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Abstract. This article analyzes similarities and divergences between the ap-
proaches of Richard Dedekind and Emmy Noether to the problem of factor-

ization in fields of algebraic numbers. Dedekind’s approach was highly id-

iosyncratic when seen in the context of late nineteenth-century algebra. In
many important senses it can be seen as the harbinger of the central ideas of

the structural approach to abstract algebra of which, beginning in the 1920s,

Emmy Noether and her school were the main promoters. Still, several decades
of intense mathematical research in the hands of important figures separate the

works of these two great masters. This raises the question that is addressed

in this article, namely, what are the differences between their approaches and
what was the process that led from that of the first to that of the second.
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1. Introduction

Mathematical lore has it that Emmy Noether (1882-1935), whenever praised for her
brilliant algebraic work, typically reacted by modestly stating: “Es steht alles schon
bei Dedekind” (All of this is already found in the work of Dedekind). And indeed,
whoever glances at Dedekind’s texts on the theory of fields of algebraic numbers
will not fail to realize, and to be surprised by, the extent to which ideas found there
can easily be associated with the kind of reasoning typical of twentieth-century
algebra, and that is commonly attributed to Noether’s innovations. This is partic-
ularly the case concerning the theory of ideals in abstract rings, and the approach
to the question of unique factorization in such domains. Still, the plain historical
fact is that Richard Dedekind (1831-1916) started to work out his ideas as early as
1856, and published them between 1871 and 1894, in successive versions of his sup-
plements to Dirichlet’s Vorlesungen über den Zahlentheorie, whereas Noether’s first
publication on this topic dates from 1921. Long decades of intense mathematical
activity separates between them.

The question thus naturally arises whether Noether’s generous statement con-
cerning Dedekind’s putative priority is historically and mathematically precise, and
if so, what is it that one can define as her specific contribution to the rise of mod-
ern algebra. After all, over the years that separate their periods of involvement
with these matters, many prolific and prominent mathematicians were at work in
related questions. Think, to take just one prominent example, of the work done
by David Hilbert (1862-1943) in number theory in the 1890s and in particular of
his Zahlbericht of 1897,[14] which is generally considered to be a milestone of the
discipline at the turn of the century. If all of Noether’s ideas were already found in
Dedekind’s work, why did it take so long for colleagues such as Hilbert, to become
aware of them, and what was then the value of her specific contributions?

This article is devoted to discuss these questions and to do so by focusing on
how questions of factorization were addressed with the help of the notion of ideal.
The development of the theory of ideals has attracted the attention of historians of
mathematics for a while now. Back in 1980 Harold Edwards published a first in a
series of articles of seminal importance for understanding this crucial issue in the
history of late nineteenth-century mathematics.[10] I also devoted a central part of
my book on the rise of modern algebra to a detailed discussion of this topic.[4] The
present article is mostly based on material discussed in the book, and the interested
reader will find there further details. (See also [21]

2. Dedekind’s Ideals

Dedekind’s theory of ideals arose against the background of the work of Ernst
Eduard Kummer (1810–1893) on the question of factorization in domains that
generalize the system of Gaussian integers a+ ib. Carl Friedrich Gauss (1777-1855)
had investigated this domain in his work on biquadratic reciprocity. He succeeded
in generalizing the basic ideas of the arithmetic of Z, by identifying counterparts of
the prime numbers that would help prove a generalized version of the fundamental
theorem of unique factorization. Kummer went on to explore questions related with
higher reciprocity and he did so by carrying Gauss’s ideas further on into even more
general domains of numbers. Specifically, he investigated domains of numbers of
the kind a + ρb (a and b integers) within C, where ρ could be either

√
−t (t 6= 1)

or n
√
−1 (n ≥ 3).
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This is not the place to delve into the details of Kummer’s work (see [4, pp. 81–
92]). Suffice it to say that he achieved important progress with the help of an
innovative concept, namely, “ideal complex numbers”. In spite of this, he soon
became aware of some limitations inherent in his theory. Kummer had been an in-
defatigable calculator who painfully examined a large number of cases when working
out his theory. Dedekind studied in detail this work and became strongly impressed
by it. Dedekind’s main mathematical strenght was on conceptualizing complicated
mathematical situations and coming up with the correct settings where the problem
should be analyzed. He realized that the hurdles encountered in Kummer’s theory
derived from the need to choose specific “ideal numbers” in every particular case
considered, thus obscuring the more general principles underlying the situation.

In order to overcome these hurdles, Dedekind started by focusing on those sub-
sets of C which are closed under the four arithmetic operations, which he called
“fields” (Zahlkörper). Further, within any given field Ω of complex numbers he
defined a specific collection of numbers, D, the “algebraic integers” of Ω, compris-
ing all numbers in Ω which are roots of some irreducible monic polynomial with
coefficients in Z. In this way he could focus on a collection D which plays within
Ω the same role that—for the purposes of investigating factorization properties—Z
plays within the smallest sub-field of C, namely Q.

Thus if we want to investigate for example the factorization properties of gener-
alized Gaussian integers of the kind

G = { a+ b
√
−3 / a, b in Z },

then we need to place ourselves within the number field

Ω = { a+ b
√
−3 / a, b in Q }.

Within Ω we need to consider the collection D of all its the algebraic integers and
it is here, not in G, that the correct laws of factorization will appear. Given that
G ⊆ D, we will have obtained the factorization laws will apply to G.

Thus, Dedekind’s first important insight is to have identified the correct domain
where factorization has to be investigated. Dedekind’s second important insight
was to define the correct tool with which to do so. This is where the ideals make
appearance. Dedekind based his entire approach on handling collections of numbers
and their properties as collections (mostly inclusion properties) rather than looking
at the individual numbers and their properties. This proved to be a crucial decision.
In the case of ideals, he proceeded by considering the properties of the collection
i(δ) of multiples of an algebraic integer δ in a number field. He pointed out the
following two seemingly obvious ones:

• If α and β both belong to i(δ), then both α+β and α−β must also belong
to i(δ);
• If β belongs to i(δ) and x is any integer in the domain considered, then β

x must also belong to i(δ).

