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A B S T R A C T

The effect of non-monotonic dose dependence of TL intensity on the irradiation dose has been reported in some
materials in the past. As opposed to the regular case in which the intensity of the emitted TL light increases
monotonically with the applied dose until it reaches saturation, in some reported cases, the light intensity
reached a maximum and then declined at higher doses. The effect has been explained by using an energy level
model including two electron traps and two hole centers competing with each other, thus yielding the effect. In
the present work we show that with the use of certain sets of trap and center parameters, the effect can be seen
with a reduced model of one trapping state and two recombination centers. Also, in recent years some experi-
mental results showed more complex non-monotonic dose dependence, namely that following a maximum in the
dose-intensity curve, and a certain range of decline, the TL intensity starts to increase again with the dose. We
offer a new physical model that may explain this wiggly dose dependence. The energy-level diagram we propose
is the same as before, with one electron trap and two kinds of recombination centers, one of which is radiative. In
addition, we assume that the high energy radiation can produce more defects in the material which form more
radiative recombination centers, this in addition to the filling of new and existing traps and centers by the
irradiation. We consider the simultaneous differential equations governing the processes during irradiation,
relaxation and heating with the variable dose-dependent concentration of the radiative recombination centers.
We solve the equations numerically and by an analytical way with plausible approximations. The wiggly dose
dependence results with certain sets of the relevant parameters.

1. Introduction

The dose-dependence curve of thermoluminescence (TL) intensity is
usually a monotonically increasing function which, ideally starts line-
arly. In many cases, at higher doses the curve gets sublinear when the TL
maximum intensity approaches saturation. At high doses, the intensity
usually approaches saturation which is explained to be the result of
trapping states and/or recombination centers being filled to capacity so
that further irradiation does not contribute anymore to additional in-
crease in the measured TL.

Rather early in the study of TL, an effect of non-monotonic dose
dependence has been found in several materials and following different
irradiations. After the TL intensity reached a maximum, at higher doses,
the intensity reduced so that the dose dependence curve had a peak-
shaped form.

The first researchers who reported the effect were Charlesby and
Partridge (1963) who described a decline of the maximum TL intensity

in gamma-irradiated polyethylene as of 104 Gy, and postulated that the
cause of the effect is radiation damage of the material. Halperin and
Chen (1966) reported on UV excited TL in semiconducting diamonds
and showed that the secondary peak at ~150 K increased linearly with
the dose at low doses of UV, reached a maximum at a certain dose and
decreased at higher doses. Cameron et al. (1968) described the
non-monotonic dose dependence of TL in LiF:Mg,Ti on 60Co gamma-ray
excitation dose. In this material which has been serving for many years
as the main dosimetric material, the authors report on a rather broad
range of linear dependence followed by a superlinear range after which,
a maximum value and a slight decline are observed. The effect of
non-monotonic dose dependence has also been seen in quartz, the main
material used for archaeological and geological TL dating. Ichikawa
(1968) found that in gamma-irradiated natural quartz, the peak at
~220 ◦C reached a maximum at ~6 × 104 Gy and decreased at higher
doses by a factor of ~2.5. The effect has also been seen in the important
dosimetric material Al2O3:C. Yukihara et al. (2003) described slightly
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superlinear dose dependence up to ~30 Gy of beta irradiation in the 450
K peak in some of the samples. The peak reached a maximum value and
declined at higher doses. The authors explain the observed effect in
Al2O3:C using a model based on the occurrence of F/F+ centers and on
the other trapping states and centers. Also reported on the effect in
Al2O3:C Zahefidar et al. (2012).

More recent reports on this effect in different materials and various
irradiations include Sharma et al. (2018), Bargat et al. (2020), Parauha
and Dhoble (2020) and Prabhu et al. (2020).

Lawless et al. (2005) and Chen et al. (2006) presented a model for
explaining the non-monotonic effect of TL by using an energy-level
model including two trapping states and two recombination centers
and showed by simulation the feasibility of getting the effect. In a similar
way, Pagonis et al. (2006) have shown that the effect can be explained in
the measurement of optically stimulated luminescence (OSL). In a quite
recent paper, Merezhnikov and Nikiforov (2021) have provided an
alternative explanation leading to the non-monotonic behavior of TL,
based on the semi-localized transitions (SLT) model.

In this work, we concentrate on less common non-monotonic dose
dependence, namely a dose dependence which begins like the "con-
ventional" non-monotonic behavior. The TL intensity starts as an
increasing function of the dose, reaches a maximum value and then
declines. At a certain higher dose of irradiation, the curve starts
increasing again, giving the whole curve a wiggly shape.

