
Mulliken   
Population Analysis

1966 Nobel Prize motivation: "for Mulliken
fundamental work concerning chemical bonds 
and the electronic structure of molecules by 

the molecular orbital method"



The basics of quantum 
chemistry

• The n-electronic wave function 

• probability of simultaneously finding 
ē 1 with spin ms1 in the volume dx1dy1dz1 at (x1,y1,z1)
ē 2 with spin ms2 in the volume dx2dy2dz2 at (x2,y2,z2)
and so on. 
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One-electronic density

• The probability density ρ of finding an electron 
(ANY!!!) in the neighborhood of point (x,y,z) is 

• In most cases - knowing the ρ is knowing the system!

A 1.000.000$ question –
How does ρ look like? 
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The Hartree-Fock case
• The n-electronic wave function ψ in the case of 

Hartree-Fock (HF) approximation: 

• Home work (3 points bonus! ). Prove: 

• nj is the “occupation number” (nj = 0,1,2)
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The energy functional = 
density functional (W. Kohn)

• Exact WF:
• nj is the “generalized occupation number”

(nj ≅ 0 or 1);  φj – natural orbitals j=1,…,∞ 
• Kohn - Sham : E=E[Ψ]=∫Ψ*ĤΨdV =E[ρ]=?
• HF: EHF[ρ]=T[ρ]+Vne[ρ]+(Vc[ρ]+Vex[ρ])
• DFT: E[ρ]=T[ρ]+Vne[ρ]+(Vc[ρ]+Vex[ρ]+Vcor[ρ]) 

single-electron theory including correlation!
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MO-LCAO approximation
• In the formula:

ρ is found as the sum the probability-density
functions of all MOs φj

• The MOLCAO approximation:

Thus           

where m is the number of MOs; 
• and b – is the number of AOs 
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Density Matrix 

• Crj – the contribution of r-AO to j-MO
• The probability density associated with 

one electron in φj is |φj |2

Normalization condition:

where the S’s are overlap integrals:
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Mulliken population analysis

• An electron in the MO φj contributes  :
♦ nrj=njcrj

2 to the net population in AO χr, 
♦ nr-s,j =2njcrjcsjSrs to the overlap population of χr and χs.

• Mulliken proposed a method that apportions
the electrons of an n-electron molecule into :
1. Net populations nr in the AOs;
2. Overlap populations nr-s for all pairs of AOs. 
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Mulliken characteristics
• The sum of all the net and overlap populations 

equals the total number of electrons in the 
molecule:

• Gross atomic (A) population :
• Mulliken charge of atom A : ZA=enA
• Mulliken’s matrix (Mrr=nr and Mrs=nr-s) could be 

divided according to atomic indexes  A, B, …
Then number of blocks in the A-B part of the 

matrix M defines bond order
between atoms A and B

• NOTE: Mrs = Drs*Srs
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Bonding Mulliken population 
analysis example : C2H2

• CΞC bonding. There are two π orbitals composed of two 
2px and two 2py atomic orbitals of the two C atoms and  a 
σ bond composed of the 1s, 2s and 2pz orbitals.

• The Gaussian output. Density matrix Drs (C1-C2 part) 
C2\C1    1S           2S           2PZ 2PX 2PY

1S    0.04570   -0.12510    0.14378 0.00000   0.00000   
2S  -0.12510     0.24810  -0.28900 0.00000   0.00000  

2PZ -0.14378     0.28900  -0.30554 0.00000   0.00000  
2PX 0.00000     0.00000   0.00000   0.75822 0.00000   
2PY 0.00000     0.00000   0.00000   0.00000   0.75822


	Mulliken   Population Analysis
	The basics of quantum chemistry
	One-electronic density
	The Hartree-Fock case
	The energy functional = density functional (W. Kohn)
	MO-LCAO approximation
	Density Matrix 
	Mulliken population analysis
	Mulliken characteristics
	Bonding Mulliken population analysis example : C2H2