Dedekind called this collection i(δ) the principal ideal generated by δ. It is obvious
that by studying the properties of such collections we will gain insight into the fac-
torization properties. What is less obvious is that, side by side with the principal
ideals, there are other collections of algebraic integers which are not principal ideals
but do satisfy the same two properties and that they will be of help for understand-
ing factorization in its broadest setting. Thus, Dedekind defined an ideal M to be
any collection of algebraic integers satisfying the following two properties:
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(1) If α, β ∈M , then α+ β ∈M and α− β ∈M ;
(2) If β ∈M and x is any integer in D , then βx ∈M .

Working out the details of a theory of ideals meant, above all, defining operations
among the ideals, identifying properties of specific kinds of ideals (such as “prime
ideals”) and, of course, formulating generalized versions of the fundamental theorem
of unique factorization as known to hold in the basic case of Z. The various versions
of the theory that Dedekind published along the years were meant to make the
theorems less and less dependent on the need to choose specific representatives in
the collection of numbers considered. The aim was to come up with proofs which
would ideally be formulated solely in terms of the collections themselves. This was
a quest for increasingly “structural”, and less “computational” understanding of
the mathematics involved here.

Let me give focus on a specific example in order to clarify this point. This involve
some technicalities. As already mentioned, Dedekind’s work was published in suc-
cessive versions of a supplement to Dirichlet’s Vorlesungen. This was very typical
of Dedekind, who used to continuously reelaborate, polish and republish his results
along the years. This is also very helpful for understanding the historical develop-
ment of his ideas. One issue in which this development is particularly noticeable is
the issue of prime ideals and of their multiplicities. In the first published version
of his theory, dating from 1871, he formulated the main factorization theorem as
follows:

Every ideal is the l.c.m. of all the powers of prime ideals that
divide it.[7, Vol. 3, p. 258]

The terms and concepts as used by Dedekind require some explanation, especially
in what concerns the idea of the “power “ of an ideal. Thus, an ideal A is for
Dedekind a multiple of another ideal B (or “is divisible by B”) whenever A ⊆ B.
Remarkably, when speaking of the fields, Dedekind used the opposite notation, so
that a field K’ is a multiple of another field K whenever K ⊆ K ′. This is just
another hint (albeit subtle) to the different status that Dedekind accorded to these
two different mathematical entities. An ideal P is prime if its only divisors are
itself and the ideal U, U being i(1) (or the collection of all algebraic integers in
the field considered). Notice that in present-day terms, Dedekind’s prime ideals
are called “maximal ideals”, while an ideal is called nowadays prime if for any
product of ideals contained in it, at least one of the factors is also contained in it.
Domains in which every ideal can be uniquely written as a product of prime ideals
are called nowadays “Dedekind domains”. It was Noether, of course, who indicated
the importance of such domains.[4, pp. 225–237] It can be proved that a Dedekind
domain is a Noetherian ring with unit, which is also integrally closed, and in which
any non-zero prime ideal (in the second sense of the term) is also maximal.[17,
pp. 600 ff.]

So, how did Dedekind define the “power” of an ideal at this stage? In order to
do this he needed first to generalize for ideals the concept of “norm” that Kummer
had introduced for ideal numbers. Thus, since an algebraic integer η in D is a root
of a polynomial of degree n with integer coefficients, let η2, η3, . . . ηn be the other
n − 1 roots of the same polynomial. Then, the product N(η) = η · η2 · . . . · ηn is
called the norm of η. In the second place he needed a more workable definition of
prime ideals, and he thus introduced the following, equivalent alternative definition:
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An ideal P is prime if for every product αβ ∈ P , either α ∈ P or
β ∈ P .

It is easy to see why this definition would characterize a prime ideal in Dedekind’s
setting, but it is also important to understand why Dedekind would not be satisfied
with it and would try to eliminate it form future versions of the theory. The reason
is that the definition involves the choice of particular numbers within the ideal. At
this point, however, he had no better strategy, and with the help of this definition
he could introduce the notion of “simple ideals” which he needed for handling
multiplicities. For one thing, using this defintion he could prove the following
result:

Let µ be any non-zero integer such that N(µ) 6= 1. Then there
exists a number ν, such that if P is the collection of all roots π of
the congruence νπ ≡ 0 (mod µ), then P is a prime ideal.[7, Vol. 3,
pp. 255-256]

And now, once again, Dedekind turned this property of P into a definition:

A prime ideal P is said to be “simple” if there exists a number
ν ∈ P , such that for any number π ∈ P , νπ ≡ 0 (mod µ), where µ
is any non-zero integer such that N(µ) 6= 1.

These simple ideals are convenient since they allow for a rather strighforward
defintion of powers. Indeed, given a simple ideal P and an integer µ as above, then
clearly also N(µr) 6= 1. Thus:

Given any rational integer r, the roots of the congruence νπ ≡
0 (mod µr) also constitute an ideal; this ideal is called the r -th
power of the prime ideal P.

This is a useful definition, no doubt, but notice that in order for it to make sense it
is necessary that the power r depend only on the ideal P, and not on the particular
choice of the pair µ, ν. Dedekind proved that this is the case (with a minor mistake
in the proof that he later corrected).[7, Vol. 3, p. 419] And yet, the definition still
requires considering specific members in the ideal, as do the following fundamental
properties that are needed to prove the main factorization theorem:

(1) If s ≥ r, then P r divides P s.
(2) For every integer µ, there is always a highest power r of P such that µ is

contained in P r (or “a highest power of P in µ”).
(3) If P r and P s are the highest powers of P in µ,η respectively, then P r+s is

the highest power of P in µη.
(4) P is the only prime ideal which is a divisor of all powers of a given simple

ideal P.
(5) If all the powers of a (non-zero) prime simple ideal containing a given integer

µ 6= 0, also contain an integer η, then η is divisible by µ.

