny/ne)g(Eal@)]'?. g(x) =2 +x+1/3. 3)
These expressions were obtained assuming 7, /1, > 1 and
an incompressible network (4 — co or Poisson ratio
o =1/2). A large n,/n, ratio is expected, e.g., for small
probes in stiff polymer networks [18]. Effects of com-
pressibility [19] are found not to change Eq. (3) appreciably
for o as low as 0.4 [17].

Let us summarize the three main characteristics of the
subdominant response, expected in a complex fluid with a
large 7,/n, contrast: (a) a positive r— decay of the
longitudinal response; (b) a negative transverse response;
(c) a crossover to the asymptotic response at a distance
much larger than the correlation length [20].

We use thermally equilibrated, homogeneous samples of
entangled F-actin networks, whose rheology has been thor-
oughly characterized in recent years [6,21-24]. It is well
established that 1P microrheology underestimates the bulk
viscoelastic moduli of these networks, whereas a more
accurate measurement is obtained by 2P microrheology
[6,22-24]. The large contrast between the bulk and local
moduli makes these networks a good model system for
checking the aforementioned predictions. F-actin networks
have the additional benefit of an easy control over the
network’s mesh size, & = 0.3/,/c4, determined by the
monomer concentration ¢4 (¢4 in mg/ml and &; in gm) [25].

Entangled F-actin networks were polymerized from
purified monomer G-actin in the presence of passivated
polystyrene colloidal particles of radii a = 0.245 and
0.55 ym (Invitrogen) [26]. We set the average filament
length to be ~13 ym by addition of capping protein. The
actin concentrations were ¢4 = 0.46-2 mg/ml, correspond-
ing to &, = 0.44-0.21 pm, respectively. Immediately after
polymerization the sample was loaded into a glass cell,
previously coated with methoxy-terminated polyethylene
glycol to prevent binding of the network to the glass [26].
After equilibration for 30 min at room temperature, samples
were fluorescently imaged at 4 = 605 nm. Tracer particle
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motion from approximately 8 x 10° frames per sample was
recorded at a frame rate of 70 Hz and tracked with accuracy
of at least 13 nm [27].

We start by characterizing the viscoelastic properties of
the F-actin networks using conventional 1P and 2P micro-
rheology. In 1P microrheology, one measures the ensem-
ble-averaged mean-squared displacement (MSD) of
individual tracer particles along any axis x as a function
of lag time 7, MSD'P(7) = (Ax*(z)), and extracts from it
the viscoelastic moduli, G'(w) and G” (@), using the GSER
[3,7,28]. In 2P microrheology, one measures the ensemble-
averaged longitudinal (parallel to r) and transverse
(perpendicular to r) displacement correlations of particle
pairs as functions of interparticle distance r and lag time z,
D”(r, 7), D (r,7) [6]. At sufficiently large distances,
both correlations decay as r~', D =A(r)/r and D, =
A(r)/(2r). The common practice is to use this asymptote
to define a “two-point mean-squared displacement,”
MSD?(7) =2A(z)/(3a) [29], and extract from it
the viscoelastic moduli using again the GSER [6].
Figures 1(a) and 1(b) show the 1P and 2P MSD’s measured
in an actin network and the moduli extracted from them.
The measurements demonstrate the much softer local
environment probed by the 1P technique, compared to
the bulk response probed by the 2P one. These results are in
quantitative agreement with previous studies on F-actin
networks [6,22,23].

A closer look at the 2P longitudinal correlation reveals
a positive 7~ decay preceding the asymptotic r~' one
[Fig. 1(c)]. The crossover between the two regimes appears
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10°E(c E 2 L4
F(©) 3 E @ .ﬁ.bwl
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FIG. 1 (color online). Microrheology of entangled F-actin net-
works. (a) MSD'? (green) and MSD?" (red) as a function of lag
time, for £, = 0.3 ym and @ = 0.245 um. (b) The storage modulus
G'(w) (open symbols) and loss modulus G (@) (filled symbols),
extracted from the MSD'? (green) and MSD? (red) curves of
panel (a). (c) Longitudinal and (d) transverse displacement
correlations as a function of particle separation at lag time 7 =
0.014 s for &, = 0.44 ym and a = 0.55 pym. The crossover dis-
tance r,. (blue dashed line) is defined at the intersection of the fitted
dominant (+~') and subdominant (r~*) power-law decays of D.

at a distance r, = 4.4 ym, an order of magnitude larger
than the network mesh size &,. For r < r, the transverse
correlation is found to be negative [Fig. 1(d)]. Thus, the
three qualitative features mentioned above for the inter-
mediate response are verified.

Now, we extend the formalism of microrheology to include
the response at intermediate distances. This has two goals:
(a) to validate in more detail the theoretical predictions;
(b) to provide a quantitative analysis to be used in future
studies of other complex fluids. We focus on the longitudinal
displacement correlation, D”(r, 7), which is stronger than
the transverse one, and apply it in the time (rather than
frequency) domain to minimize data manipulation.

The correlation can be well fitted over both large and
intermediate distances by

Dy(r,7) = A(z)/r + B(z)/ 1. @)

There are three directly measured quantities: MSD'F(z);
A(t) or, equivalently, MSD?*(z); and B(z). We need to
relate them to the frequency-dependent coefficients appear-
ing in Eq. (2). At sufficiently large distances, r > a, the 2P
coupling mobility coincides with the fluid velocity
response at a distance r away from an applied unit force.
Using Eq. (2), we get, for the longitudinal part of that
mobility, M (r,w) = (4an,r)~" + a*g(E4/a)(2an,r)~".
From the fluctuation-dissipation theorem D(r,w) =
—(2kgT/w*)M(r,®), where kgT is the thermal energy.
Comparing this with Eq. (4), we identify

Ar) = [kpT/(2m)] F~{(=anp) ™'}, ®)

B(t) =(kgT/m)a*g(éq/a) FH{(—=?n,)7"' . (6)

where F~! denotes the inverse Fourier transform.

Equation (5) merely restates the basic relation used in
standard 2P microrheology to measure the bulk viscoelastic
moduli. Equation (6) represents our extension. Its left-hand
side is a directly measurable coefficient, B(z), while its
right-hand side depends on two dynamic characteristics of
the fluid, #, and &,. The local response is obtainable from
the 1P measurement. According to the GSER, MSD'P(7) =
[kgT/(3za)|F~{(—w?n,)~"'} [29]. Substitution in Eq. (6)
yields a relation separating the time-dependent observables
MSD'?(z) and B(z) from the structural features to be
characterized, B(z)/MSD'?(z) =3a’g(£,/a). Equivalently,
we may examine the crossover distance

re(r) = [B(2)/A(0)]'? = al2g(¢q/a)]'*[H(2)]'2,
H(z) = MSD'?(7)/MSD?*(z), (7

where the structural partis again decoupled from a measurable
time-dependent function, H(z), characterizing the ratio
between the bulk and local responses. In Fig. 2(a), the
experimentally measured r, is plotted as a function of lag
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FIG. 2 (color online). Crossover distance as a function of (a) lag
time, and (b) square root of H(z), the experimental function
characterizing the bulk to local viscosity ratio. Parameter values
are a = 0.55 um, & = 0.44 pm.

time, exhibiting a nonmonotonic dependence. Yet, by replot-
ting r, against [H(z)]'/?, Fig. 2(b), the linear dependence
predicted by Eq. (7) is verified. We repeated the analysis for a
set of actin networks of different concentrations (i.e., different
mesh sizes) and for two different bead sizes. Since the static
and dynamic correlation lengths, &, and &,, should be com-
parable [11], and &, and a are comparable in our experiment,
the results should be sensitive to the interpolation function
9(&,/a) defined in Eq. (3). In Fig. 3(a), r.. for all the experi-
ments is plotted as a function of H'/2. All curves are linear, as
predicted, and fall into two clusters (open and filled symbols)
corresponding to the two particle sizes. Differentiation of
Eq. (3) shows that r,. should increase with either &, or a at
constant H, which is confirmed in Fig. 3(a). For a more
quantitative validation, we rescale all the measurements ac-
cording to the scheme suggested by Eq. (7) and obtain convin-
cing data collapse [Fig. 3(b)]. Furthermore, the resulting master
curve fits well the theoretical scale function of Eq. (3) using a
single free parameter— a constant ratio of order unity between
the static and dynamic lengths, {; = b&,, with b = 1.2—1.3.

One of the new insights in the current Letter is that the
local viscoelastic properties of the medium affect its
response over length scales much larger than the correlation
length and probe size. Moreover, there are scenarios in
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FIG. 3 (color online). Crossover distance for all experiments.
(a) For all conditions, r, is linear with H'/2 and increases with
either &, or a. (b) All experimental results fall on a master curve
once 2 is normalized by Ha” and presented as a function of &,/ a.
The solid line is a fit to Eq. (7) with the scale function given by
Eq. (3) and &; = 1.25¢&,. Open (filled) symbols correspond to
a = 0.55(0.245) uym. Each color and symbol corresponds to a
different mesh size: £, = 0.21 (black squares), 0.26 (magenta
triangles), 0.3 (cyan circles), 0.35 (blue diamonds), and 0.44 ym
(red left triangles).

which the dominant momentum term in the complex-fluid
response is suppressed, leaving the subdominant mass term
as the sole correlation mechanism at large distances. We
mention three examples. (a) For a very stiff matrix, as in the
case of a fluid embedded in a solid porous medium, the
crossover to the asymptotic term will be pushed to
arbitrarily large distances. (b) In a thin film of gel supported
on a rigid substrate, the momentum term will be suppressed
at distances larger than the film thickness, whereas the mass
term will be enhanced by such confinement. This qualita-
tively accounts for the dipolar shape of the 2P response
previously reported for such a system [30]. (c) At suffi-
ciently short time (high frequency), the diffusive momentum
term is cut off beyond a certain distance (viscous penetra-
tion depth), whereas the mass disturbance, propagating via
much faster compression modes, is not. All three scenarios
obviously require further quantitative investigation.

