Publications
Mikhail Borovoi
-
M. Borovoi,
The first and second homotopy groups of a homogeneous space of a complex linear algebraic group,
J. Lie Theory 33 (2023), no. 2, 687–700,
arXiv.2207.08887 [math.AG].
-
M. Borovoi, with an appendix by Z. Rosengarten,
Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field,
to appear in C. R. Math. Acad. Sci. Paris,
arXiv:2209.02069 [math.NT],
DOI: 10.5802/crmath.455.
-
M. Borovoi and D. A. Timashev,
Galois cohomology and component group of a real reductive group,
to appear in Israel J. Math.,
arXiv:2110.13062 [math.GR],
DOI: 10.1007/s11856-023-2526-4.
-
M. Borovoi and O. Gabber,
A short proof of Timashev's theorem on the real component group of a real reductive group,
Arch. Math. (Basel) 120 (2023), no. 1, 9–13,
arXiv:2204.11482 [math.GR],
DOI: 10.1007/s00013-022-01798-y.
-
M. Borovoi,
Galois cohomology of reductive algebraic groups over the field
of real numbers,
Commun. Math. 30 (2022), Issue 3 (Special issue: in memory of Arkady Onishchik), 191-201,
arXiv:1401.5913 [math.GR],
DOI: 10.46298/cm.9298.
-
M. Borovoi and G. Gagliardi,
Existence of equivariant models of spherical varieties and other G-varieties,
Int. Math. Res. Not. IMRN 2022, no. 20, 15932-16034,
arXiv:1810.08960 [math.AG],
DOI: 10.1093/imrn/rnab102.
-
L. Moser-Jauslin
and R. Terpereau, with an appendix by M. Borovoi,
Real structures on horospherical varieties,
Michigan Math. J. 71 (2022), 283-320,
arXiv:1808.10793[math.AG],
DOI: 10.1307/mmj/20195793.
-
M. Borovoi, W.A. de Graaf,
and H.V. Lê,
Classification of real trivectors in dimension nine,
J. Algebra 603 (2022), 118–163,
arXiv:2108.00790 [math.RT],
DOI: 10.1016/j.jalgebra.2022.04.003.
-
M. Borovoi, A. A. Gornitskii, and Z. Rosengarten,
Galois cohomology of real quasi-connected reductive groups,
Arch. Math. (Basel) 118 (2022), 27-38,
arXiv:2103.04654 [math.RT],
DOI: 10.1007/s00013-021-01678-x.
-
M. Borovoi and D. A. Timashev,
Galois cohomology of real semisimple groups via Kac labelings,
Transform. Groups 26 (2021), 433-477,
arXiv:2008.11763 [math.GR],
DOI: 10.1007/S00031-021-09646-z.
-
M. Borovoi, C. Daw, and J. Ren,
Conjugation of semisimple subgroups over real number fields of bounded degree,
Proc. Amer. Math. Soc. 149 (2021), no. 12, 4973–4984,
arXiv:1802.05894[math.GR],
DOI: 10.1090/proc/14505.
-
M. Borovoi, N. Semenov,
and M. Zhykhovich,
Hasse principle for Rost motives, Int. Math. Res. Not. IMRN 2021, no. 6, 4231–4254,
arXiv:1711.04356[math.AG],
DOI: 10.1093/imrn/rny300.
-
M. Borovoi, with an appendix by G. Gagliardi,
Equivariant models of spherical varieties,
Transform. Groups 25 (2020), 391-439,
arXiv:1710.02471[math.AG],
DOI:10.1007/S00031-019-09531-w.
-
M. Borovoi and Z. Evenor,
Real homogenous spaces, Galois cohomology, and Reeder puzzles,,
J. Algebra 467 (2016), 307-365, arXiv:1406.4362 [math.GR],
DOI: 10.1016/j.jalgebra.2016.07.032.