Since the collection of all multiples of an integer µ constitute the principal ideal
i(µ), this last, fundamental property can be equivalently formulated as follows: ev-
ery principal ideal i(µ) is the l.c.m. of all powers of simple ideals containing µ.
To conclude this series of results, Dedekind also showed that every prime ideal is
indeed a prime simple one, and thus one may finally speak only of prime ideals,
while forgetting about the simple ones. Further, if all the powers of the prime ideals
that divide a given ideal M, divide also the principal ideal i(δ), then M divides the
principal ideal i(δ). With this results at hand he was able to prove the fundamental
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factorization theorem as formulated above.

Dedekind’s definition and use of simple ideals in order to deal with multiplicity
of factors in the first version of his theory epitomizes the inherent reasons for at-
tempting improved versions. Simple ideals were not defined through an abstract
property, as a special class of prime, or of other kind of ideals, but rather as col-
lections of integers satisfying a specific kind of congruence which required selecting
specific numbers. Dedekind was able to couch his new factorization theorem in
ideal-theoretical language, but in an important sense he was continuing with the
the traditional outlook which he wanted to overcome. Dedekind worked hard in the
subsequent versions in order to omit this concept as well as some other similar ones.
For lack of space, I will not give any details about the interesting ways in which
Dedekind transformed his concepts and his results. The interested reader will find
such a detailed account in my book. Still, it is interesting to illustrate with a brief
example taken from a later version, published in 1879.

Important progress was made when Dedekind reformulated the main concepts
and theorems in terms of the product of two ideals. Dedekind had introduced this
concept in the first version, but for some reason he did it just as an afterthought
which he did not incorporate into the main body of results. Thus, given two ideals
A,B then their product AB is nothing but the ideal containing all numbers of the
form ab where a ∈ A and b ∈ B. In this terms he now dealt with primes ideals in
terms of the basic property that if a product of ideals is divisible by a prime ideal
P, then at least one of the factors is divisible by P. Curiously, Dedekind continued
to refer to specific numbers even when he could do without them. Thus for instance
in the following result:

An ideal A (or a number α) is divisible by an ideal D (or a number
δ) if and only if all the powers of prime ideals of D (or of δ) appear
also in A (or in α).[7, Vol. 3, p. 312]

In the last published version of the theory the product of ideals was the starting
point of the discussion and moreover, based on it, Dedekind actually defined a
complete arithmetic of ideals, including operations such as division and negative
powers. This allowed him to avoid defintions and proofs based on choices of specific
numbers and to develop a theory with a distinct structurally-oriented flavor. An
emblematic results found in this version is the following:

Given a chain of modules A1, A2, . . . An, . . . contained in a given
finitely-generated module N, and such that Ai is contained in Ai+1

for all indexes i, then there is an index k such that Ai = Ak, for
all k > i.

This is already quite close to the kind of formulations that one may find later
on in the work of Noether, particularly because of what appears here as an early
version of the ascending chain condition (a.c.c.). Even more clear is the approach
that arises in a theorem where this condition is applied. Dedekind defined the
Ordnung of an ideal A as the quotient A:A, and he proved the important result
that an algebriac number is an algebraic integer if and only if it is contained in the
Ordnung of some ideal A. The proof relies on constructing a determinant whose
rows contain the coordinates of a specific set of numbers, with respect to a given
basis. Dedekind stated that “this proof is not satisfactory because it depends upon
specific choices of numbers, and, moreover, because the theory of determinants is
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alien to the proper content of the theorem.”[7, Vol. 3, p. 527]. Moreover, from
there he reformulated a partial version of the theorem which he then proved using
the chain condition that he had previously introduced.

Dedekind’s methodological choices were well-conceived and he was rather con-
sistent in applying them. But it is also important to understand that they were
quite sui-generis for his time and that they were not shared by many. Viewing
the theory of determinant as alien to the investigation of factorization laws was
a very strong statement at the time. Emmy Noether would be among the few
who initially adopted the abstract and structural guidelines of his work and under-
stood how powerful they could be if systematically applied in algebraic research.
Among his contemporaries, Dedekind’s views created reticence and his ideas were
not always fully understood. Even among those mathematicians who were closer
to him, his approach was sometimes received with suspicion. Clear evidence for
this appears in a letter of 1893 written by Ferdinand Georg Frobenius (1849–1917)
to Heinrich Weber (1843–1912), two mathematicians who were in close interaction
with Dedekind. Weber was at the time writing a textbook on Algebra that be-
came the standard one at the turn of the century, and Frobenius wrote to him the
following:

Your announcement of a work on algebra makes me very happy...
Hopefully you will follow Dedekind’s way, yet avoid the highly
abstract approach that he so eagerly pursues now. His newest
edition (of the Vorlesungen) contains so many beauty ideas, . . . but
his permutations are too flimsy, and it is indeed unnecessary to
push the abstraction so far. I am therefore satisfied, that you
write the Algebra and not our venerable friend and master, who
had also once considered that plan.

3. Dedekind’s Fields and Hilbert’s Numbers

Dedekind was not the only mathematicians who undertook to develop Kummer’s
ideas further into the more general realms of fields of algebraic numbers. Also
Leopold Kronecker (1823–1891) played a key role in this important mathematical
quest. In their respective works, Dedekind and Kronecker mutually complemented
the theorems, proofs and techniques elaborated by each other. At the same time,
they represented two rather different, and to some extent even opposed, mathemat-
ical approaches. Kronecker represented what may be called a more “algorithmic”
approach, whereas Dedekind was the quintessential representative of the so-called
“conceptual” approach. This is not intended to mean that Kronecker introduced no
new, abstract and general concepts or that he derived no results from an adequate
use of them. Nor is it meant to imply that one finds no computations in Dedekind.
Rather, I refer to a matter of preferences. Of particular importance is the fact that
Dedekind’s perspective allowed for the indiscriminate use of infinite collections of
numbers defined by general abstract properties, whereas Kronecker insisted on the
need to prescribe the specific procedures needed to generate the elements of such
collections and to determine whether or not two given elements were one and the
same. Dedekind did not seek or require such procedures whereas Kronecker did not
consider it legitimate to ignore them.