Another intrinsic length scale affecting the dynamics of
actin networks is the filament length [23]. Its value in the
current Letter (13 ym) is much larger than &, and a. For
shorter filament lengths, there are subtle effects related to
the local environment of the probe [17,23]. Additional
length scales, not present in the current system, can arise
from sample heterogeneity [31].

Extracting spatiotemporal characteristics such as the
dynamic correlation length can be achieved, for example,
by various dynamic scattering techniques [2]. The inter-
mediate response itself, however, despite its significant
effect demonstrated here, is averaged out in such scattering
measurements by virtue of the spatial symmetry of the
corresponding dipolar term.

The analysis presented here, clearly, is not restricted to
actin networks. It is applicable to any complex fluid with a
sufficiently large 7, /5, contrast [18]. (As “local” refers to
the scale of the probe, the contrast can be enhanced by
reducing the probe size down to a <« &, whereupon the
local response becomes that of the molecular solvent.) In
particular, our findings show that bulk viscoelasticity
inadequately describes micron scale stiff biopolymer gels
such as the cellular cortical network.
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Material preparation

G-actin was purified from rabbit skeletal muscle ace-
tone powder [1], with a gel filtration step, stored on
ice in G-buffer (5 mM Tris HCl, 0.1 mM CaCly, 0.2
mM ATP, 1 mM DTT, 0.01% NaNj3, pH 7.8) and used
within two weeks. The concentration of the G-actin
was determined by absorbance, using a UV /Visible spec-
trophotometer (Ultraspec 2100 pro, Pharmacia) in a cu-
vette with a 1 cm path length and extinction coefficient
of €90 = 26,460 M~'cm~!. Polystyrene colloids with
radii of @ = 0.245, 0.55 pum (Invitrogen, lots #1173396
and #742530, respectively) were pre-incubated with a 10
mg/ml BSA (bovine serum albumin, Sigma) solution to
prevent nonspecific binding of protein to the bead surface
[2]. We controlled the average filament length by addi-
tion of capping protein to obtain an estimated average
length of 13 pm. Actin polymerization was initiated by
adding G-actin in various concentrations, capping pro-
tein, and colloidal particles to F-buffer solution (5 mM
Tris HCI, 1 mM MgCl,, 0.05 M KCl, 200 uM EGTA,

1 mM Mg-ATP) and mixing gently for 10 s. The actin
concentrations were ¢4 = 0.46-2 mg/ml, corresponding
to & = 0.44-0.21 pm, respectively.

Sample preparation

Glass samples were prepared from glass coverslips (di-
ameter, 40mm) coated with methoxy-terminated PEG
(Polyethylene glycol, M,=5000 g/mol, Nanocs) to pre-
vent F-actin filaments from sticking to the chamber walls.
Immediately after polymerization the sample was loaded
into a glass cell and left to equilibrate for 30 min at room
temperature.
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The mechanical properties of polymer gels based on cytoskeleton proteins (e.g. actin) have been studied
extensively due to their significant role in biological cell motility and in maintaining the cell's structural
integrity. Microrheology is the natural method of choice for such studies due to its economy in sample
volume, its wide frequency range, and its spatial sensitivity. In microrheology, the thermal motion of
tracer particles embedded in a complex fluid is used to extract the fluid's viscoelastic properties.
Comparing the motion of a single particle to the correlated motion of particle pairs, it is possible to
extract viscoelastic properties at different length scales. In a recent study, a crossover between
intermediate and bulk response of complex fluids was discovered in microrheology measurements of
reconstituted actin networks. This crossover length was related to structural and mechanical properties
of the networks, such as their mesh size and dynamic correlation length. Here we capitalize on this
result giving a detailed description of our analysis scheme, and demonstrating how this relation can be
used to extract the dynamic correlation length of a polymer network. We further study the relation
between the dynamic correlation length and the structure of the network, by introducing a new length
scale, the average filament length, without altering the network’s mesh size. Contrary to the prevailing
assumption, that the dynamic correlation length is equivalent to the mesh size of the network, we find
that the dynamic correlation length increases once the filament length is reduced below the crossover
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1. Introduction

Complex fluids are intriguing materials, both from the struc-
tural and the mechanical point of view. Comprised of at least
two components, these fluids contain mesoscopic structural
features on the scale of nanometers to millimeters.* As a result
their mechanical response to perturbations is both elastic-like
and fluid-like in nature. Conventionally, complex fluids are
characterized mechanically by bulk rheology.” Complex fluids of
biological origin, which are not readily available in large
quantities, are usually characterized using a more material
economic technique, microrheology, which uses the motion of
embedded tracer particles observed by optical microscopy to
extract the material properties.>® Another advantage of micro-
rheology is its ability to characterize the viscoelastic properties
of these fluids on different length scales.’*™ Utilizing this trait
of microrheology, we recently showed that the mechanical
properties of an example complex fluid (actin networks) change
from bulk to intermediate behavior below a characteristic
crossover length (r.).** This new length scale depends both on
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structural features of the material as well as on its local and bulk
viscoelastic properties. The crossover length, r., can be related
to the dynamical correlation length, &4, of the complex fluid. For
polymer networks, &4, which is the length scale over which
dynamical correlations decay in the network, is considered to be
related to the mesh size,** and is commonly measured by
dynamic light scattering, requiring large sample volumes.
Measuring &4 with microrheology offers a means to connect
mechanical properties of a polymer networks to their structure
using microscopic quantities.

Polymer networks made of cytoskeleton proteins have been
thoroughly studied in an effort to understand their biological
role in the cell.**>* The most researched of which is actin, which
is the focus of this paper. We study the spatial dependence of
the viscoelastic properties of thermally equilibrated F-actin
networks, and their relation to the networks’ structure. We start
by outlining our generalized analysis scheme of microrheology
experiments and its application to reconstituted actin networks
of different mesh size. We then demonstrate how to extract the
viscoelastic and structural properties of the networks, regard-
less of tracer particle size (i.e., its size relative to the mesh size).
We proceed to explore the dynamical correlation length's rela-
tion to the networks' mesh size, and investigate how &4 is
affected by the introduction of another relevant length scale, the
average filament length (/). Finally, we examine the relation
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between the viscoelastic plateau modulus and the dynamic
correlation length of the gels.

2. Experimental

We use entangled F-actin networks as a model viscoelastic fluid.
The rheological properties of this system have been studied
extensively both experimentally and theoretically.”*'*?*>® F-actin
gels are well described as networks of semiflexible polymers, and
their mesh size, £, =0.3/,/cs, is easily controlled through
monomer concentration c, (¢, in mg ml™" and & in um (ref. 29)).

G-actin is purified from rabbit skeletal muscle acetone
powder,* with a gel filtration step, stored on ice in G-buffer (5
mM Tris HCI, 0.1 mM CaCl,, 0.2 mM ATP, 1 mM DTT, 0.01%
NaNj3, pH 7.8) and used within two weeks. The concentration of
the G-actin is determined by absorbance measured using UV/
visible spectrophotometer (Ultraspec 2100 pro, Pharmacia) in a
cuvette with a 1 cm path length and extinction coefficient e,9o =
26 460 M~' em™". Polystyrene colloids with diameters of a =
0.245, 0.55 pm (Invitrogen Lots #1173396 and #742530 respec-
tively) are pre-incubated with a 10 mg ml~" BSA solution to
prevent non specific binding of protein to the bead surface.*
The average filament length, (I), is controlled by addition of
capping protein (CP). Actin polymerization is initiated by add-
ing G-actin in various concentrations, CP and beads to F-buffer
solution (5 mM Tris HCl, 2 mM MgCl,, 0.05 M KCI, 200 uM
EGTA, 1 mM ATP) and mixing gently for 10 s. Mesh size is varied
by changing G-actin concentration between ¢, = 0.46-2 mg
ml ™, corresponding to £ = 0.44-0.21 um (at fixed (/) = 13 um).
The average filament length is varied, at constant actin
concentration (§; = 0.3 pum), by changing the concentration
ratio of actin-CP. Filament length distribution is roughly
exponential.® We estimate (/) = 2-13 um assuming CP deter-
mines the number of actin nucleation sites.'>**%

Immediately after polymerization the samples were loaded
into a glass cell, 150 pm high, and sealed with grease. The glass
surfaces were coated with methoxy-terminated PEG to prevent
binding of the network to the glass. After equilibrating for 30
min at room temperature, samples were imaged at a plane
distanced from the cell walls with an epi-fluorescence micro-
scope (Olympus IX71), at A = 605 nm, with 60x oil, and 40x air
objectives for a = 0.245 pm and a = 0.55 pm, respectively. We
recorded the motion of approximately 100 particles in the field
of view using a CMOS video camera (Gazelle, Point Gray) at a
frame rate of 70 Hz with an exposure time of 0.003 s. To insure
high signal to noise ratio of two-particle displacement correla-
tion measurements, we used data from approximately 8 x 10>
frames per experiment. Particle tracking was done using
conventional algorithms with accuracy of at least 13 nm.**