Lewandowski and Mathur (1996) report on this effect in γ-irradiated
CaSO4 (see their Fig. 1(b)). Mathur et al. (1999) report the effect in
proton irradiated CaSO4:Dy (see their Fig. 4). Sharma et al. (2010)
present an even more wiggly dose-dependence curve of two TL peaks in
CaSrS:Ce (see their Fig. 6). Kortov (2014) report on the wiggly dose
dependence in TLD-500 (Al2O3:C) detectors at high dose γ-irradiation
and more results along the same line were given by Kortov et al. (2015).

Results of the sister-effect of optically stimulated luminescence (OSL)
have been reported by Burbidge et al. (2009) who had studied the dose
response in α and β excited samples. Different types of dose dependence
have been found in quartz samples including non-monotonic and
wiggly-shaped cases (Burbidge et al., 2011). The different types of dose
dependence have been summed up in a paper by Burbidge, (2015) who,
by using the two-trap-two-center model, assembled a function which
could describe a range of dose dependencies, namely, linear, superlinear
and non-monotonic as well as relative response to α and β radiation. A
similar effect in OSL has been described by Kalnins et al. (2012) who had
studied radiation dosimetry in fluoride phosphate optical fibers.

In the present work, we deal with two subjects related to the non-
monotonic dose dependence. First, we demonstrate, using both

numerical solution of the set of coupled differential equations governing
the process and by analytical solution with simplifying assumptions,
that with the appropriate choice of the relevant parameters of traps and
centers, a model of two traps and a single recombination center suffices
to explain the conventional non-monotonic dose dependence of TL. As
for the explanation of the wiggly dose dependence curve, we add the
following crucial element. Whereas the previous models dealt only with
transitions of electrons and holes between existing imperfections asso-
ciated with energy levels in the forbidden gap, we now assume that the
high-energy irradiation may produce additional defects that may act as
electron or hole traps. More specifically, in the present case, we assume
that the luminescent center which we denote by M2 has prior to irra-
diation a value of M20 and during irradiation more centers of the same
kind are created proportionally to the dose of excitation, which brings
about the wiggly behavior. Such a wiggly dose dependence can also be
demonstrated if at the beginning of irradiation there are no centers of
the relevant type, which means that M20 = 0. The details of the model
and the resulting simulated dose dependence are elaborated upon
below.

2. Theory

The energy-level model we use is of one electron trap and two kinds
of recombination centers as depicted in Fig. 1. For the conventional non-
monotonic dose dependence we will show that the model can explain
this dependence with the appropriate choice of the parameters of traps
and centers. As pointed out above and shown below, we demonstrate
that if we assume that the concentrationM2 grows linearly with the dose
of irradiation, the wiggly-shaped dose dependence may result. Two ex-
amples will be considered, namely, M2(t) = M20+at with a>0, one with
M20 > 0 and the other with M20 = 0. In the mentioned simpler case of
conventional non-monotonic dose dependence we assume that a = 0 so
that M2 is constant, M20.

2.1. Governing equations

The model uses one electron trap and two recombination centers.
The governing equations are

dn
dt

=An(N − n)nc − γn, (1)

dm1

dt
= − Am1m1nc + B1(M1 − m1)nv, (2)

dm2

dt
= − Am2m2nc + B2[M2(t) − m2]nv, (3)

dnc
dt

=X + γn − An(N − n)nc − Am1m1nc − Am2m2nc, (4)

dnv
dt

=X − B1(M1 − m1)nv − B2[M2(t) − m2]nv, (5)

where An (m3s− 1) is the rate constant for the capture of an electron by
the electron trap, N (m− 3) is the total concentration of electron traps, n
(m− 3) is the instantaneous concentration of occupied traps. Similarly, B1
(m3s− 1) and B2 (m3s− 1) are the rate constants for hole capture by the two
centers with M1 (m− 3) and M2(t) (m− 3) being the total concentration of
those centers and m1 (m− 3) and m2 (m− 3) being the hole concentrations
of the occupied centers. Am1 (m3s− 1) and Am2 (m3s− 1) are the rate
constants for free electron recombination with a hole in an occupied
center. X (m− 3s− 1) is the rate at which the applied radiation generates
electron-hole pairs, which is proportional to the dose rate. nc (m− 3) and
nv (m− 3) are, respectively, the instantaneous concentrations of free
electrons and free holes. γ (s− 1) is the rate constant for thermal stimu-
lation of an electron into the conduction band,