A decisive factor in transforming Dedekind’s approach into the dominant one
in algebraic number theory and related fields at the turn of the twentieth century
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(especially within the German context) was the publication in 1879 of Hilbert’s
Zahlbericht.[14] This “Report on Numbers” was initially commissioned by the DMV,
the Association of German Mathematicians, as an up-to-date overview on the state
of the art in the discipline. Hilbert indeed summarized the work of his predecessors
but he also added many new results and sophisticated techniques that opened
new avenues for research. These avenues were indeed pursued by many leading
researchers in the decades to come. The choices made by Hilbert were strongly
influenced by both Dedekind and Kronecker. Still, Hilbert allowed for a clear
emphasis on the “conceptual” perspective embodied in the work of the former, over
the “algorithmic” one of the latter.

Hilbert was keen on making explicit the significance of this emphasis. Thus he
famously wrote in the introduction:

It is clear that the theory of these Kummer fields represents the
highest peak reached on the mountain of today’s knowledge of
arithmetic; . . . I have tried to avoid Kummer’s elaborate compu-
tational machinery, so that here too Riemann’s principle may be
realized and the proof completed not by calculations but purely by
ideas.[16, p. ix]

The approach underlying the Zahlbericht follows very closely most of Dedekind’s
definitions and realizes in a similar way the interrelation among the basic concepts
and tools found at the heart of the theory. In addition, Hilbert was the first to use
the term “ring” in this context, but his definition was meant to refer to a specifically
number-theoretic (rather than abstract and general) situation: a ring is a system of
algebraic integers of the given field, closed under the three operations of addition,
subtraction and product.[14, p. 121] Hilbert also defined an ideal of a ring as any
system of algebraic integers within the ring, such that any linear combination of
them (with coefficients in the ring) belongs itself to the ideal.

Hilbert quoted in this context several results from Dedekind’s theory of ideals of
algebraic numbers. But like Dedekind before him, Hilbert’s account did not suggest
a more general notion of an “algebraic structure” the various instances of which
should be investigated from a common perspective. He did not describe a ring as a
group endowed with a second operation, or as a field whose division fails to satisfy
a certain property. Such concepts were introduced in the text so as to be used in
the specific setting relevant to each of them. Hilbert’s ideals were always specific
collections of algebraic numbers within fields of complex numbers rather than a
distinguished kind of sub-ring.

Likewise remarkable is the fact that, in spite of his direct involvement with the
theory of polynomials in the earlier stages of his career and his acquaintance with
the main problems of this discipline,[13] Hilbert never attempted to use ideals as an
abstract tool allowing for a unified analysis of factorization equally applicable both
in fields of numbers and in systems of polynomials. This step, crucial for the later
unification of the two branches under the abstract theory of rings, was first taken
more than twenty years later by Noether. Obviously, the absence of such a step in
Hilbert’s work or in Dedekind’s theories was not so much a consequence of technical
capabilities, as it is one of motivations: an indication of the nature of their overall
disciplinary conception of algebra, to which the general idea of algebraic structures
as an organizing principle was foreign.
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4. Hilbert’s Axiomatization

Defining the main objects of enquiry in algebraic theories by way of abstract pos-
tulates is one of the basic methodological traits that we typically associate with
modern structural algebra. In the British context such a trend was part of a
well-entrenched tradition dating back to the mid-nineteenth century. It comprised
the works mathematicians such as George Peacock (1791–1858), Duncan Gregory
(1813–1844), Augustus De Morgan (1806–1871) and William Rowan Hamilton
(1805–1865). But this British tradition was not part of, and was not soon to
connect with, the kinds of developments that we are considering here. Within the
German context, of course, one cannot discuss the issue of axiomatization without
referring to Hilbert. His name has become inseparably associated, among many
other things, with the “modern axiomatic approach”, which in turn has been fre-
quently linked to the view of mathematics as a formal game with symbols devoid of
intrinsic meaning. A careful historical analysis of Hilbert’s views, however, presents
us with a more complex picture, the understanding of which is necessary within the
present account.[3]

Hilbert developed his axiomatic method as a powerful and necessary tool for
elucidating the deductive structure of existing, well-elaborated scientific theories,
and for enhancing the ability to further develop them in view of possible concep-
tual difficulties. He did not consider his method as a purely formal tool to be used
as starting point for developing new theories. As intended objects of application,
he had in mind, above all, the classical theories of nineteenth-century mathemat-
ics and physics: geometry, arithmetic, mechanics (both classical and statistical),
electrodynamics, and so on. Crucial for understanding his outlook is the following
quotation taken from a lecture of 1905 in Göttingen:

The edifice of science is not raised like a dwelling, in which the foun-
dations are first firmly laid and only then one proceeds to construct
and to enlarge the rooms. Science prefers to secure as soon as pos-
sible comfortable spaces to wander around and only subsequently,
when signs appear here and there that the loose foundations are
not able to sustain the expansion of the rooms, it sets about sup-
porting and fortifying them. This is not a weakness, but rather the
right and healthy path of development. (Cited in [4, p. 162].)

His famous treatise on the foundations of geometry [15] has to be understood from
this perspective. This was not an attempt to turn this field of knowledge into a
formal game with empty symbols. Indeed, Hilbert’s conception of geometry was
essentially empiricist. It is from this perspective that we can also make sense of his
enquiries into the foundations of physical theories.[5] In his work on the foundations
of arithmetic, which came somewhat later, Hilbert did suggest a formalist approach
but only as a device specifically crafted for the intended aim of achieving a finitist
proof of consistency. This should not be taken as expressing an overall view about
the essence of mathematics.

In his work in number theory, as well as in the theory of invariants, Hilbert went
as far as possible in carefully sorting out the foundational principles of the impres-
sive edifices that had been built by his predecessors. In doing so he came forward
with notions and methodological principles that turned out to be fundamental for
establishing the structural approach to algebra. But his own conceptions never
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followed this direction, in the sense championed by Noether, as a preferred one for
the discipline. His work retained many of the essential features that characterized
the classical, nineteenth-century views of the discipline, albeit taken to their most
elaborate manifestations.