3. Generalized microrheology and
the dynamic correlation length
3.1 Microrheology at intermediate length scales

Conventional microrheology is concerned with characterizing
the mechanical properties of a complex fluid by analyzing the
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Fig.1 Microrheology of entangled F-actin networks. (a) MSD*? (green)
and MSD?P (red) as a function of lag time, for £, = 0.3 um, a = 0.245 um
and () = 13 pm. (b) The storage modulus, G'(w) (open symbols), and
loss modulus, G (w) (filled symbols), extracted from the MSD*? (green)
and MSD?” (red) curves of panel (a).

diffusion of tracer particles embedded in it.>® We concentrate
on the passive variants of the technique® relating the thermal
fluctuations of the tracer particles to the viscoelastic properties
of the characterized fluid, using both one point (1P) and two
point (2P) microrheology. In 1P microrheology the generalized
Stokes Einstein relation (GSER) is used to connect the ensemble
averaged mean-squared displacement of tracer particles, MSD'®
= (Ax*(7)) (Fig. 1(a)) to the viscoelastic moduli, G'(w) and G (w)
(Fig. 1(b)).>***

This technique probes only the local environment of the
tracer particle, which is the microscopic volume explored by the
particle within the experimental time scale. Consequently, it is
well established that 1P microrheology of actin networks
underestimates the bulk viscoelastic moduli.”'**** 2P micro-
rheology was developed to address this issue, by looking at the
average correlated diffusion of two distanced particles. Specifi-
cally, one measures the ensemble-averaged longitudinal and
transverse displacement correlations of particle pairs as a
function of inter-particle distance r and lag time 7:”

D”(V7 ’E) = <AV‘|I-([, ‘L')AVH].(Z‘, ’E)(S(V — R'](Z))>

D (r,7) = (Ar '(t,7)Ar /(1,7)(r — RY(1))), )

where Ar(¢, 1) (Ar, (¢, 7)) is the displacement of particle i
during the time between ¢ and ¢ + 7, projected parallel
(perpendicular) to the line connecting the pair, and R¥(¢) is the
pair separation at time ¢. At sufficiently large distances both
correlations decay as r~', D| = A(t)/r and D, = A(7)/(2r). The
common practice is to use this asymptote to define a ‘two-point
mean-squared displacement’, MSD**(1) = 2A(7)/(3a),f and
extract from it the viscoelastic moduli using again the GSER.”

Fig. 1(a) and (b) show the 1P and 2P MSD's measured in an
actin network (£ = 0.3 um), and the moduli extracted from
them. The viscoelastic properties obtained from the two
approaches are significantly different, demonstrating the much
softer local environment probed by the 1P technique, as
compared to the bulk response probed by the 2P one. These
results are in accord, both qualitatively and quantitatively, with
previous studies on F-actin networks.”'>?¢

We have recently shown™ that the inter-particle distance at
which the bulk response sets in is much larger than would

T We use the one-dimensional forms of the MSD's.
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intuitively be expected. For example, in our experiments
(Fig. 2(a) and (b)) a crossover to an intermediate regime is
observed at r. = 3.5 um, which is an order of magnitude larger
than the network mesh size, £, = 0.3 pum, and the tracer parti-
cle's radius, a = 0.245 pum. The detailed theoretical description
of the viscoelastic behavior of complex fluids at intermediate
length scales, below r., is given elsewhere."**® Simply stated, a
particle moving within a fluid disturbs it in two ways: it gener-
ates a momentum perturbation that spreads in the bulk, and
displaces mass locally.”” These two contributions can be
expanded in terms of inter-particle distance and depend on the
bulk and local viscosity respectively. For complex fluids in
which the local environment is much softer than the bulk, the
leading terms in the mobility expansion are:'*?¢

1 a’g(Eq/a)

My(r, )= ——
1) 41t r 27tn, 13

(2)

_ 1 _ a’g(éa/a)
ey 41,3

M, (r,0) 3)
where 7, () corresponds to the bulk (local) viscosity and the
function g(£4/a) arises from calculating the fluid response to a
forced rigid sphere of finite radius a. The first term, the domi-
nant response, arises from momentum conservation, while the
second term, the sub-dominant response, describes mass
transfer. At intermediate distances (r < r.) the viscoelastic
properties of a complex fluid are governed by the subdominant
term."** Eqn (2) and (3) imply that the intermediate response
should decay as 1/7° in the longitudinal direction, and exhibit
negative correlation in the transverse one. As a result the
crossover between the asymptotic, dominant response in the
longitudinal direction to the intermediate, subdominant one
should appear at a distance:

re = al2(ny/mogEdla)'? (4)

where g(x) is a material specific function that satisfies the

asymptotic conditions:**** g(x — «) = x”, and g(x — 0) = 1.
The displacement correlation, D), can be related to the

mobility M|, using the fluctuation-dissipation theorem:

Dy(r, w) = —kpTIw*)M|(r, ©) (5)

0
Je— -+
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1 =
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Fig. 2 (a) Longitudinal and (b) transverse displacement correlations as
a function of particle separation, r, at lag time © = 0.014 s for £, = 0.3
um, @ = 0.245 um and () = 13 um. The crossover distance r. (blue
dashed line) is defined at the intersection of the fitted dominant (™)
and subdominant (r—®) power-law decays of Dy.
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where kgT is the thermal energy. To minimize data manipula-
tion the analysis is applied on the time (rather than frequency)
domain and thus the expected expression for Dy(r, 1) is:

Dy(r,7)= @ + @ (6)

where
A(r) = "2‘%%‘ {_wlznb} (7)
8(x) = L gz, )7 {_(jzm} ®)

where &' denotes the inverse Fourier transform. The cross-
over distance in the time domain is then given by:

ro(z) = [B(x)/A(0)]"%. (9)

3.2 Dynamic correlation length measurement

One outcome of the preceding theory is that the dynamic
correlation length of a complex fluid can be extracted from
microrheology experiments, provided that: (1) the functional
form of g(x) is known, (2) the crossover distance (eqn (9)) is
experimentally observed, and (3) the bulk and local viscosity are
measured. We start our analysis by expressing A(z) and B(z) in
terms of MSD*® and MSD'® respectively.

A(1) = 3aMSD* /2

B(1) = 3d’g(£4/a)MSD'". (10)

To this end we assume that the local viscosity is a function of
time and is related to the MSD'" by the fluctuation-dissipation
theorem MSD'"(t) = [kgT/(3ma)]F {(~w’n,) '}. The bulk
viscosity is related to the MSD?? in a similar manner, and is
given by A(7) (eqn (7)).

Substituting these expressions into eqn (9) we have,

£,\ MSD'" 172 1/2
re = [2a2g<:) MSDZP] = {Zazg(%d)H(r)} (11)

where we define:

MSD'?
MSD?*

H()

(12)

as the time dependent observable, and g(£4/a) the structural
element to be characterized. The functional form of g(x) for
actin networks was derived using the two-fluid model of poly-
mer gels,>'*'53%4° and reads;'***

gx)=xF+x+1/3. (13)

Recasting r(r) as a function of \/H(t) reveals their linear
dependence (Fig. 3(b)), as predicted theoretically in eqn (11).
This linear dependence holds for all our experiments, inde-
pendent of tracer particle size and network mesh size (see
Fig. 4(a)). Rescaling r.> by Ha” and presenting it as a function of
£s/a results in a collapse of our data on a single master curve

This journal is © The Royal Society of Chemistry 2014
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Fig. 3 Crossover distance as a function of (a) lag time, and (b) square
root of H(z), the experimental function characterizing the bulk to local
viscosity ratio. Parameter values are the same as in Fig. 1; a = 0.245 um,
(=03 umand () = 13 um.
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Fig.4 Crossover distance for all experiments. (a) For all conditions r. is
linear with v/H and increases with either £ or a. (b) All experimental
results fall on a master curve once r.? is normalized by Ha? and pre-
sented as a function of scale function given by egn (13) and £4 = 1.25&,.
Red (green) symbols correspond to a = 0.55 (0.245) um. Each symbol
corresponds to a different mesh size: & = 0.21 (squares), 0.26 (trian-
gles), 0.3 (circles), 0.35 (diamonds), and 0.44 um (left triangles). The
average filament length for all experiments was ({) = 13 um.

shaped according to eqn (13) (see Fig. 4(b)).** The only fitting
parameter used to fit our data to eqn (13), was the ratio b = £4/¢;
= 1.25. This result provides an experimental verification of the
scaling function g(£4/a) derived using the two-fluid model for
actin networks. Therefore providing a means to extract the
dynamic correlation length from microrheology experiments.
In Fig. 5 the measured dynamic correlation length is plotted
versus the networks' mesh size for two different sizes of tracer
particles. Both £4 and &, are material properties and should not

2 1.0
(a) : (b) x10%_
L 4 L 3 4
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6
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Fig. 5 Dynamic correlation length, &4, extracted from r. and H for
networks with different mesh and particle sizes (see text for details). (a)
£4scaled by a, particle radius, as a function of the scaled mesh size £¢/a.
(b) £4 as a function of .. Black line, in both figures, corresponds to £y =
bés, where b =1.25is our fitting parameter. Both £/a > 1 and £ /a < 1 fall
on the same line. Inset: difference between &4s extracted from the two
particle sizes (A&y) as a function of £;. Red (green) symbols correspond
to a = 0.55 (0.245) um. Each symbol corresponds to a different mesh
size: £, = 0.21 (squares), 0.26 (triangles), 0.3 (circles), 0.35 (diamonds),
and &5 = 0.44 um (left triangles).
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depend on the tracer particle size. The difference in the
dynamic correlation length measured with the two different
particle sizes is used to gauge its experimental error (see
Fig. 5(b)), which is of the order of (Af4) = 50 nm. The fact that
the relation between £, and & is linear suggests that £4 scales as
the square root of actin concentration, as expected for semi-
dilute polymer solution.