-
M. Borovoi and
Y. Cornulier,
Conjugate complex homogeneous spaces
with non-isomorphic fundamental groups,
C. R. Acad. Sci. Paris, Ser I 353 (2015), 1001-1005,
arXiv:1505.02323 [math.AG],
DOI: 10.1016/j.crma.2015.09.010.
-
M. Borovoi with an appendix by
I. Dolgachev,
Real reductive Cayley groups of rank 1 and 2,
J. Algebra 436 (2015), 35-60,
arXiv:1212.1065 [math.AG],
DOI: 10.1016/j.jalgebra.2015.03.034.
-
M. Borovoi and
B. Kunyavskii,
Stably Cayley semisimple groups,
Documenta Math. Extra Volume: Alexander S. Merkurjev's Sixtieth Birthday (2015) 85-112,
arXiv:1401.5774 [math.AG],
online.
-
M. Borovoi,
Homogeneous spaces of Hilbert type,
Int. J. Number Theory,
11 (2015), 397-405,
arXiv:1304.1872 [math.NT],
DOI: 10.1142/S1793042115500207.
-
M. Borovoi and C.D. González-Avilés,
The algebraic fundamental group of a reductive group scheme
over an arbitrary base scheme,
Cent. Eur. J. Math. 12(4) (2014), 545-558,
arXiv:1303.6586 [math.AG],
DOI: 10.2478/s11533-013-0363-0.
-
M. Borovoi,
B. Kunyavskii,
N. Lemire, and
Z. Reichstein,
Stably Cayley groups in characteristic zero,
Int. Math. Res. Not. IMRN 2014, 5340-5397,
arXiv:1207.1329 [math.AG],
DOI: 10.1093/imrn/rnt123.
-
M. Borovoi,
On the unramified Brauer group of a homogeneous space,
Algebra i Analiz 25:4 (2013), 23-27 (Russian),
transl. in St. Petersburg Math. J. 25 (2014), 529-532,
arXiv:1206.1023 [math.AG],
online (Russian),
English:DOI: 10.1090/S1061-0022-2014-01304-0.
-
M. Borovoi, C. Demarche
et D. Harari,
Complexes de groupes de type multiplicatif et groupe de Brauer non
ramifié des espaces homogènes,
Ann. Sci. Éc. Norm. Supér. (4), 46 (2013), 651-692,
arXiv:1203.5964[math.AG],
DOI: 10.24033/asens.2198.
-
M. Borovoi and
C. Demarche,
Manin obstruction to strong approximation for homogeneous spaces,
Comment. Math. Helv. 88 (2013), 1-54,
arXiv:0912.0408[math.NT],
DOI: 10.4171/CMH/277.
-
M. Borovoi and T.M. Schlank,
A cohomological obstruction to weak approximation for homogeneous spaces,
Moscow Math. J. 12 (2012), 1-20,
arXiv:1012.1453[math.NT],
online.
-
M. Borovoi and J. van Hamel,
Extended equivariant Picard complexes and homogeneous spaces,
Transform. Groups 17 (2012), 51-86,
arXiv:1010.3414[math.AG],
DOI: 10.1007/s00031-011-9163-4.
-
M. Borovoi,
Vanishing of algebraic Brauer-Manin obstructions,
J. Ramanujan Math. Soc. 26 (2011), 333-349,
arXiv:1012.1189[math.NT].
-
M. Borovoi,
Symmetric homogeneous spaces
with finitely many orbits,
Appendix to the paper of A. Gorodnik and Hee Oh:
Rational points on homogeneous varieties
and equidistribution of adelic periods,
Geom. Funct. Anal., 21 (2011), 319--392,
arXiv:0803.1996[math.AG],
DOI: 10.1007/s00039-011-0113-z.
-
M. Borovoi and
Z. Reichstein,
Toric-friendly groups,
Algebra Number Theory 5 (2011), 361-378,
arXiv:1003.5894[math.AG],
DOI: 10.2140/ant.2011.5.361.