For example, Hilbert showed no interest in works related to the trend of “pos-
tulational analysis”, that used his techniques for analyzing axiomatic systems, but
which focused on the systems of axioms as such rather than on the ways in which
they provided a grounding of well-developed theories.citescanlan In 1914 Abraham
Fraenkel (1891–1965) , for instance, came forward with a definition of rings in terms
as abstract postulates.(see below section 6). It is remarkable that we have no record
of Hilbert expressing any interest on Fraenkel’s definition, or on other works that
went the same way.

It is also illuminating to take a look at the kinds of doctoral dissertations that
Hilbert supervised (no less than sixty-eight throughout his career). Remarkably,
not one of the dissertations dealt with topics that later came to be connected with
modern algebra—such as abstract fields, rings, or the theory of groups in any of its
manifestations. No less remarkable is the fact that, although five among the twenty-
three problems that Hilbert included in his famous list of 1900 can be considered
in some sense as belonging to algebra in the nineteenth-century sense of the word,
none of them deals with problems connected with more modern algebraic concerns,
and in particular not with the theory of groups or for the theory of ideals.

Perhaps the most striking remark that can be mentioned in this regard is that
we do not have any record of Hilbert reacting to either Noether’s work on rings or
to van der Waerden’s textbook Modene Algebra written under her direct influence
(see below section 7). In the case of van der Waerden one may perhaps take into
consideration the advanced age and poor state of health of Hilbert by 1930, the time
of publication of the book. In the case of Noether, however, absence of publicly
recorded reaction is truly remarkable. Hilbert’s appreciation for Noether’s abilities
were enormous and he spared no efforts to promote her career. Hilbert and Noether,
moreover, closely collaborated before 1920 in matters related to the general theory
of relativity. When it came to her work on factorization in abstract rings, however,
what we find is silence. I do not mean to imply that Hilbert was hostile to the kind
of work that Noether was doing. He may have been positive about it, given that her
articles of 1920 and 1926 appeared in the Mathematische Annalen, a journal whose
policy Hilbert continued to dominate until the early 1930s. Still, the fact is that,
in all what concerns ideals in abstract rings as a tool to investigate questions of
factorization, Hilbert never became actively involved in any kind of activity related
to her ideas and those of her circle, nor publicly expressed his interest in it.

5. Steinitz’s Abstract Fields

A main turning point in this story came in 1910 with the work of Ernst Steinitz
(1871–1928) on abstract fields. No doubt, this was a work that provided a direct
source of inspiration for Noether. In order to understand its impact, we must first
discuss briefly the classical locus for the early axiomatic definition of fields. The
first place where fields were defined by means of postulates as an abstract group
endowed with a second operation was in an article of 1893 by Heinrich Weber.[29]
Strongly influenced by Dedekind’s approach to Galois theory for algebraic equations
(see below in section 8), Weber’s article was devoted to presenting this theory in the
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most general terms known to that date. It introduced all the elements needed for
establishing in general terms the isomorphism between the group of permutations
of the roots of the equation and the group of automorphisms of the splitting field
that leave the elements of the base field invariant.

Weber’s joint discussion of groups and fields within one and the same framework
suggested in a natural way the convenience of adopting an abstract formulation for
both of them. Moreover, it stressed the importance of the interplay between what
we can retrospectively see as the structural properties of both entities. Nevertheless,
it is remarkable that, for all what seems innovative in it, this article had minimal
direct influence on the algebraic research of other, contemporary mathematicians.
Even more strikingly, it did not even influence the perspective adopted in Weber’s
own Lehrbuch der Algebra [30], whose first volume appeared in 1895, and which
soon became a standard text in the field (until the publication in 1930 of van der
Waerden’s book). While it included many of the most important recent advances
in algebra and the awareness to the possibility of defining central concepts by
means of abstract postulates, this textbook preserved the main traits of the classical
nineteenth-century image of algebra as the science of polynomial equations and
polynomial forms.

The subject matter of Steinitz’s article, “Algebraische Theorie der Körper”, were
the abstract fields as defined by Weber in 1893. The aim of the investigation,
however, diverged significantly. In Steinitz’s own words:

Whereas Weber’s aim was a general treatment of Galois theory,
independent of the numerical meaning of the elements, for us it is
the concept of field that represents the focus of interest. . . . The
aim of the present work is to advance an overview of all the pos-
sible types of fields and to establish the basic elements of their
interrelations.[25, p. 5]

Steinitz also explained in detail the steps to be followed in order to attain this
aim. First, it is necessary to consider the simplest possible fields. Then, one must
study the methods through which from a given field, new ones can be obtained by
extension. One must then find out which properties are preserved when passing
from the simpler fields to their extensions.

The main source of inspiration for Steinitz’s work came from the original research
that Kurt Hensel (1861–1941) had conducted on the thoery of p-adic numbers. The
reason for this is that p-adic numbers embodied a truly new kind of entity, full of
mathematical meaning and interest, “which counts neither as the field functions
nor as the field of numbers in the usual sense of the word.” Moreover, the p-adic
numbers do not comprise a field of numbers located somewhere between Q and C as
had been all the number fields theretofore investigated. These numbers represented
something totally new, which nevertheless shared some important properties with
the better known domains of algebraic numbers, and this was precisely the kind of
properties that Steinitz wanted to investigate in his abstract theory.

A central concept, whose importance Steinitz claimed to have realized while
studying Hensel’s theory, was that of the characteristic of the field. Weber in 1893,
for instance, may have envisaged the possibility of considering fields of characteristic
other than zero, but he certainly did not see the importance of pursuing it, and he
did not have a clue on its possible significance. Steinitz showed for the first time
that any given field contains a “prime field” which is isomorphic, according to the
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characteristic of the original field, either to the field of rational numbers or to the
quotient field of the integers modulo p (p prime). Then, after thoroughly studying
the properties of these prime fields, he proceeded to classify all possible extensions
of a given field and to analyze which properties are passed over from any field to
its various possible extensions. Since every field contains a prime field, by studying
prime fields, and the way properties are passed over to extensions, Steinitz would
attain a full picture of the structure of all possible fields.