4. Effect of filament length

So far we have shown that the viscoelastic response of actin
networks depends on the new emerging length scale r., rather
than directly on the network mesh size or tracer particle size. In
this section we introduce a new relevant length scale to the
system, the average actin filament length, (I), which is
controlled experimentally by introducing capping protein. We
show that (/) affects the viscoelastic response of the networks if
sufficiently decreased. We study several networks made with the
same actin monomer concentration but different average fila-
ment length, (/) =2, 5, 8, 10, 13 um. All of these systems create
mechanically stable networks with a mesh size of £, = 0.3 um,
much smaller than the average filament length. While the mesh
size is conserved in these systems it is not clear if their dynamic
correlation length or their mechanical properties vary.'” Since
the mesh size is the same in all of these gels and the average
filament length is much larger than the mesh size, we would
naively expect the crossover length in these networks to be the
same as well. In Fig. 6 the crossover length scale of the different
networks is examined. Surprisingly, even though the length
scale depends linearly on the viscosities ratio (Fig. 6(b)) for each
(Iy, it depends also on filament length (Fig. 6(a)).

A closer inspection of the data in Fig. 6(b) reveals that curves
of different networks do not coincide, implying that the
networks vary in dynamical properties. Since the functional
form of g(x) was calculated from the two-fluid model using a
general, unspecified correlation length &4, without any explicit
reference to filament length, we can use it to extract &4 of these
networks. In Fig. 7 £4 is plotted as a function of (I); for long
filament length (I) > 5 pm £4 does not depend on filament
length, as expected. However, for shorter filaments, (/) = 2, 5
um, &4 decreases with filament length. Note that the length
scale below which &4 is affected by filament length is of the

0 0.2 0.4 2 3 4 5 6
t[sec] VH

Fig. 6 Crossover distance, r., as a function of (a) lag time, and (b)
square root of H(z) for networks with different average filament length:
(l) = 2 (red squares), 5 (magenta circles), 8 (blue right triangles), 10
(cyan diamonds), and (l) = 13 um (green triangles). All networks were
polymerized at the same concentration (ca = 1 mg ml~* corresponding
to &= 0.3 um).
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Fig. 7 Dynamic correlation length, &4, as a function of the average
filament length, () (bottom) and actin—-CP concentration ratio (top).
Actin concentration was held at 1 mg ml™?, resulting in a & = 0.3 pm,
and a = 0.245 um.
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Fig. 8 The plateau elastic modulus, G'(wp), of all actin networks
studied here, as a function of: (a) & estimated from monomer
concentration, and (b) &4 extracted from measurements. Blue (red)
symbols correspond to a = 0.55(0.245) um. Red squares correspond to
() = 13 um, and red triangles correspond to () = 2, 5 um.

order of r. and one order of magnitude larger than either £; and
a. These results further the notion that r, is the length scale
which is most relevant in determining explicitly the viscoelastic
response of a complex fluid. The results also suggest that £4 can
be affected by other structural features of a polymer network, in
addition to &, such as its dependence on (/) demonstrated here.
We characterize the viscoelastic properties of our networks
in terms of the plateau modulus, G'(wp), with the lowest
experimentally available frequency wy, = 0.14 Hz, following Liu
et al.12. In Fig. 8(a) the plateau modulus, G'(wy,), is plotted as a
function of the actin network mesh size. As expected,">** results
from the various experiments fall on a single line showing a
power law decay, G'(wp) o« &%, with a power a« = —2.8. However,
the mesh size in these experiments is determined indirectly
from the concentration of actin monomers used for gel prepa-
ration. We represent the results of Fig. 8(a) in terms of the
directly measured correlation length &4 (Fig. 8(b)). Here too all
experiments fall on the same line with « = —2.8, even for
networks with small filament length for which &4 # b&,.

5. Conclusions

In this paper we have presented a new method to extract the
dynamic correlation length of complex fluids from micro-
rheology measurements, and demonstrated it on a model
system of entangled F-actin networks. This new technique is

8328 | Soft Matter, 2014, 10, 8324-8329

View Article Online

Paper

based on the observation of a crossover between the bulk and
intermediate viscoelastic response of complex fluids in two
point displacement correlations (D, D, ). Using a generalized
framework of analysis of microrheology, we show that the
measured dynamic correlation length is related, but not iden-
tical, to the network mesh size. Specifically, when a third length
scale is introduced into the problem, as demonstrated here with
short filament lengths, £4 depends on it as well as on & (Fig. 7).
This latter result raises several questions: how is the dynamic
correlation length related to the structure of a complex fluid,
and consequently, how is it related to its viscoelastic properties.
More detailed experiments are required to address these issues.
The technique provided here presents a platform with which to
characterize in more detail the dynamics of active complex
fluids, such as biologically active actomyosin networks and
chemically active self healing gels.*
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Chapter 4

Statistics of discrete motor-driven
events in reorganizing active

networks

4.1 Introduction

Many living systems exhibit coordinated motion of individual entities which are ca-
pable of harnessing energy from their environment to induce motion. Examples for
such processes range from flocking of fish to cell division by the reorganization of the
cell’s skeleton proteins. These phenomena have inspired the study of biological as
well as synthetic active matter. Due to their energy consumption, active materials
are intrinsically out of thermal equilibrium. Consequently, their internal fluctua-
tions need not be distributed according to Gaussian statistics. In fact, although
Gaussian distributions of tracer particle motion have been observed in bacterial
suspensions [87], this is not the general case. A Gaussian distribution superim-
posed with fat exponential tails seems more prevalent, and has been observed in
many active systems including active granular materials [88], active DNA gels [89],

suspensions of eukaryotic microorganisms [90], within living cells [91], and in re-
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constituted cytoskeleton networks [77,78]. In these systems it is believed that the
central Gaussian distribution is a combination of fluctuations due to thermal energy
and the contribution of many distant sources of active motion. The fat exponential
tails are usually attributed to a few local internal sources of active force [77,89,90].
The origin of the exponential statistics of the tails of the distribution is thought to
be related to the randomness and time-independence of events responsible for the

large displacements contributing to these tails [77], which follow Poisson statistics.

The statistics of a single active event has been studied in a bottom-up ap-
proach, looking, for example, at the dynamics of a single motor molecule stepping
along a filament [92,93], or at the detachment dynamics of a single motor protein
from its substrate filament [94]. These measurements are highly informative and
provide insights into the operation mechanism of single motors. However, in or-
der to attest to the coordinated activity of motors in the highly correlated systems
mentioned above, one should study these active events by looking at their dynamics

m-situ.

In this chapter we study experimentally the dynamics of discrete active events
in-situ. To do so we chose a model system of in-vitro reconstituted active gels based
on cytoskeleton proteins made of the structural protein actin and its molecular motor
counterpart myosin II. Both actin and myosin II are key components in cell motil-
ity and muscle contraction. Myosin motor domains (heads) generate active motion
by hydrolysis of chemical fuel in the form of adenosine triphosphate (ATP). The
hydrolysis process promotes a configuration change in the myosin’s domains struc-
ture, which results in a stepwise walking along the actin filament. One important
and unique feature of myosin II is its ability to form multimeric bipolar structures
(termed mini-filaments) containing tens to hundreds of myosin molecules [83,95].
The number of myosin heads within such a mini-filament can be tuned by the salt
concentration in the self-assembly buffer [83]. This structure allows the myosin
mini-filaments to connect different actin filaments and move them relative to each
other, thereby generating contractile forces inside the network. The detachment
rate of myosin heads from actin filaments is governed by ATP concentration due to

its ATP consumption. In the absence of ATP, myosin heads bind the filaments con-
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Figure 4.1: Schematic illustration of the active gel and its components. Myosin mini-

filaments are embedded within a network of actin filaments, cross-linked by biotin-avidin
connection. The fluctuations of the network are probed by the tracer particle (1 pm

diameter) motion.

stantly, and the mini-filaments act as static cross-linkers between actin chains. In
the presence of ATP, the motor clusters generate pinching forces determined by the
size of the motor cluster [83]. These pinching forces can result in actin aggregation
(known as superprecipitation) [96] or in disassembly of the actin network [82,97],

unless the network is stabilized by static cross-linkers.