-
M. Borovoi,
The defect of weak approximation for homogeneous spaces, II,
Dal'nevost. Mat. Zh. 9 (2009), 15-23,
arXiv:0804.4767 [math.NT],
online.
-
M. Borovoi and J. van Hamel,
Extended Picard complexes and linear algebraic groups,
J. Reine Angew. Math. 627 (2009), 53-82,
arXiv:math/0612156,
DOI: 10.1515/CRELLE.2009.011.
-
M. Borovoi,
J.-L. Colliot-Thélène
and A.N. Skorobogatov,
The elementary obstruction and homogeneous spaces,
Duke Math. J. 141 (2008), 321-364,
arXiv:math/0611700,
DOI: 10.1215/S0012-7094-08-14124-9.
-
M. Borovoi and J. van Hamel,
Extended Picard complexes for algebraic groups and homogeneous spaces,
C. R. Acad. Sci. Paris Ser I 342 (2006) 671-674,
pdf,
online.
-
T. Bandman, M. Borovoi, F. Grunewald,
B. Kunyavskii
and E. Plotkin,
Engel-like characterization of radicals in finite dimensional Lie
algebras and finite groups,
Manuscr. Math. 119 (2006) 365-381,
pdf,
DOI: 10.1007/s00229-006-0627-0.
-
M. Borovoi and B. Kunyavskii,
with an appendix by P. Gille,
Arithmetical birational invariants of linear algebraic groups
over two-dimensional geometric fields,
J. of Algebra 276 (2004) 292-339,
pdf,
DOI: 10.1016/j.jalgebra.2003.10.024.
-
M. Borovoi,
On representations of integers by indefinite ternary quadratic
forms. J. of Number Theory 90 (2001), 281-293,
pdf,
DOI: 10.1006/jnth.2001.2662.
-
M. Borovoi and B. Kunyavskii,
Brauer equivalence in a homogeneous space with connected
stabilizer. Michigan Math. J. 49 (2001), 197-205,
pdf.
-
M. Borovoi and B. Kunyavskii,
Formulas for the unramified Brauer group of a principal
homogeneous space of a linear algebraic group.
J. Algebra 225 (2000), 804-821,
pdf,
DOI: 10.1006/jabr.1999.8153.
-
M. Borovoi,
The defect of weak approximation for homogeneous spaces.
Ann. Fac. Sci. Toulouse 8 (1999), 219-233,
pdf,
online.
-
M. Borovoi,
A cohomological obstruction to the Hasse principle for
homogeneous spaces.
Math. Ann. 314 (1999), 491-504,
pdf,
DOI: 10.1007/s002080050304.
-
M. Borovoi,
Abelian Galois cohomology of reductive groups.
Memoirs of the AMS 132 (1998), No. 626, 1-50,
pdf,
DOI: http://dx.doi.org/10.1090/memo/0626.
-
M. Borovoi and B. Kunyavskii,
Spherical spaces for which
the Hasse principle and weak approximation fail.
Collect. Math. 48 (1997), 41-52,
ps.
-
M. Borovoi,
Abelianization of the first Galois cohomology
of reductive groups.
Internat. Math. Res. Not. 1996, 401-407,
online.
-
M. Borovoi,
The Brauer-Manin obstruction to the Hasse principle for
homogeneous spaces with connected or abelian stabilizer.
J. reine angew. Math. 473 (1996), 181-194,
pdf,
DigiZeitschriften,
DOI: 10.1515/crll.1995.473.181.
-
M. Borovoi and Z. Rudnick,
Hardy-Littlewood varieties and semisimple groups.
Invent. Math. 119 (1995), 37-66,
pdf,
DigiZeitschriften,
DOI: 10.1007/BF01245174.
-
M. Borovoi,
Abelianization of the second nonabelian Galois
cohomology.
Duke Math. J. 72 (1993), 217-239,
DOI: 10.1215/S0012-7094-93-07209-2.
-
M. Borovoi,
The Hasse principle for homogeneous spaces.