Steinitz’s article embodies, in a nutshell and limited to the specific case of fields,
the gist of the structural conception of algebra. As we will see now, in his articles
on abstract rings, Fraenkel simply followed on Steinitz’s footsteps example and
asked very similar questions about the new abstract notion that he proposed to
investigate. Emmy Noether then pursued the same lead in her work on ideals and
factorization, taken it to its full-blown expression. Finally, Van der Waerden’s book
may be seen as the extended application of this paradigm to the entire discipline
of algebra, considered now as the systematic investigation, form a unified point of
view, of the whole variety of the different kinds of structures.

6. Noether’s Abstract Rings

All of the important work done before Noether on questions related with factoriza-
tion focused on fields of algebraic numbers which are sub-fields of C. Accordingly,
all the results were derived from the known properties of the real and complex num-
bers. Steinitz’s contribution signified a change of seminal importance and yet he did
not change the basic assumptions of the theory concerning the domains of algebraic
numbers in which factorization was investigated. In the theory of polynomials, on
the other hand, specific factorization theorems had also been proven and special
techniques had been developed in the works of Hilbert, as well as in those of Em-
manuel Lasker (1868–1941) and Francis Sowerby Macaulay (1862–1937) [13, 19, 20].
These results were proved while relying on specific properties of polynomials, which
themselves derived from those of the real and complex numbers.

On the wake of Dedekind’s work on algebraic fields, the role of ideals as a main
tool for elucidating phenomena of factorization had become increasingly clear over
the ensuing decades. Still, these ideals continued to be conceived as specific collec-
tions either of numbers within C. The general concept of a ring, in turn,appeared
as an offshoot of the idea of p-adic numbers. If instead of a prime number p, a com-
posite number g is used as the basis for representing numbers the way Hensel did,
a system is obtained where divisors of zero do appear. Hensel thought that such
systems are devoid of interest, whereas his student Fraenkel undertook the exercise
of formulating general axioms that define an abstract system with two operations,
one of which does not necessarily comprise inverse elements.[11] Fraenkel’s articles
on this topic, however, remained at the most elementary level and did not attempt
to use the general notion of ring as a tool for actual research.[2]

Against this background, Noether was the first to realize that rings, taken as a
concept that may be defined in abstract terms via formal axioms, could provide a
convenient conceptual framework for a general theory of ideals and factorization.[22,
23] Her work differed from Dedekind’s in the greater generality of her results and
in the much clearer axiomatic presentation of the ideas. Whereas Dedekind had
opened the way to generalized factorization theorems by introducing new concepts,
built by focusing on certain characteristic collections of algebraic numbers, Noether
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advanced one step forward and abandoned the restrictive framework of systems of
numbers. She reformulated many of Dedekinds concepts in terms of collections of
abstract elements of a formally defined ring. In these terms, she re-elaborated many
of Dedekind’s central results by focusing on properties of ideals in the ring such as
the ascending chain condition (a.c.c.). Thus, her main factorization theorem was
formulated as follows:

In a ring with a.c.c. every ideal is representable as the reduced
intersection of a finite number of indecomposable ideals (which
are also primary); the number of such ideals and the collection of
associated prime ideals is invariant for every given ideal, though
probably the specific primary ideals used for the factorization are
not.[22]

Both Dedekind and Hilbert had formerly identified the importance of such prop-
erties in the context of their earlier research on fields of numbers, but they had
not pursued it systematically. At variance with them, Noether now conceived and
applied chain conditions in the framework of her abstractly formulated theory. The
very concept of ring was still so alien to contemporary mathematicians, that in her
first article of 1921 Noether felt it necessary to prove its most elementary properties
(e.g., that the identity element for multiplication in a ring is unique).

Over the later years of her life, Noether became interested in the non-commutative
cases, thus pushing some of the central traits of her work into their most extreme
expression. In the non-commutative case it is somewhat limitative to rely on the
properties of the operations defined on the individual elements of the abstract ring.
Decomposition theorems in this case are best proved purely in terms of inclusion
properties of sub-domains. Proofs of this kind should reveal, in Noether’s view, the
real structure of the ideals of the ring.

Noether’s abstractly conceived concepts provided a natural framework in which
conceptual priority may be given to the axiomatic definitions over the numerical
systems considered as concrete mathematical entities. With Noether, then, the
balance between the genetic and the axiomatic point of view begins to shift more
consciously in favor of the latter. This new balance was a necessary condition
for the redefinition of the conceptual hierarchies, and for the establishment of a
new image of knowledge. The notion of a structure would now dominate algebraic
research and the various number systems would appear as particular instances of
it. Nevertheless, Noether’s axiomatic conception, perhaps because of her own deep
acquaintance with the classical aims of concrete algebraic research, remained close
to Hilbert’s own. For Noether, the axiomatic analysis of concepts is only one of two
complementary aspects, rather than the exclusive essence of mathematical research.
Thus she was quoted as saying:

In mathematics, as in knowledge of the world, both aspects are
equally valuable: the accumulation of facts and concrete construc-
tions and the establishment of general principles which overcome
the isolation of each fact and bring the factual knowledge to a new
stage of axiomatic understanding. (Quoted in [4, p. 249])

Noether pursued the study of abstract rings as an object of interest in itself and
used it as the main conceptual framework of algebra. Her work was designed along
the lines of Steinitz’s treatment of abstract fields ten years earlier. But she had
a greater overall impact on algebra than Steinitz, if only because it showed that
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Steinitz’s program applied not only for the particular case worked out by him, but
for many other significant cases as well. Whereas group theory was the first alge-
braic discipline to be abstractly investigated, field theory became the first discipline
that arose from the research of numerical domains into an abstract, structural sub-
ject. Subsequently, research on ideals in an abstract ring, as pursued by Noether,
consolidated the idea that a more general conception lay behind all of this: the
conception that algebra should be concerned, as a discipline, with the study of
algebraic structures in general.

The intrinsic mathematical virtues of Noether’s work appear as obvious in ret-
rospect, but it also seems clear that the great influence that she was able to exert
can be explained by the quantity and the quality of her Göttingen students.[18]
Neither Dedekind, nor Steinitz, Fraenkel, Lasker or Macaulay—regardless of their
personal abilities, or lack thereof, to create a stable group of students around them
and to communicate to them their own ideas—could ever have profited from the
opportunity to work out their research in conditions similar to those enjoyed by
Noether in Göttingen with some many brilliant students and collaborators around
her.