In our experimental system, the actin-myosin network is kept mechanically
stable by the addition of passive, chemical cross-linkers (via biotin-avidin bonds).
Our purpose is to achieve active gels with varying degree of activity maintaining
steady-state dynamics for long durations, in order to collect sufficient statistics on
motor activity. To this end we keep the network features fine, refraining from
bundling the actin filaments by the choice of a suitable cross-linker [81]. In our
system we use small mini-filaments of motor proteins containing only tens (19 or
32) of two-headed myosin molecules, and provide a low but constant concentration
of ATP. In this ATP concentration the motor clusters have higher probability to
act as biological cross-linkers, i.e., they stay connected to the actin filaments for
longer durations. In addition, the pinching forces applied by these small motor

clusters have a limited range of motion due to the relatively small number of heads
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in each cluster and the shortage in ATP. This limitation ensures that, while the
motors generate active forces in the network, there is no large-scale reorganization
or deformations of the network, i.e., keeping the steady state dynamics. These
conditions allow us to decouple the effect of motor activity on fluctuations from its
effect on structural evolution. To follow the active fluctuations in our gels we use
embedded tracer particles, with size on the order of or larger than the network mesh
size, so that their motion will reflect the fluctuations of the network. By design
the actin network’s mesh size is 0.3 pm, the average distance between the static
chemical cross-links in our system is on the order of 3 um, the tracer particle size is
1 pm in diameter, and the average distance between myosin mini-filaments ranges
from 50 pm to 1.3 pm. A schematic illustration of our experimental model system

is shown in Fig. 4.1.

4.2 Material and sample preparation

Active actin-myosin networks were reconstituted in vitro by polymerizing G-actin in
the presence of biotin-avidin crosslinkers and myosin II mini-filaments. G-actin was
purified from rabbit skeletal muscle acetone powder [98], with a gel filtration step,
stored on ice in G-buffer (5 mM Tris HCI, 0.1 mM CaCly, 0.2 mM ATP, 1 mM DTT,
0.01% NaNj, pH 7.8) and used within two weeks. Purification of myosin II skeletal
muscle was done according to standard protocols [99]. The concentration of the
G-actin and myosin II was determined by absorbance measured using UV /Visible
spectrophotometer (Ultraspec 2100 pro, Pharmacia) in a cuvette with a 1 cm path
length and the extinction coefficients: G-actin - €x99 = 26,460 M~tcm ™! and two-
headed myosin II - €959 = 268,800 M~tem™!. Myosin II dimers were stored at -80°C
in high salt buffer (0.5 KCI) that preserves them in a monomeric form. Biotinylated
actin (Cytoskeleton, Inc.) and neutravidin (Invirogen, used as a cross-linker) were
premixed with unlabeled actin and left over at least one hour on ice. The ratios were
unlabeled: biotinylated: neutravidin = 5000:5:2 giving a total actin concentration

of 24 uM and an average distance between cross-linkers of ~ 3 pym. To initiate the
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formation of processive myosin [T minifilaments, the myosin solution was diluted with
G-buffer to the desired KCI concentration, 0.13 M or 0.1 M, corresponding to motor
clusters, each composed of N, ~ 19 or 32 myosin domains, respectively [83].
Polystyrene colloids with radius of 0.55 pm (Invitrogen, Lot #742530) were pre-
incubated with a 10 mg/ml BSA solution to prevent non specific binding of protein
to the bead surface [16]. We set the average filament length to be ~ 13 um by

addition of capping protein.

Active network formation was initiated by adding the actin solution, myosin
minifilaments in various concentrations, capping protein and beads to motility buffer
(10 mM HEPES, 1 mM MgCly, 0.1 mM MgATP, 0.5 mg/mL creatine kinase, 5 mM
creatine phosphate, 0.2 mM EGTA, and 0.1 or 0.13 M KCl). Creatine kinase and
phosphate were used as an ATP regenerating system. Immediately after polymer-
ization the sample was infused into a glass cell, 150 um high, and sealed with grease.
The glass surfaces were coated with methoxy-terminated polyethylene glycol to pre-
vent binding of the proteins to the glass. Shortly after cell loading, samples were
fluorescently imaged at A = 605 nm with 40x air objective. Each sample is mon-
itored for approximately 160 min, in which short movies are taken every fifteen
minutes, starting from ~ 5 min after polymerization. The initial gelation process
of the samples takes place in the first few minutes of the experiment. To avoid wall
effects imaging was done at a plane distanced at least 80 pum from the cell walls.
Particle motion was recorded using a CMOS video camera (Gazelle, Point Gray)
at a frame rate of 70 Hz and was tracked with accuracy of at least 13 nm using

conventional algorithms [100].

4.3 Results and discussion

The statistics of active events should depend on the amount of activity in the sys-
tem. To examine this we performed two series of experiments, one with myosin
mini-filaments containing 19 heads per cluster and the other with myosin mini-

filaments containing 32 heads per cluster. In each series of experiments we varied the
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myosin concentration from [Myosin|/[Actin|=0 to [Myosin|/[Actin]=0.02 (Nyyo =
19) and [Myosin]/[Actin]=0.01 (N, = 32), corresponding to a ratio of myosin
mini-filaments to actin filaments 0 < F,.y0/Fyctin < 4 and 0 < Fy0/ Foetin < 1.5,
respectively (F,.n is calculated by considering that there are 370 actin subunits in
a 1 pm long filament). These series of experiments allow us to explore the change
in tracer particles motion once activity is added to the system, as well as the effect

of increasing activity (in the form of both concentration and size of motors).
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Figure 4.2: Typical trajectory of a 1 pum polystyrene particle in the cross-linked
actin network.  (a) passive network, [Myosin]/[Actin]=0 and (b) active network,
[Myosin|/[Actin]=0.02. Motor mini-filaments are constructed with Ny, = 19 myosin
heads. The two trajectories were taken at 70 Hz for about 140 s. An example of a

trajectory of particle that experiences large steps is plotted in the inset of (b).

Representative trajectories of tracer particles are presented in Fig. 4.2, where a
trajectory of a tracer particle (140 s long) in an actin gel containing no myosin motors
(passive gel - Fig. 4.2(a)), is compared to a trajectory of a tracer in an active gel
([Myosin]/[Actin]=0.02, Fig. 4.2(b)) of the same duration. Both trajectories show
that the tracer particle undergoes diffusive-like motion, where the particle embedded
in the active gel seems more confined. This observation is counter-intuitive, since
we expect motor activity to enhance the gel’s fluctuations and as a result the tracer
particles motion. However, motor proteins are also known to stiffen actin gel due
to two effects: they act as additional cross-linkers, and they apply tension on the
actin filaments. Both processes reduce the entropy of the network causing it to

stiffen. This stiffening effect is present in all our experiments and increases as motor
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concentration increases (see below). Therefore, we assume that the added active
fluctuations from the motor’s activity have a weaker effect on the range of motion
of tracer particles than the increase in stiffness they induce. Some of the particles
in the active gels are experiencing relatively large displacements that usually do not

persist in the same direction (see inset of Fig. 4.2(b)).
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Figure 4.3: Mean squared displacement (MSD) of particles in networks with different
[myosin]/[actin] at two mini-filaments sizes. (a) and (b) time and ensemble-averaged MSD
of probe particles as a function of lag-time 7 approximately 100 mins after polymerization.
Mini-filaments are constructed by Npyo = 19 (a) or Ny,yo = 32 (b) myosins heads. (c) and
(d) MSD at 7 = 7 s along the experiment time. Sizes of mini-filaments are N,,, = 19 (c)
and Ny, = 32 (d). Colors and symbols correspond to different [Myosin]/[Actin] ratios:
0 (blue circles), 0.0017 (red squares), 0.0025 (green triangles), 0.005 (orange diamonds),
0.0083 (violet right triangles), 0.01 (maroon down triangles) 0.012 (magenta stars) and
0.02 (black pluses). (e) and (f) Comparison between time-averaged and ensemble-averaged
MSD for networks with [Myosin]/[Actin]=0.0025 approximately 100 min after polymer-

ization. Sizes of mini-filaments are Np,yo = 19 () and Ny, = 32 (f).

To quantify the tracer particles’ motion we calculate their time- and ensemble-
average mean squared displacement (MSD) from their trajectories. In Fig. 4.3(a)
and (b) the MSD as a function of lag-time 7 is plotted for all our networks, with the
small and larger motor clusters respectively. The MSD in the passive networks has
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the characteristic, expected behavior of a weakly cross-linked network [78,79]. As the
motor concentration increases we observe a decrease in the values of the MSDs, while
the shape of their curves is qualitatively preserved. The stiffening effect, which the
motor proteins have on the network, is observed here as well, from the decreases of
the MSD with the increase in the myosin concentration. Repeating this measurement
as the gels mature allows us to detect the network evolution. For comparison we plot
in Fig. 4.3(c) and (d) the MSD of the tracers at a lag time of 7 = 7 s. For the smaller
mini-filaments experiments (N, = 19) it is easy to see that after approximately
50 min most of the networks reach steady-state conditions (Fig. 4.3(c)). The two
networks with the highest concentrations of myosin ([Myosin]/[Actin]=0.0125,0.02)
do not show a clear steady state but rather exhibit slow evolution throughout the
entire experiment time. The networks with larger mini-filaments behave in a similar
if less obvious manner (Fig. 4.3(d)). Here, the two networks with the highest myosin
concentrations ([Myosin]/[Actin]=0.005,0.01) are much noisier; however, they still
exhibit steady-state dynamics. We further verify the steady-state properties of the
gels with low myosin concentrations by comparing the ensemble-averaged MSD to
the time-average MSD and find that they coincide (Fig. 4.3(e) and (f)). These
comparisons were conducted for networks with [Myosin]/[Actin]=0.0025 for both
motor sizes, and the same trend was observed in all networks which exhibit steady-
state dynamics in the MSD plots of Fig 4.3(c) and (d).