Fig. 1. Energy-level diagram of the model explaining the effect of non-
monotonic dose dependence of TL. The model shows a trap N and two cen-
ters, M1 non-radiative and M2 radiative. The wiggly behavior is reached when
M2 depends on the irradiation dose. Transitions taking place during excitation
are shown as solid lines and those occurring during heating as dashed lines.
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γ = s exp(− E / kT), (6)

where E (eV) is the trap energy, k (eV/K) is the Boltzmann constant, and
T (K) is temperature. Conservation of charge requires

n+ nc = m1 +m2 + nv. (7)

We will assume that m1 is a non-radiative center while m2 is a radi-
ative center. Thus, the thermoluminescence intensity is

I=Am2m2nc. (8)

Equation (1) through (8) are the governing equations as used by the
numerical simulation. We will use the following parameters: An = 3 ×

10− 17 m3s− 1; N = 1021 m− 3; B1 = 1.5 × 10− 17 m3s− 1; B2 = 10− 17 m3s− 1;
Am1= 10− 17 m3s− 1; Am2= 10− 16 m3s− 1;M1=3× 1021 m− 3; X= 3× 1019

m− 3s− 1; s = 1010 s− 1 and E = 1 eV. For the dose-dependent center
concentration we assume an increase with dose according to

M2(t)=1018 + (Xt)
/
13400 m− 3. (9)

For the analytical model, we make additional assumptions regarding
m2, nc and nv. First, we will assume that m2 is ’small’. In particular, we
assume that

m2 ≪m1 and B2M2≪B1M1 and Am2m2≪Am1m1. (10)

From Eqs. (4) and (5) and using Eq. (10), the lifetimes (s) of free
electrons and holes are

tc =
1

An(N − n) + Am1m1
and tv =

1
B1(M1 − m1)

. (11)

Lifetimes of free electrons and holes in materials tend to be quite
small, often microseconds or less (Lax, 1960). In quartz, for example, tc
has been experimentally measured to be less then 5 ns (Hughes, 1975).
Because the lifetimes are short, there is no chance for populations of free
electrons or holes to accumulate. Consequently, nc and nv remain small.
Further, these lifetimes are short compared to either the period of irra-
diation or any events that occur during heating. Thus,

dnc
dt

≪
nc
tc

and
dnv
dt

≪
nv
tv
. (12)

Under these assumptions, Eqs. (4) and (5) simplify to

nc =
X + γn

An(N − n) + Am1m1
and nv =

X
B1(M1 − m1)

. (13)

With nc, nv and m2 being small, conservation of charge, Eq. (7),
simplifies to

n ≈ m1. (14)

In sum, we have started with the general equations for a one-trap
two-center model, Eqs. (1) through (8), which are used for the numer-
ical simulation. For the analytical model, we add the additional as-
sumptions of m2 being small and nc and nv being quasi-steady.

3. Analytical model

3.1. Irradiation

In this section, we will develop an analytical model for the concen-
trations achieved by the trap and centers after irradiation. The irradia-
tion is assumed to occur at a constant rate X for a time period tD, giving a
total dose of D=X⋅tD. During irradiation, the temperature is assumed low
enough that thermal stimulation of trapped electrons, proportional to γ
(see Eq. (6)), can be neglected. The initial conditions for irradiation are
assumed to be

n=m1 = m2 = 0. (15)

Under these conditions, and using Eq. (13), Eq. (14) and Eq. (10),

conservation of trap population simplifies to

dn
dt

=
An(N − n)

An(N − n) + Am1n
X. (16)

This equation has an analytical solution (Pagonis et al., 2020;
Lawless and Timar-Gabor, 2024). For the present model, the solution
can be written as follows. For An∕=Am1,

m1(t)=n(t)=N
{

1+
1
Q
W
[

− Qexp
{

−

(

1 −
e − 1
e

Q
)

(Xt/D63%) − Q
}]}

,

(17a)

and on the other hand, for the special case of An=Am1,

m1(t)= n(t)=N[1 − exp(− Xt /D63%)], (17b)

where e is the base of the natural logarithm, W is the Lambert-W func-
tion (Coreless and Jeffrey, 2002)1 and Q and D63% are defined by

Q=
Am1 − An

Am1
, (18)

D63% =
Am1

An
N
[

1 −
e − 1
e

Q
]

. (19)