7. Van der Waerden’s Moderne Algebra

Fundamental for understanding the impact of Noether’s work in algebra is to turn
attention to the seminal textbook published in 1930 by the Dutch mathematician
Bartel Leendert van der Waerden (1903–1996) under the title of Moderne Algebra.
This textbook signified a true paradigm-shift in the way that the discipline of
algebra, its aims and methods, was conceived. Like many other good textbooks, this
one presented a synthesis of a large number of recent works that called for a unified
and systematic presentation of the topics it considered. But as van der Waerden
himself indicated, algebraic knowledge had not only grown dramatically over the
preceding decades. A fundamental change had also affected the very understanding
of the discipline as a whole. He thus wrote:

The recent expansion of algebra far beyond its former bounds is
mainly due to the “abstract”, “formal”, or “axiomatic” school. This
school has created a number of novel concepts, revealed hitherto
unknown inter-relations and led to far-reaching results, especially
in the theories of fields and ideals, of groups and of hypercomplex
numbers. The chief purpose of this book is to introduce the reader
into this whole world of concepts.[27, p. 9] (Italics in the original).

But in his book, van der Waerden did much more than just introducing the reader
into a new world of concepts and innovative techniques. His presentation involved
an original insight of far-reaching consequences, namely, the realization that a cer-
tain family of abstract mathematical notions (groups, rings, fields, etc.), defined via
sets of formal axioms, should be best seen as comprising various instances of one and
the same underlying idea, namely, the general idea of an algebraic structure. Under
the new approach pursued in the book, the aim of algebraic research would become
now the in-depth elucidation of the individual kinds of structures, based on the
recurrent use of several common fundamental concepts, questions and techniques
(e.g., isomorphisms, homomorphisms, quotients, residue classes, composition series
and direct products, etc.), and the search after similar kind of mathematical results
concerning each of them. Strange as it may sound nowadays, this fundamental
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insight had not been definitely achieved, let alone in a textbook, before van der
Waerden’s.

It is important to emphasize that nowhere in the book did van der Waerden state
what is an algebraic structure, either at the general, non-formal level or by means
of the introduction of some rigorously defined mathematical concept. Rather, he
just worked out in detail, chapter after chapter, the basic concepts and properties
relevant to each of the domains he included under the general notion of structure.
Neither did he specify a list of main tools to be repeatedly used in the investigation
of the individual structures. Rather, he just put to work these tools under a single
methodological perspective, thus yielding a unique and innovative view of what
algebra is all about.

One fundamental innovation implied by van der Waerden’s approach was a re-
definition of the conceptual hierarchy underlying the discipline of algebra. The
various system of numbers were not considered here, as was the case with previous
textbooks, as the underlying foundation over which the entire edifice of algebra,
including the properties of polynomials, was to be erected. Rather, it was the other
way round. The real or the rational numbers were now conceived as particular
cases of abstract algebraic constructs. The concept of a field of fractions could
be defined, for instance, for integral domains in general, and the rational numbers
were thus realized as a particular case of this general kind of construction. Real
numbers were defined in purely algebraic terms as a “real field”. Additional, non-
algebraic properties such as continuity or density could simply be ignored as part
of the characterization of the real numbers in the newly defined algebraic context.

The task of finding the real and complex roots of an algebraic equation and of
understanding their mutual interrelations, which had been the hard core of algebra
over the previous century, was relegated in van der Waerden’s book for the first
time to a subsidiary role. Three short sections in his chapter on Galois theory
dealt with this specific application of the theory, and they did so without assuming
any previous knowledge of the properties of real numbers. The new conceptual
hierarchical underlying this structural view of algebra was illuminatingly visualized
in a diagram (Leitfaden) appended to the Table of Contents, that indicated the
logical interdependence of the chapters (Figure 1).

Van der Waerden had become acquainted with this world as a student of Noether
in Göttingen and of Emil Artin (1898–1962) in Hamburg. A considerable part of
the contents of the book was directly taken from their lectures. The main influence
of Artin came through his innovative and strikingly structural approach to Galois
theory and his work on “real fields”. His influence on van der Waerden cannot be
underplayed. But clearly the decisive one came from Noether.[28] Indeed, van der
Waerden was but one of the many brilliant students that studied with Noether at
Göttingen and that helped put forward her ideas and understanding their actual
impact and scope.

8. Dedekind’s Ideals and Dedekind’s Cuts

In this final section, I would like to return to Dedekind and to asses the sig-
nificance of his work on ideals from a broader perspective concerning his work
in general. The perspective afforded by the image of algebra as a discipline of
structures, as embodied in van der Waerden’s book, may mislead us when trying
to assess the significance of some important developments in nineteenth century
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Figure 1. van der Waerden’s Leitfaden

mathematics. Ideals and matrices, for instances, fall after 1930 under the common
notion of an algebraic structure, but their historical developments followed separate
paths whose eventual convergence could not have been envisaged at the time when
they were evolving (see, e.g., [1]). Likewise, the history of number theory after
Gauss can be traced along diverging paths of development. The path outlined in
the previous sections, and which involved Dedekind, Kronecker and Hilbert, was
accompanied by others, no less influential.[12] Likewise, Dedekind’s work on ideals,
even as it played a central role in the way that the discipline would eventually be
conceived after Noether, is more adequately understood within the context of some
other works of Dedekind himself.

The perspective that I want to suggest, as the proper one to understand of
Dedekind’s work on ideals in its proper historical context is the one that takes into
account similar efforts that he devoted in his work on other systems of numbers.
Dedekind came up with three different mathematical theories intended as laying the
foundations of specific domains by means of a general conceptual tool specifically
conceived for each of them. These were (1) “ideals” as the tool to analyze the
question of factorization in domains of algebraic numbers, (2) “cuts” as the tool to
analyze the question of continuity in the domain of real numbers, and (3) “chains”
as the tool to analyze the question of induction in the domain of natural numbers.
To a large extent we can also see Dedekind’s approach to Galois theory in the same
vein, with “groups” appearing as the conceptual tool with the help of which one
could analyze the question of solvability by radicals in the theory of polynomials.

