Lab 2 - Optical Flow, Mosaicking \& Stabilization

Goal: to provide an introduction to optical flow and tracking algorithms using Computer Vision System Toolbox. In this lab we'll learn to compute optical flow, generate mosaicking (panorama) vides and generate stabilized video.

1. Optical Flow

Use the command doc in Matlab command window. Then select:

Computer Vision System Toolbox \rightarrow Examples.

Then find the section Tracking and choose Tracking Cars Using Optical Flow.
Then press the button Open this Example (in the top-right corner). Then copy the contents of the file videotrafficof.m to the file in your local directory.

1. Describe the algorithm used for cars tracking.
2. What optical flow algorithm is used in the program (Lucas-Kanade or Horn-Schunck)? Describe this algorithm.
3. What is the size of the matrix containing optical vectors (velocities)?
4. What is running mean? Explain and provide a simple formula. (Hint: Test on small matrices the values of hMean1 = vision.Mean; and hMean2 = vision.Mean('RunningMean', true); .)
5. Write a recursive formula for running mean and prove this formula using induction.
6. Define the median.
7. Usually, the median is applied on vector of odd length. But in general case the median can be applied on any vector. How the median of vector of even length is defined?
8. Suppose you have a histogram of the matrix of size $M \times N$ (both M and N are odd). Suggest a simple algorithm for computation of median from the histogram.
9. What value of the parameter 'NeighborhoodSize' is used in the command hMedianFilt = vision.MedianFilter;?
10. Explain the command vision.MorphologicalClose.
11. Explain the command vision.MorphologicalErode.
12. Explain the use of the command vel_th $=0.5$ * step(hMean2, step(hMean1, y 1));
13. Explain the use of the command segmentedObjects = step(hMedianFilt, y1 >= vel_th);
14. Find a bug in the line Idx = bbox(:,1) > lineRow;. (Also, note that Idx is not used in the code, so, actually, this line can be deleted.)
15. What is the definition of the parameter extent in the command isCar = extent $\mathbf{>} \mathbf{0 . 4}$; Provide a simple formula.
16. In the command $[\mathbf{Y} \mathbf{X}]=$ meshgrid(CV,RV); what is the direction of \mathbf{X} and \mathbf{Y} ? Draw the directions (coordinate axes) of \mathbf{X} and \mathbf{Y}.

2. Mosaicking

Use the command doc in Matlab command window. Then select:

Computer Vision System Toolbox \rightarrow Examples.

Then find the section Registration and choose Video Mosaicking.
Then press the button Open this Example (in the top-right corner). Then copy the contents of the file videomosaicking. m to the file in your local directory.

In the command hcornerdet = vision.CornerDetector(...) change the parameter 'Method' to 'Harris corner detection (Harris \& Stephens)'. (Note 1: this is the default method. Note 2 (for general knowledge): correct: 'Rosen \& Drummond' \rightarrow 'Rosten \& Drummond'.)

1. Describe the algorithm used for video mosaicking.
2. Describe the Harris \& Stephens corner detection method.
3. What is Random Sample Consensus (RANSAC)?
4. Suggest a better implementation of the command roi=int32([2 2 size(I, 2)-2 size(I, 1)-2]); (line 105). (Hint: we want to accelerate the program.)
5. Explain the command x tform $=x t f o r m ~ * ~\left[t f o r m, ~\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\right.$ ']; (line 141). Why do we compute

6. Explain the command mosaic $=$ step(halphablender, mosaic, transformedlmage, transformedImage(:,:,1)>0);. What is the role of the parameter transformedlmage(:,:,1)>0?

3. Stabilization

Use the command doc in Matlab command window. Then select:

Computer Vision System Toolbox \rightarrow Examples.

Then find the section Registration and choose Video Stabilization.

Then press the button Open this Example (in the top-right corner). Then copy the contents of the file videostabilize.m to the file in your local directory.

1. Describe the algorithm used for video stabilization.
2. Explain the command vision.TemplateMatcher. Describe the principle of the work of this command.
3. What is the default metric in the command vision.TemplateMatcher?
4. What is the meaning of the format string $\%+\mathbf{0 5 . 1} \mathbf{f}$?
5. In Question 4 of the Mosaicking Section we suggested the better implementation of the command roi=... . Will a similar trick help to accelerate the command $\mathbf{I d} \mathbf{x}=$ int32(pos.template_center_pos); (line92)?
6. Suggest a method for better implementation of the command ROI = [SearchRegion, pos.template_size+2* pos.search_border]; (line 98). (Hint 1: we want to accelerate the program. Hint 2: Initialize ROI in the first frame, then make use of SearchRegionRect.)
7. In the command Idx = step(hTM, input, Target, ROI); (line 99) how the variable Idx is related to Target? (Is Idx the index of corner or of center of Target?)
8. The variable Target is initialized using the command Target = zeros(18,22); Does the first execution of the command $\mathbf{I d x}=\mathbf{~ s t e p (h T M , ~ i n p u t , ~ T a r g e t , ~ R O I) ; ~ (l i n e ~ 9 9) ~ g e n e r a t e ~ a ~ w r o n g ~}$ Idx?
9. Explain the command MotionVector = double(Idx-IdxPrev); (line 101). Why do we compute the difference double(Idx-IdxPrev) and don't use Idx directly?
10. Suggest a method for better implementation of the command SearchRegionRect $=$ [SearchRegion, pos.template_size + 2*pos.search_border]; (line 117). (Hint: we want to accelerate the program.)