For the parameters chosen in this manuscript, Q ≈ − 2 and D63%≈7.6
× 1020 m− 3. The negative value ofQ indicates that, below saturation, the
growth of nwith dose is only slightly sublinear. D63% is the dose at which
the trap population, n, starts to approach saturation as signified by n =
e− 1
e N ≈ 63%N.
The next step is to determine the population of the second recom-

bination center, m2, during irradiation. We can rewrite the conservation
equation for m2, Eq. (3), as follows,

dm2

dτ =m2QS − m2, (20)

where

τ(t)=
∫ t

0
(Am2nc +B2nv)dt, (21)

m2QS(t)=
(

B2nv
Am2nc + B2nv

)

M2(t). (22)

τ is dimensionless and can be thought of as a stretched time.m2QS has
units of concentration. It is apparent from Eq. (20) that, whenm2<m2QS,
m2 increases. Alternatively, whenm2>m2QS,m2 decreases. This indicates
that m2QS is an attractor.

It is important to note that, because we have solutions for n andm1 as
functions of time, Eq. (17), and because nc and nv are known functions of
n and m1, Eq. (13), it follows that τ and m2QS should be regarded as
known (or easily calculated) functions of time. With that in mind, Eq.
(20) can be readily integrated to find

m2(t)= e− τ(t)
∫ τ(t)

0
m2QS(τ́ )eτ́ dτ́ , (23)

where τ ′ is a variable of integration. Equation (23) indicates that m2 is
zero at t = 0 and then grows until it approaches m2QS and eventually
attempts to follow the changing values of m2QS.

In sum, under the small-m2 approximation (see Eq. (10)) we have
developed an analytic model of trap and center populations during
irradiation. n and m1 follow Eq. (17) while m2 obeys Eq. (23). nc and nv
obey Eq. (13).

1 The Lambert-W function is defined by yey=x ⇒ y=W(x). It is supported by
major mathematics packages. For SciPi, for example, it is found under scipy.
special.lambertw.
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3.2. Thermal stimulation

The next step is to determine the magnitude of the thermolumines-
cence intensity. We again start with Eqs. (1)–(5) but this time assume
thermal stimulation, namely, γ∕=0, but no irradiation, X = 0. From Eq.
(13), we have nv= 0 and, consequently, the equation for conservation of
m2, Eq. (3) reduces to

dm2

dt
= − Am2m2nc. (24)

Combining Eq. (24) with Eq. (8), we have for the emitted intensity

I= −
dm2

dt
. (25)

Since m2 = 0 after heating, the integrated thermoluminescence in-
tensity is given by
∫ ∞

0
I(t)dt=m2(tD), (26)

where m2(tD) is the concentration of m2 after irradiation as given by Eq.
(23).

4. Numerical results

In the numerical results we show first that the conventional non-
monotonic dose dependence can be reached by the reduced model of
one trapping state and two recombination centers. The set of parameters
used is given above with reference to Fig. 1. Figs. 2 and 3 show the re-
sults of the trap and centers concentrations and the TL intensity as a
function of the excitation dose for a constant value of M2 = 1018 m− 3.
Fig. 2 shows the dependence of the trapping concentrations as a function
of the dose, as determined using the analytical results as well as the
direct simulation attained by solving the simultaneous differential
equations using the Matlab ode23s solver in the sequence of irradiation,
relaxation and heating. Note that with the numerical solutions of the
differential equations, there is no need to make the above mentioned
simplifying assumptions. Instead, in the results of the numerical solution
of the equations, we could check the validity of these simplifying as-
sumptions; the details are given in the Appendix. The results show the
initial range of increase of m2, reaching a maximum and then declining
and finally leveling off at a constant value. Fig. 3 shows the dependence
on the dose of the integrated emitted TL which resembles the dose-
dependence curve of m2.

In Figs. 4 and 5 we use all the parameters as before andM2 depending
on the irradiation, and show the new wiggly effect where the TL

intensity increases up to a maximum, goes down to a minimum and
starts increasing again at higher doses. Fig. 4 depicts the results for ra-
diation dependent M2 as given by Eq. (9). The concentration of m2
wiggles, reaching a maximum, then a minimum and then it rises again.
In Fig. 5, the results of the integrated TL intensity simulated by solution
of the coupled equations and by the analytical approach are depicted.
Fig. 6 is another example of the simulated dose dependence of TL, this
time when the initial concentration of M2 prior to irradiation is zero,
namely,

Fig. 2. Results of the concentrations of the trap and centers for constantM2 as a
function of the dose as computed by solving the differential equations and by
the analytic approach. The values of the chosen parameters are given in
the text.