The MSD alone is not informative enough for characterization of the non-
equilibrium effect of motor proteins. We thus look, in addition, at the probability
distribution of probe particle displacements as a function of lag time 7, P(Ax, 1),
known as the van Hove correlation function (Fig. 4.4). By looking at these distri-
butions, the statistics of particle fluctuations can be resolved, and should provide
insight into the active events influencing the particle motion. As expected in passive
gels, the van Hove correlations are Gaussian-like, since the fluctuations of particles
are purely thermal with only small deviations due to the network’s heterogeneous
cross-linking structure. At low myosin concentrations the displacement distribu-
tions are Gaussian-like, with widths that decrease gradually with the increase in

myosin concentration, in accord with the stiffening effect discussed above. How-
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Figure 4.4: Ensemble-averaged van Hove correlation functions of probe particles at lag
time 7 =0.014 s for networks with increasing myosin concentrations at two different mini-
filament sizes; (a) Npyo = 19 and (b) Ny,yo = 32. Colors and symbols correspond to differ-
ent [Myosin|/[Actin] ratios: 0 (blue circles), 0.0017 (red squares), 0.0025 (green triangles),
0.005 (orange diamonds), 0.0083 (violet right triangles), 0.01 (maroon down triangles),
0.012 (magenta stars) and 0.02 (black pluses). Distributions were taken approximately

100 min after polymerization.

ever, above a certain motor concentration threshold we observe the appearance of
shoulders (Ny,y,, = 19, Fig 4.4(a)) and peaks (N, = 32, Fig 4.4(b)) in the dis-
placement distribution. This threshold concentration is [Myosin|/[Actin]|=0.015 for
the small clusters and [Myosin|/[Actin|=0.004 for the large clusters. This result
is in contrast with similar measurements performed on active networks [77-79,89],
in which an exponential fat tail was observed. The distinct shoulders and peaks
in such a distribution was observed previously in an experimental system of rod-
like viruses hopping between smectic layers, where the size of these jumps had a
characteristic length-scale related to the rod length [101]. In our system we relate
the peaks/shoulders to discrete events with a cutoff on the displacement that they

induce in the system (see below).

To characterize the effect of motors activity on the networks we measure mul-
tiple parameters of the non-equilibrium activity, as suggested in Ref. [78]. The first

parameter is the diffusion (MSD) exponent, «, where « is measured for lag-times
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Figure 4.5: Multiple parameters of non-equilibrium activity. Diffusive exponent « (green
circles), the Gaussian standard deviation ratio 5 (red squares) and the non-Gaussian pa-
rameter, NGP (blue triangles). The parameters were measured in networks with increasing
[Myosin|/[Actin] (or equivalently F,yo/Fuctin) ratios at two different sizes of mini-filaments
Nimyo = 19 (a) and Ny, = 32 (b). Parameters were measured approximately 100 min

after polymerization.

between ~0.01-0.1 s (see Fig. 4.3(a) for clarity). In these lag-times we observe the
new features (shoulders and peaks) in P(Az). In weakly cross-linked semi-flexible
networks « usually takes values of ~ 0.75 — 0.85 [102]. A decrease in its value
implies that the tracer experiences a more stiffened or confined environment. The
second parameter is the standard deviation of the Gaussian part of the van Hove
correlation, o, scaled by the standard deviation of the Gaussian in the passive gel,
[ = Oactive/ Tpassive (s€€ Fig. 4.4(a) for clarity). This ratio gives information on the
non-equilibrium activity in the Gaussian part of the correlation. A stiffening or
confinement effect in the environment of the particles should correspond to values
of f < 1, while an activity induced broadening should result in # > 1. The third

parameter is the non-Gaussian parameter (NGP),

NGP = 3<M(T>4> ~1

3B -

which quantifies the non-equilibrium effect on the non-Gaussian part of the van

Hove distribution. For a Gaussian distribution the NGP is zero, whereas values
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larger than zero indicate an increased probability to perform large displacements
and deviation from Gaussian statistics. In Fig. 4.5(a) and (b) the three parameters
are plotted as a function of the concentration ratios of myosin to actin, showing
a motor concentration threshold above which a significant change in the network
characteristics occurs, [Myosin|/[Actin]ipresn = 0.015 for small mini-filaments and
[Myosin] /[Actin]ypresn = 0.004 for large mini-filaments. In terms of F,,,,,/ Fyctin, the
threshold appears at a ratio of ~ 3 myosin filaments per actin filament for the small
motors, while in the larger motor the threshold ratio is less than 1 myosin filament
per actin filament. For the small motors the cross-over coincides with a transition
from steady-state to evolving gels as observe in Fig. 4.3(c) and (d). While both «
and [ decrease when more motors are added, confirming the stiffening of the gels,
the stiffness increases dramatically above the threshold motor concentration. The
NGP is constant and approximately zero below the transition, indicating Gaussian-
like statistics of particle motion as observed in the van-Hove distribution (Fig. 4.4).
However above the threshold concentration the NGP starts to increase significantly.
Importantly, the threshold concentrations observed here in the three parameters
coincide with the threshold concentration above which the shoulders or peaks appear
in the displacement distributions discussed above. It is obvious that the onset of the
increase in NGP coincides with appearance of shoulders or peaks in the displacement
distribution, as NGP measures deviation from Gaussianity. However, the agreement
between the threshold concentration above which a dramatic stiffing is observed is

not straightforward.

To investigate the temporal dependence of the active events we looked at the
distributions of particle displacements in the networks with the highest myosin con-
centration ([Myosin]/[Actin]|=0.02, Ny, = 19 and [Myosin|/[Actin|=0.01, Ny, =
32) at different lag-times (note that Fig. 4.4 was calculated for the shortest lag-time,
7 = 0.014 s). In Fig. 4.6(a) and (b) the distributions are plotted for lag-times be-
tween 7 = 0.014 — 0.14 s. These plots reveal that (i) the locations and heights of
the peaks/shoulders do not change as the lag-time increases, and (ii) as lag-time
increases the central Gaussian broadens and masks the shoulders/peaks, resulting

in a Gaussian like shape of the distributions. This is further verified when looking
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Figure 4.6: Ensemble-averaged van Hove correlation functions for different lag times for
networks with (a) [Myosin]/[Actin] = 0.02, Ny, = 19 and (b) [Myosin]/[Actin] = 0.01,
Npmyo = 32. Colors correspond to different lag times: 7 = 0.014 (blue), 0.028 (cyan),
0.042 (violet), 0.056 (green), 0.07 (red), 0.084 (grey), 0.098 (indigo), 0.112 (turquoise),
0.126 (orange) and 0.14 s (black). (c) and (d) NGP as a function of 7, for networks
with increasing myosin concentrations. Mini-filament sizes are (c¢) Ny = 19 and (d)
Nimyo = 32. (e) and (f) relative angle distributions for networks with increasing myosin
concentrations at 7 = 0.014 s. Mini-filament sizes are (€) Np,yo = 19 and (f) Ny,yo = 32.
Insets of (e) and (f) are the angle distributions of the same network at 7 = 2 s. Colors

and symbols are the same as in Fig. 4.3 and Fig. 4.4.

at the NGP for increasing lag-times (Fig. 4.6(c) and (d)). For networks exhibiting
the active features in their distributions, the initial value of NGP is larger than 0.8
and drops to values smaller than 0.4 after 7 ~ 0.2. For networks that do not exhibit
these features (motor concentrations below the threshold) the NGP is almost con-
stant and close to zero at all observed lag-times. These observations imply that the
duration of active events taking place in the network are shorter than 0.014 s (the
shortest lag-time), and therefore do not produce directed motion for long durations
as was reported previously [77-79]. This assumption is further verified by looking at

the distribution of relative angles between successive time intervals of random walk
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trajectories, rather than distributions of step sizes, following the approach of Burov
et al. [103]. In this analysis the angle between successive steps is measured, 0(t, 7),
which is defined as

cosO(t, ) =

AX(t,7) - AX(t+7,7) (42)

(
‘Aigjﬂ)Aiu+T¢)

where AX (¢, 7) = X(t+7) — X (t), and X (t) is the particle trajectory . In confined
environments the particles are experiencing a large restoring force which should re-
sult in higher probabilities of § = 7. In systems where there is an active motion,
which results in higher probabilities for large displacements, if the event of active
motion lasts for several frames in the movie, then there should be elevated proba-
bilities for # = 0 or 2w. Figure 4.6(e) and (f) show P(#) at the shortest lag time
(1 = 0.014 s) for all our experiments. It can be seen clearly that at high motor
concentrations, above the threshold, there is elevated probability for § = m, con-
firming that the duration of active events is shorter than this lag-time. The absence
of directed motion for several lag-times can be associated with the relatively small
size of motors clusters containing only 19 or 32 heads, compared to previous studies
that reported directed motion caused by motor clusters composed of hundreds of
myosin heads. The insets in Fig. 4.6(e) and (f) correspond to P(f) at a much larger
lag-time of 7 = 2 s, and show that at this lag-time all angle distributions of gels
with different myosin concentrations coincide. This suggests that the tracer parti-
cles undergo similar statistical processes, and supports the observations discussed

above.