Dedekind’s theory of “chains” as a way to discuss the foundations of the arith-
metic of natural numbers appeared in a booklet first published in 1893 under the
title of Was sind und was sollen die Zahlen, or, roughly, What are numbers and
what should they be?.[9] For lack of space I will not go into any detail about this
work (see [6, pp. 257–259]). I want to devote here some more detailed comments to
Dedekind’s theory of cuts as a way to understand the broader context of his theory
of ideals, in a unified underlying methodology. Dedekind published his theory of
cuts in 1872, in a famous booklet entitled Continuity and irrational Numbers.[8]



DEDEKIND AND NOETHER 17

Figure 2. The straight line as a continuum

Dedekind sought to elucidate the riddle of continuity, and in particular the possi-
bility to understanding in what sense, whereas both Q and R are dense, only the
latter is taken to be continuous.

Dedekind started by considering the mathematical situation where the idea of
continuity is straightforward. He focused on some simple, acknowledged properties
which are evident in this situation, and then turned these properties into a defini-
tion. The natural candidate for doing this was the straight line, and the property
on which he focused as the one that makes the line a “continuous” mathematical
entity is both surprising and seemingly self-evident. Indeed, if we take any point
P on the line, we see that P divides the line into two parts, A1 to the right of P
and A2 to its left (see Figure 2). These two parts satisfy three simple geometric
properties:

(1) A1 and A2 are disjoint;
(2) The union of A1 and A2 (adding the point P to either A1 or A2) yield the

entire straight line;
(3) Any point a2 belonging to A2 is always to the left of any point a1 belonging

to A1.

Dedekind simply transferred this situation into the arithmetic domain by deifning
a “cut” in similar terms. Given any set of numbers S endowed with some relation
of order “<”, he defined a “cut” as a pair (A1, A2), of subsets of S , such that the
same three conditions hold:

(1) A1

⋂
A2 = φ;

(2) A1

⋃
A2 = S ;

(3) If a2 ∈ A2 and if a1 ∈ A1 then a2 < a1.

Now, much as the principal ideals were a straightforward case, so also here, if we
take Q as an already defined system of numbers, we can think of the straightforward
example of a cut (A1, A2) on Q generated by a rational number (e.g., 2):

A1 = {xεQ / x > 2}; A2 = {xεQ / x ≤ 2}.

This in itself does not take us too far away. But much the same as the strength of
the theory of ideals lay in the fact that besides the principal ideals there are also
ideals that are not principal, so also here we have cuts of Q, which are not generated
in the same straightforward manner as (A1, A2) above. Thus, for instance the cut
(B1, B2) defined as follows:

B1 = {xεQ / x > 0 & x2 > 2}; B2 = {xεQ / (x > 0 & x2 ≤ 2) OR x ≤ 0}.

This is the cut that allows constructing, out of the existing system Q, a new entity
not previously found in Q, and which we can call

√
2.

Dedekind went on to define R as the collection of all cuts that can be defined
on Q, and he also introduced in a natural way a full arithmetic of the cuts. In
particular, he was able to point out the sense in which R is continuous and Q is
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not, namely, that the cuts defined in R do not add any new number not already
found in the system.

A final important issue to consider, and that sheds additional light on the main
stresses of the present account, is the approach followed by Dednekind in his treat-
ment of Galois theory. In a series of lectures taught at Göttingen in 1856–57, he
was among the first to attempt a systematic clarification of the theory. Following
closely on Galois’s original approach, Dedekind stressed above all the parallel rela-
tionship between the Galois group and its subgroups, on the one hand, and the field
of rationals and its successive extensions by addition of roots, on the other hand.
But while Dedekind saw in the interrelations between subfields of the system of
complex numbers (and certainly not of abstract fields) as the main subject matter
of this theory, groups, on the contrary, afforded for him no more than a tool—a
very effective and innovative tool, to be sure, but still a tool.[4, pp. 76–80] This
remained his approach when he discussed the theory again in the introductory sec-
tion to his 1894 version of the theory of ideals. In this sense, fields and groups were,
in Dedekind’s treatment of Galois theory, different kinds of mathematical entities,
much in line with the classical conceptions that characterized nineteenth-century
German algebra.

I would like to conclude by summarizing as follows: Emmy Noether’s work on
ideals and factorization, as part of an abstract theory of rings, represented the peek
of a line of development that started with Dedekind. As fully deployed in van der
Waerden’s book of 1930, Noether’s view of algebra implied a new overall conception
of the discipline, where concepts such as groups, fields, modules, and rings are
seen as individual instances of a more general notion, that of algebraic structures.
This new conception implied also a fundamental change in the basic hierarchy of
ideas, whereby the various domains of numbers and the realm of polynomials loose
their conceptual priority as basic entities on which all of algebraic knowledge is
based. Instead, they become objects of study as particular cases of the more general
structures whose elucidation becomes now the main task of algebra. One cannot
exaggerate the importance of Dedekind as the initiator of the genealogy of ideas
that led to Noether’s innovations. And yet . . . not all of what pertains to her work
is already found in the work of Dedekind . . . Dedekind had indeed introduced many
of the basic ideas that will lead to the new conception of algebra, with important
consequences for mathematics at large. But Dedekind himself, as well as Hilbert
after him, remained within the core conceptions that characterized classical, late
nineteenth-century mathematics, and did not modify the basic conceptual hierarchy
underlying it. Fields and algebraic integers were seen as the basic entities and the
study of their properties was the subject-matter of “higher arithmetic”. Likewise
the study of polynomial forms, their invariants, and the question of theirr solvability
was the subject-matter of “algebra”. Ideals and groups were in this conception
a different kind of beasts: innovative, powerful tools, that allowed for a deeper
understanding of what for mathematicians like Dedekind or Hilbert remained the
fundamental entities of mathematics.
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