Fig. 3. The dependence of the integrated TL intensity on the dose as deter-
mined by the solution of the equations under the same conditions as in Fig. 2.

Fig. 4. Calculated values of the concentrations of electrons and holes in traps
and centers as function of the dose with the same parameters except that M2
depends on the dose, varied by different times of excitation according to Eq. (9).

Fig. 5. The TL intensity as a function of the dose as evaluated under the same
conditions as in Fig. 4.

R. Chen et al.
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M2=2.24 ∗ 1015t. (27)

The dose has been varied by keeping a constant dose rate X = 3 ×

1019 m− 3s− 1 and varying the time of irradiation between 1 and 300 s.
Here we see a similar wiggly dose dependence for a case of zero initial
concentration of the radiative center,M2(0) = 0. It should be mentioned
that practically the same results were reached when the time of exci-
tation was kept constant and the dose was changed by varying the dose
rate in both cases, namely, whenM2 varied according to Eq. (9) or (27).
In this case, the variation of the concentration of the radiative center was
given by M2(X) and X varied linearly between 3 × 1019 m− 3s− 1 and 9 ×

1021 m− 3s− 1 and tD = 1 s.
We could also show that the wiggly dose dependence can be reached

with different ratios betweenM1 andM2 (t) as demonstrated in Fig. 7 on
a log-log scale. M1 remains the same as before being 3 × 1021 m− 3, and
M2(t) is the function given in Eq. (9) in curve (a), 10 times the function in
curve (b), 100 times the M2(t) function in curve (c) and 1000 times the

function in curve (d). As seen in the figure, the wiggly dose dependence
occurs in all four cases.

5. Discussion

The wiggly dose response can be understood intuitively in relation to
changes in the free electron concentration during irradiation. We will
discuss this behavior for both the case of constantM2 and the case ofM2
increasing with dose. This discussion will highlight some of the
parameter values that are needed to obtain this behavior. Lastly, for
comparison with experiment, the conversion between dose in m− 3 and
dose in Grays will be discussed.

Starting with the case of constant M2, consider the concentrations of
the electron trap, n, and of the non–radiative center, m1. Since this is a
one–trap, two–center model and since the second center, m2, is consid-
ered small (see Eq. (10)), it follows that n and m1 grow just like in a one-
trap, one-recombination-center (OTOR) model. This means that n grows

Fig. 6. Similar to Fig. 5, except that the dose dependence of the center concentration, M2, is as given by Eq. (27).

Fig. 7. Dependence of the dose dependence curve on the ratio M2/M1, on a log-log scale. M1 remains the same as before being 3
× 1021 m− 3, and M2(t) is the function given in Eq. (9) in curve (a); 10 times the function M2(t) in curve (b); 100 times M2(t) in
curve (c) and 1000 times M2(t) in curve (d).
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monotonically until it saturates with the value n= N. By conservation of
charge, Eq. (14), it follows that m1 does the same. The second step is to
consider what happens to the free electron concentration, nc. From Eq.
(13), we see that nc might, in general, either increase or decrease as n
and m1 increase. We have, however, chosen An ≈ 3Am1 and this assures
that nc increases as dose increases. Further, as n approaches saturation,
(N− n) approaches zero and the increase in nc is quite sharp. This con-
trasts with the changes in nv during irradiation. Because m1 ≈ n and
because we have chosen M1 ≈ 3N, the center population m1 never ap-
proaches M1. Consequently, the increase in nv as dose increases is
modest. After n saturates, meaning n ≈ N, there is no further change in n
or m1 as dose increases and, consequently, nc and nv become constants.
The third step is to consider how the rising free electron population, nc,
affects the concentration of the radiative center, m2. From the initial
conditions, Eq. (15), we know that m2 starts at zero. This means that,
initially, m2QS > m2 and, thus, from the conservation equation Eq. (20),
it follows that m2 initially increases as dose is applied. From Eq. (20), it
follows that m2 will continue to increase until m2 reaches m2QS. This is
seen in Fig. 2. What happens next depends on how the value of m2QS
changes. From Eq. (22), we see that the value of m2QS depends on nc and
nv. Since, as discussed in the previous paragraph, before n saturates, nc is
rapidly increasing while nv is relatively constant, it follows from Eq. (22)
thatm2QSwill decline until saturation of n is reached. From Eq. (20), this
decline ofm2QS causesm2QS to drop belowm2which forcesm2 to decline.
This is also seen in Fig. 2. After n saturates, n → N, it follows from Eq.
(13) that nc and nv become constant and, consequently, m2QS becomes
constant and remains so as dose increases. This is also apparent in Fig. 2.
In sum, we havem2 starting at zero and increasing as dose increases until
it reaches the valuem2QS. At that point,m2 reaches a peak and it declines
thereafter as m2QS declines. At very high doses, both m2QS and m2
approach a constant value. Since, as per Eq. (26), the value of the in-
tegrated thermoluminescence intensity is the value of m2 after irradia-
tion, it follows that, for this case of constantM2, the integrated intensity
also rises, reaches a peak, and then declines with increasing dose.