As suggested above, we attribute the appearance of shoulders and peaks in the
displacement distributions to a cut-off in the displacement of a particle resulting from
a single active event. To support this suggestion we conducted a series of simulations
of particle motion in one dimension. In each simulation 100000 particles undergo
thermal and active motion, where their thermal displacements are randomly drawn
from Gaussian distributions with standard deviation of ¢ = 0.1 and zero mean.
The active events displacements are randomly drawn from one of three different

distributions: (1) an exponential distribution with decay parameter of 1 [P(Az)
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Figure 4.7: Simulated particle motion. Displacements were randomly drawn from Gaus-
sian distributions (¢ = 0.1) and (a) Exponential distribution with parameter y = 1. (b)
Exponential (4 = 1) with a cutoff at |[Az| = 1 for displacements and Poisson distribu-
tions for events occurrence (A = 0.5). (c) Uniform distribution at |Az| = 1 £ 0.25 for
particle displacements, and Poisson distributions for events occurrence (A = 0.5). Plots
(a)—(c) present the overall displacement distribution of 100000 particles for 10 successive
lag times. (d) Distributions at the first lag-time for the three distributions of (a)—(c). Col-
ors correspond to the different distributions: exponential (black), exponential with cut-off

distance (magenta) and uniform distribution (blue).

exp(—|Ax|)], (2) the same exponential decay as in (1) with a cut-off at distances
larger than 1 [P(|Az| > 1) = 0], and (3) a uniform distribution between 0.75 <
|Ax| < 1.25 [i.e., P(0.75 < |Az| < 1.25) =1, and P(|Az| < 0.75 or |Az| > 1.25) =
0]. On top of the active displacements, we assumed that the probability to have an

active event in the first place follows Poisson statistics with parameter of u = 0.5.
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The overall displacement of the particles is the sum of thermal and active motion.
The distribution of step sizes from all three simulations are plotted in Fig. 4.7(a)—
(¢), for increasing lag-time (similar to Fig. 4.6(a)—(b)). In the active events without
cut-off we recover the fat exponential tail superimposed on the central Gaussian
distribution as was observed previously in active actin gels [77-79]. Once a cutoff is
introduced to the active events’ displacement distributions, we notice the appearance
of peaks and shoulders. Interestingly, the locations of the peaks does not change
as lag-time increases, and eventually they are masked out by the broadening of the

central Gaussian, exactly as was observed in our experiments (Fig. 4.6(a) and (b)).

The origin of the cutoff in the active displacements distributions can be under-
stood from the small size of our motors. Since our motors are constructed from 19
or 32 myosin heads, the motors are able to produce a processive movement of only
a few (1-3) steps before the cluster is detached from the filament and the build-up
tension is released. The reason for this is the low duty ratio of a myosin head, which
is approximately 0.1, meaning that only 10% of the time the myosin head is attached
to the actin filaments [83]. In order to produce processive motion along a filament a
second head must connect to the filament before the first head is detached. In large
mini-filaments which contain hundreds of heads, there is relatively high probability
for such process to occur, and the cluster can produce tens and hundreds of steps
before detaching completely from the filament. In our small motor filaments, due
to the short processive motions, there should be a cutoff in the amount of force the
motors can exert on the network, which translates to a cutoff in the active events’
displacement. This implies that actually the peaks/shoulders in the distributions
correspond to discrete motor events of 1-3 steps. In the following we further support

this assumption by looking at the forces which are related to such displacements.

Looking again at the displacement distributions exhibiting the peaks or shoul-
ders for the two cluster sizes (Fig. 4.8(a)) reveals that (i) the larger motors produce
larger active displacements, and (ii) different concentrations of the same cluster size
produce similar displacements (brown oval in Fig. 4.8(a)). These two observations
support our assumption that the peaks correspond to discrete motor events and

their extent is determined mainly by motor size. We further support this by pro-
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Figure 4.8: (a) Ensemble-averaged van Hove correlation functions at 7 = 0.014 s show-
ing peaks or shoulders at large displacements. Different colors correspond to different
networks; [Myosin|/[Actin]=0.02, Ny = 19 (blue), [Myosin]/[Actin]=0.005, Ny, = 32
(green) and [Myosin]|/[Actin]=0.01, Npyo = 32 (red). Arrows point to displacements of
higher probability (Azpeak), i.e., the appearance of peaks/shoulders. The brown oval high-
lights that at the same Ny, some of the peaks appear at the same displacement. (b)
Using the values of Azpeax extracted from (a) (see inset) the force applied by the motors

at a single active event is estimated (see text for explanation).

viding rough estimations of the forces required to produce such displacements. For
that purpose we assume that the network can be considered as an elastic medium,
and therefore the force is equal to F' = kAzpeqr, with Axpeq, the characteristic
displacements of the peaks/shoulders, and k is related to the stiffness of the elastic
network. An exact value of k can be extracted only from macrorheology or active
microrheology, which were not performed here; however, an estimated value can
be extracted from the displacement distributions. In our experiments the central
Gaussian of the displacement distribution is indeed sensitive to network elasticity.
In addition it is also sensitive to active (distant) events taking place in the network.
Therefore, a lower bound of k can be estimated from the central Gaussian of the
distribution with kg7 = ko?. The forces applied in a single active event, calculated
by this approach, were between 0.7-1.4 pN (Fig. 4.8(b)). These estimations are on
the order of the force produced by a single motor head during one hydrolysis cycle
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(approximately 1.4 pN [104]), and correspond to only few processive steps of heads
before the motor cluster is detached from the network, in agreement with the short

duration of active events discussed above.

Motor concentration determines the average distance between motors, which
in turn affects the probability that a motor cluster will be close enough to the tracer
to induce such large displacements. One interesting question is what is the distance
above which the motor is considered distant and its activity will influence the cen-
tral Gaussian, or below which the motor is close enough and can induce the peak
formation in the particle displacement distribution. This distance defines the transi-
tion between the bulk (distant) environment and the local (close) environment with
respect to the tracer particle position (see Fig. 4.9(a)), and can be used to estimate
the number of motor mini-filaments that strongly affect the tracer’s fluctuation. In
order to understand and estimate what this distance is, we should look at how a

mechanical perturbation is decaying in the active gels.

Active events produce mechanical perturbations in the networks, which decay
with distance in a manner related to the network response. A natural method to
measure this spatial decay is 2P microrheology described in Sec. 2.1.5 [26, 105],
which uses the 2P displacement correlations at different inter-particle separations

to characterize this decay. The 2P displacement correlations are calculated as:

Dy(r,7) = <AXﬁ (, T)AXﬁ(t, 7)6(r — R(t)))
Dy (r,7) = (AXL(t,7)AX(t,7)0(r — RY(t))), (4.3)

where AX(t,7) (AX{(t,7)) is the displacement of particle i during the time be-
tween ¢t and ¢t + 7, projected parallel (perpendicular) to the line connecting the pair,
and R¥(t) is the pair separation at time ¢. In our previous work, described in sec. 3.2,
we showed that in actin networks the mechanical perturbations, over an intermedi-
ate range of distances, decay much faster with distance than is usually expected, due
to the features in the network structure at the mesoscopic length-scales [105, 106].
Fig. 4.9(b) and (c) show typical plots of the 2P displacement correlation in our
active networks. As in passive actin networks (Sec. 3.2), the correlated diffusion

in the longitudinal direction decays fast D) ~ r~3 at short distances and slowly
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Figure 4.9: (a) Illustration of the volume around the particle where motors strongly
affect the tracer’s fluctuations. (b) and (c¢) Longitudinal displacement correlations as
a function of particle separation at lag time 7 = 0.014 s. Network parameters were
[Myosin|/[Actin]=0.0025 with Ny, = 19 (b) and Ny, = 32 (c). The cross-over distance
(orange dashed line) is defined at the intersection of the fitted bulk (r~—!) and intermedi-
ate (r~%) power-law decays of Dj. (d) and (e) the cross-over distance in networks with

increasing myosin concentration, for small (d) and large (e) mini-filaments motors.

D ~ r~! at large distances. The cross-over distance between the two regimes of
elastic response, r., gives an estimate for the range from which the particle will be
most susceptible to motor action. r. ranges in our active systems between 4.5 — 3.5
pm and 5.5 — 5.0 pym for N,,,, = 19 and 32 respectively (Fig. 4.9(d) and(e)). In
addition, we estimate the distance between myosin mini-filaments assuming they
are dispersed isotropically and are all attached to the network to be in the range of
15.4—1.3 pm and 26 —4.3 pm for the small and big motors respectively. This means
that at the highest myosin concentrations there are an order of 1-10 mini-filaments
in the vicinity of the particle, depending on the mini-filaments sizes. However, it
is important to note that the probability that all these clusters will generate active
events simultaneously is practically zero, at our experimental condition (low ATP,
relatively small-size cluster). There is a larger probability that a few (1-3) events

will occur in the duration of the shortest lag-time (7 = 0.014 s), since a myosin
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head produces its power stroke in ~ 5 ms [107]. Therefore, the occurrence of a few
events during this lag-time should lead to a few peaks/shoulders in the distributions.
The contribution from larger distances decays slower and thus averages over a much
larger number of motors, contributing to the central Gaussian of the distribution,

as expected from the central limit theorem.