J. reine angew. Math. 426 (1992), 179-192.
-
M. Borovoi,
On weak approximation in homogeneous
spaces of simply connected algebraic groups.
Proceedings
of Internat. Conf. "Automorphic Functions and Their Applications,
Khabarovsk, June 27-July 4, 1988" (N. Kuznetsov, V. Bykovsky, eds.)
Khabarovsk, 1990, 64-81, scan.
-
M. Borovoi,
On weak approximation in homogeneous
spaces of algebraic groups.
Soviet Math. Doklady 42 (1991), 247-251.
-
M. Borovoi,
On strong approximation for homogeneous spaces.
Doklady Akad. Nauk BSSR 33 (1989), N4, 293-296 (Russian).
-
M. Borovoi,
The abstract simplicity of groups of type
D_n over number fields.
Russian Math. Surveys 43 (1988), N5, 213-214.
-
M. Borovoi,
Galois cohomology of real reductive groups,
and real forms of simple Lie algebras.
Functional. Anal. Appl. 22:2 (1988), 135-136, online:
Russian,
English, DOI: 10.1007/BF01077606.
-
M. Borovoi,
On the group of points of a semisimple
group over a real closed field.
Problems in Group Theory and Homological Algebra,
Yaroslavl (1987), 142-149 (Russian);
English translation: Selecta Math. Soviet. 9 (1990), 331-338.
-
M. Borovoi,
Conjugation of Shimura varieties.
In:"Proc. Internat. Congr. Math., Berkeley, 1986", AMS, 1987, Vol. 1, pp. 783-790,
online.
-
M. Borovoi,
Abstract simplicity of some simple
anisotropic algebraic groups over number fields.
Soviet Math. Doklady 32 (1985), N1, 191-193.
-
M. Borovoi,
Generators and relations in compact Lie groups.
Functional. Anal. Appl. 18:2 (1984), 133-135, online:
Russian,
English, DOI: 10.1007/BF01077826.
-
M. Borovoi,
Langlands' conjecture concerning conjugation
of connected Shimura varieties.
Selecta Math. Soviet.
3 (1983-84), N1, 3-59.
-
M. Borovoi,
The conjecture of Langlands on conjugation
of Shimura varieties.
Functional. Anal. Appl. 16:4 (1982), 292-294, online:
Russian,
English.
-
M. Borovoi,
The Hodge group and endomorphism algebra
of an Abelian variety.
Problems in Group Theory and Homological
Algebra, Yaroslavl (1981), 124-126,
Russian,
English.
-
M. Borovoi,
The Shimura-Deligne schemes M(G,h) and the rational cohomology classes
of type (p,p) of Abelian varieties.
Problems in Group Theory and Homological Algebra, vyp. 1, Yaroslavl (1977), 3-53 (Russian).
-
M. Borovoi,
The schemes M(G,h) and the Mumford-Tate group.
Uspekhi Mat. Nauk 32 (1977), N6, 245-246 (Russian).
-
M. Borovoi,
On the action of the Galois group on rational
cohomology classes of type (p,p) of Abelian varieties.
Mat. Sbornik 94 (1974), N4, 649-652,
Russian,
English.
Preprints
-
E. Vishnyakova, with an appendix by M. Borovoi,
Automorphisms and real structures for a Π-symmetric super-Grassmannian,
https://doi.org/10.48550/arXiv.2205.04380.
-
M. Borovoi, W.A. de Graaf,
and H.V. Lê,
Real graded Lie algebras, Galois cohomology, and classification of trivectors in R9,
arXiv:2106.00246 [math.RT].
-
M. Borovoi,
Extending the exact sequence of nonabelian H1,
using nonabelian H2 with coefficients in crossed modules,
arXiv:1608.07366 [math.GR].
-
M. Borovoi,
Non-abelian hypercohomology of a group with coefficients
in a crossed module, and Galois cohomology.
Preprint, 1992,
pdf.
Last updated on December 6, 2023.
.