Now, let us consider the second case in whichM2 increases with dose.
The first thing to notice is that if M2 rises too fast, then, from Eq. (22),
m2QS will not decline. If m2QS does not decline, then m2 will be mono-
tonic and we have lost the wiggle effect. Thus, it is important that the
rate of increase ofM2 be below that point. With the rate of increase slow
enough, m2 will rise, reach a peak, and then, for a time, decline. As the
dose increases further, n saturates and nc and nv approach constant
values. Then, as per Eq. (22), the slowly rising value of M2 will cause
m2QS to start rising again, as shown in Fig. 4. This, via Eq. (20), causesm2
to start rising again, as also shown in Fig. 4. This means that the intensity
again increases. This gives the full wiggle.

For both constant M2 and increasing M2, we have both solved the
differential equations numerically and developed approximate analyt-
ical solutions. For the chosen parameters, both approaches found nearly
identical results. It should be noted that one needs to convert between
the dose as used in the model equations. While theoretical models
typically measure the applied dose D in units of electron-hole pairs
created per unit volume, experiments measure the applied dose DGy in
units of energy deposited per unit mass with 1 Gy = 1 J/kg. The con-
version between the two is (see e.g. Lawless et al., 2022)

DGy =
W
ρ D, (28)

where DGy is the dose in Gray, D the dose in m− 3, W (in Joules) is the
average energy deposited per electron-hole pair created, and ρ (in kg/
m3) is the material mass density.

6. Conclusion

We have performed a theoretical study of two experimental phenom-
ena previously reported in the literature. The first is the "conventional"
non-monotonic dose dependence of TL, described by a curve which is
initially an increasing function, reaching a maximum and then declines.
We show that instead of the two-trap two-center model (Lawless et al.
(2005) and Chen et al. (2006)), a model with one trap and two centers can
be used. The second is a wiggly dose dependence in which the decline of
intensity mentioned in the previous case is followed by another increase in
intensity with dose, consequent from creation of radiative centers by
irradiation. The full set of equations for both cases was solved by nu-
merical simulation. An analytical solution was also developed and it
provided an explanation for why these effects occur.

Fig. A1. The values of the functions m2/m1, B2M2/(B1M1), Am2m2/(Am1m1),
(dnc/dt)/(nc/tc), and (dnv/dt)/(nv/tv) are plotted against the dose for the pa-
rameters used in the calculation of Fig. 4. To develop the analytical model, it
was assumed that all these fractions were much less than one. The figure shows
that those assumptions are valid.
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Appendix

A. Validity of the simplifying assumption

A1. Small m2
Three of the approximations that were used to simplify the governing equations required that the recombination center m2 be small. Specifically

(see Eq. (10)),

m2 ≪m1 and B2M2≪B1M1 and Am2m2≪Am1m1. (A1)

Let us rewrite these approximations in the form of fractions that must be much less than one,

m2

m1
≪1 and

B2M2

B1M1
≪1 and

Am2m2

Am1m1
≪1. (A2)

For the parameters as used in Fig. 4, the values of these three fractions are shown, as function of dose, in Fig. A1. All the fractions are two to four
orders of magnitude less than one, indicating that the approximations are well justified.

A2. The Quasi-steady approximation
For the quasi-steady approximation, we assumed

dnc
dt

≪ nc
tc

and
dnv
dt

≪nv
tv
, (A3)

which are Eq. (12) above. Let us again rewrite them as fractions that must be less than one,

dnc/dt
nc/tc

≪1 and
dnv/dt
nv/tv

≪1. (A4)

These fractions are shown in Fig. A1. The fractions are six or more orders of magnitude less than one. This indicates that the quasi-steady ap-
proximations are quite accurate here.
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