To the best of our knowledge, the displacement distributions with shoulders
and peaks of Fig. 4.4 were not observed previously in an experimental system based
on active motion of motors. A recent theoretical study, aimed at modeling the
fluctuations of a tracer particle in an active gel, suggested a particle displacement
distribution with similar features to our experimentally measured distributions [108].
In this theoretical study the tracer’s motion is calculated while modeling the elastic
gel as a Gaussian trap and having motor-induced active fluctuations in addition to
thermal fluctuations. The active force in this model arises from the independent
and random action of motors in the gel with a given finite displacement. At short
time scales of the order of the interval between single motor kicks, and at low motor
densities, discrete active event statistics are observed in the van Hove correlation
function. However, as the motor density and the displacement measurement lag time
7 increase, the distribution is shown to converge to a Gaussian distribution [108].
This model seems to capture the source of the fluctuation spectrum observed in our
experiments, and supports our interpretation of a cut-off in the step size of a tracer

particle in the active gels.

4.4 Conclusion

We have studied the non-equilibrium fluctuations of tracer particles in active actin-
myosin networks. To decouple the structural evolution of the networks from their
fluctuations, we chose an experimental model system containing fine network fea-
tures and relatively small motor mini-filaments that are able to produce only small
processive motions. Our experiments reveal that the stiffening effect of motor pro-

teins dominates over the active fluctuations resulting in a narrowing of the displace-
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ment distributions, while preserving their Gaussian-like shape as motor concentra-
tion increases. At sufficiently large motor concentrations, where on average there
is at least one motor in the proximity of the tracers, the active fluctuations of the
close motors strongly affect the tracer particle fluctuations, which results in higher
probabilities for large displacements of the tracer. Our central result is that these
higher probabilities are found at specific, discrete distances, and appear as peaks or
shoulders in the displacement distributions. This is in contrast with the more com-
mon exponential tails found previously in other active systems. These active events,
with their discrete features, are a result of active processes which have a cut-off
distance, or a characteristic length-scale. Using a simplified simulation, with either
a cut-off or characteristic length of these events, we have reproduced the shoulders
and peaks in the distributions, supporting our arguments. To estimate the num-
ber of motors that strongly influence the tracer particles, i.e., which are in close
proximity to them, we suggested that the definition of ”close enough” is related to
the cross-over distance between intermediate to bulk response of the network. The
cross-over distance can be measured using 2P microrheology and is on the order of a
few microns (3-5 pm), depending on the motor cluster size and concentration. This
implies that inside this close volume there are only a few active motor filaments
(1-10).

The precise nature of these motor-driven events is not clear; it could be any
number of processes such as recoil due to the release of a motor mini-filament from
the actin network, or the tearing/buckling of an actin filament. In any case, the
build-up tension, as a result of the motor sliding along two actin filaments, is released
and creates the large fluctuations in the tracer particles” motion. We showed that
estimates of the forces creating these large displacements are on the order of the

force applied by one single head stroke.
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Chapter 5

Summary and future directions

In this thesis I have described a detailed investigation of structural, dynamical and
rheological properties of three systems, by the use and further extension of the tools
of microrheology. In the following sections I will emphasize our main results from

these studies and discuss possible future directions for the research.

5.1 Colloidal suspension near a rigid wall

Our central result from the study on sedimented colloidal suspensions above a rigid
wall is a rather sharp transition from one-layer to two-layer structure at area frac-
tions of ~ 0.3. This value is much lower than the area fraction required for close-
packing or other 2D structural changes such as the formation of hexatic or crystalline
order. This transition has consequences for the diffusivity of the suspension and its
density dependence, and therefore on the correct interpretation of its rheological
properties. We also demonstrated that polydispersity has a strong effect on the
structure and dynamics of colloidal particles sedimented above the wall, because of

particle size segregation due to gravity.

There are many future directions to this work, and here I mention two. The

experimental studies described in the first article of Sec. 3.3 analyzed the dynamics of
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the colloids only in terms of self-diffusion. A natural continuation of the project will
be to measure the correlated diffusion of such quasi-2D suspensions as the particle
density increases. In contrast to quasi-2D suspensions confined between two parallel
walls, where there is no effect of density on the correlated long-range diffusion [109],
there is a theoretical prediction for an increase in the correlated long-range diffusion
near a single wall as density increases [110]. This prediction is very surprising, as it
suggests that the viscosity of the suspension decreases as particle density increases,
and it will be very interesting to verify or disprove it. From an experimental point
of view, there are several challenges in measuring these correlations. The long-range
correlated diffusion in a quasi-2D suspension near a single wall is D ~ h?/r?, which
applies for distances r > h, larger than the distance of the monolayer from the wall,
h. However, since the correlation decays fast (~ r73), experimentally it is hard to
extract a meaningful signal at these distances. In addition, as we showed in our
work, at relatively low area fraction the monolayer transforms into a double-layer

structure, and measurements of the correlations become even more challenging.

A biology-inspired problem is the dynamics of particles near a fluctuating
surface, which can be related to diffusion in blood vessels and near cell membranes.
A natural future direction for our research on particle dynamics near a single wall
is to replace the no-slip hard wall with a soft elastic surface. In this scenario, the
dynamics of the particles can be studied in passive conditions, where the soft wall
undergoes only thermal (equilibrium) fluctuations, and in active conditions, where
external forces create non-equilibrium fluctuations in the wall. The self as well as
the correlated diffusion of particles suspended adjacent to such a wall are highly
interesting, and are expected to show a viscoelastic character although the particles
are suspended inside a purely viscous fluid. In this experimental system several
questions can be addressed relating to the structure and dynamics of the particles

as density increases, or as the strength of non-equilibrium forces are increased.
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5.2 Actin networks

Passive entangled networks - the intermediate response

Our study on the microrheology of entangled actin networks resulted in several im-
portant outcomes; The first is the discovery of the intermediate response of complex
fluids. The second is the development of a new characterization tool for complex
fluids, based on a new analysis scheme for microrheology experiments. This new
tool offers an extended rheological characterization of complex fluids as well as a
measurement tool for their dynamic correlation length. Thirdly, the differentiation
between dynamic and static correlation lengths in actin networks. This was achieved
by introducing a third length-scale to the system, the filament length. Contrary to
the prevailing view, according to de Gennes, that the dynamic correlation length is
equivalent to the structural mesh size of the network, we found that the dynamic
correlation length depends also on the third length scale once it enters the newly
discovered intermediate regime (i.e., when it is still much larger than the mesh size).
This finding emphasizes how the response at intermediate distance can influence the

dynamical properties of the material, or vise versa.

A future continuation of our research is to study the nature of the relations
between the viscoelastic properties of a complex fluid, its dynamic correlation length
and its structure. This direction requires the detailed investigations of several con-
ditions in which two independent length scale (e.g., mesh size and filament length)

are changes systematically.

Since the micron-scale intermediate response should have an important role in
cellular viscoelasticity, a natural continuation of the research is to apply the new
characterization tool to investigate cellular-like environments, such as in-vitro re-
constituted networks based on the cytoskeletal proteins. The advantage of studying
in-vitro networks is the ability to control the ingredients of the systems, which allows
a detailed and precise study of the network properties as a function of the addition

or change in concentration of each component.

During our work on active actin-myosin networks discussed on Chapter 4,
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Figure 5.1: Application of Our new characterization tool to active actin-myosin networks.
(a) Longitudinal displacement correlation as a function of particle separation at a lag-time
7 = 0.014 s. Inset: transverse correlation at the same lag-time. Blue dashed lines corre-
spond to cross-over distance between intermediate and bulk regimes. Network parameters:
[Myosin]/[Actin]=0.0025, a = 0.55 pm. (b) cross-over distance, r. for networks with in-
creasing myosin concentrations (Npyo = 19). (c) Dynamic correlation length measured

using our new analysis tool for networks with increasing myosin concentrations.

we have identified the three characteristics of the intermediate response in these
network; (i) Dy ~ r~2, (ii) negative D, and (iii) cross-over distance r, > &, much
larger than the network mesh size (Fig. 5.1(a)). We have applied our new tool and
extracted the dynamic correlation length on these active networks as a function of
increasing myosin concentrations (Fig. 5.1(b) and (c)). This analysis suggests that
the addition of myosin motors to the networks results in a reorganization of the
structure that creates larger network mesh sizes. This result is an intuitive one,
as myosin motors are known to reorganized actin networks, however, to confirm
it, the validity of the GSER must be considered (as microrheology is based on its
validity). It was shown by other groups that the GSER may be valid in active
systems [34]. The future work should concentrate on this direction, in one of two
relevant approaches; to confirm that the GSER works in these active systems, by
for example a combination of active and passive microrheology measurements (as
was done in [34]), or to bypass the validity issue and characterize the structure of

the network independently and compare the trends.
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Fluctuation in active networks

We investigated the fluctuations of particles in active actin-myosin networks as dis-
cussed in chapter 4. Contrary to the commonly found distribution of step sizes,
which features Gaussian or exponential distributions, we observed a sequence of
distinct shoulders and peaks in the distribution, indicating discrete events of motor
activity. Our interpretation for these features was that motors induce active events
with a cut-off in their distance, and we supported it by simplified simulations. We
used these observations further to estimate the force that a single motor exerts on

the network.

Our research on the fluctuations in active networks is missing the information
regarding the mechanical properties of the gels. This may be measured indepen-
dently by active microrheology. This important future experimental extension will
provide the knowledge regarding the true stiffening of the network and will enable
better understanding of how the motors affect the network’s fluctuations and rheol-
ogy.

Another future direction is to study the dynamics of actin networks near a
substrate. This scenario is very relevant to several biological systems, such as the
actin cortex. In this future direction there are many possibilities, such as using a
rigid or a soft wall as the substrate, and using passive cross-linked network or active

networks with myosin motors.
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